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A NIEMYTZKY-TYCHONOFF THEOREM FOR ALL
TOPOLOGICAL SPACES

ITTAY WEISS

Abstract. The classical Niemytzky-Tychonoff theorem charac-
terises compactness of a metrisable topological space by means
of the completeness of all of the metrics inducing the topology.
Motivated by results of Kopperman and Flagg to the effect that
every topological space is metrisable, as long as metrisability is
suitably modified to allow the metric to take values more gen-
eral than real numbers, we show that the Niemytzky-Tychonoff
theorem remains true under this broader notion of metrisability,
thus obtaining a metric characterisation of compactness valid for
all topological spaces.

1. Introduction

For a topological space (X, τ), we say that a metric d : X×X → [0,∞]
is compatible if its induced open ball topology is τ .

Theorem 1.1 (Niemytzki-Tychonoff, 1928, [9]). A metrisable topological
space is compact if, and only if, it is complete in every compatible metric.

It was popularised in [6] that if the metric function is allowed to take
values in structures more general than the non-negative reals, and if the
metric axioms are slightly relaxed, then every topological space is metris-
able. In the literature, this result can be obtained in (at least) two ways,
depending on the axioms defining the codomain of the metric function.
Consequently, it is natural to contemplate the validity of the classical
Niemytzki-Tychonoff theorem under this broader notion of metrisability.
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The aim of this work is to prove that it holds verbatim, namely, since the
adjective ‘metrisable’ becomes redundant, we present a suitable notion of
the meaning of completeness and of compatibility so that the following
holds.

Theorem 1.2. A topological space is compact if, and only if, it is com-
plete in every compatible metric.

Versions of the Niemytzky-Tychonoff theorem, given in chronological
order of appearance, can be found in [1] for uniform spaces, in [12] for
quasi-uniform spaces, in [10] for quasi-guage spaces, and in [3, 7, 11] for
pseudo-quasi-metric spaces, i.e., for [0,∞]-valued metric spaces.

2. Value quantale preliminaries

The study of metric spaces as categories enriched in the non-negative
extended real numbers [0,∞] was initiated by Lawvere in [8] and influ-
enced signfinicant further research of a quantalic enrichment treatment of
topology, a project involving numerous authors which is, in some sense,
summarised by [4].

Coming from somewhat different perspectives, Kopperman in [5] intro-
duced value semigroups (as part of a study of the first order properties of
topological spaces), and Flagg in [2] introduced value quantales (as part
of studies in domain theory), each leading to a definition of continuity
space, namely a metric space valued in, respectively, a value semigroup
or a value quantale. We briefly recount the details, following Flagg.

A value quantale (L,+) is a complete lattice L, with 0 ̸= ∞, together
with an associative and commutative binary operation + on L, such that
the conditions

• a+ 0 = a, for all a ∈ L
• a =

∧
{b ∈ L | b ≻ a}, for all a ∈ L

• a+
∧
S =

∧
a+ S, for all a ∈ L and S ⊆ L

• a ∧ b ≻ 0 for all a, b ∈ L with a, b ≻ 0

hold. Here 0 is the least element in L (and ∞ is the largest element),
a + S = {a + s | s ∈ S}, and the meaning of b ≻ a is that whenever
a ≥

∧
T , for a subset T ⊆ L, there exists t ∈ T with b ≥ t.

Of the elementary properties regarding value quantales, to be found in
[2], we shall make use of:

• If ε ≻ 0 and
∧
S = 0, then there exists s ∈ S with ε ≻ s.

• For all ε ≻ 0 there exists δ ≻ 0 with δ + δ ≺ ε.
• If b ≻ a, then there exists δ ≻ 0 with b ≻ a+ δ.
• Either one of a ≤ b ≺ c or a ≺ b ≤ c implies a ≺ c.
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Flagg then defines a continuity space (X,L, d) to be a set X, a value
quantale L, and a function d : X × X → L satisfying d(x, x) = 0 and
d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X. We shall call (X,L, d) a
metric space valued in L. For such an L-valued metric space (X,L, d),
an ε ≻ 0 in L, and x ∈ X, the open ball of radius ε and centre x is the
set Bε(x) = {y ∈ X | d(x, y) ≺ ε}. Declaring a set S ⊆ X to be open
if for all x ∈ S there exists ε ≻ 0 in L with Bε(x) ⊆ S, it is easily seen
that every open ball is an open set, and that the open sets constitute a
topology, called the open ball topology, denoted by O(d).

For the metrisation result it is convenient to introduce, for every set
S, the value quantale Ω(S), described in [2, Example 1.1, Example 2.8],
as follows. Ω(S) = {a ⊆ ⇓S | A ∈ a =⇒ ⇓A ⊆ a}, where, for all sets A,
⇓A denotes the set of all finite subsets of A. The ordering on Ω(S) is by
reverse set inclusion and + is given by intersection. Clearly then, 0 = ⇓S,
∞ = ∅, and

∧
=

∪
. It is straightforward to show that Ω(S) is a value

quantale. A particular property of it which we require is the following.
Lemma 2.1. For all sets S, an element a ∈ Ω(S) satisfies a ≻ 0 if, and
only if, there exists a finite set F ⊆ S with a ≥ ⇓F .
Proof. Noticing that F ∈ ⇓F for all F ∈ ⇓S, it follows that

∧
F∈⇓S ⇓F =

⇓S = 0, and thus if a ≻ 0, then a ≥ ⇓F for some F ∈ ⇓S. Conversely,
if a ≥ ⇓F for a given F ∈ ⇓S, and

∧
T = 0 for some T ⊆ Ω(S), then

F ∈ ⇓S =
∪

T , so that F ∈ t for some t ∈ T . But then ⇓F ⊆ t, namely
t ≤ ⇓F ≤ a, as is required to show that a ≻ 0. �

If (X, τ) is a topological space, then taking L = Ω(τ) and setting
d(x, y) = ⇓{U ∈ τ | x ∈ U =⇒ y ∈ U} yields an L-valued metric space
with O(d) = τ , which is Flagg’s metrisability result [2, Theorem 4.15].
For our purposes we require a slight generalisation. For a basis B for a
topological space (X, τ), and points x, y ∈ X, let Bx→y = {B ∈ B | x ∈
B =⇒ y ∈ B}.
Theorem 2.2. Let (X, τ) be a topological space and B a basis for it. Then
the function d : X × X → Ω(B) given by d(x, y) = ⇓(Bx→y) is a metric
function and O(d) = τ .
Proof. Clearly Bx→x = B, and so d(x, x) = ⇓B = 0. For the triangle
inequality, given x, y, z ∈ X, it is clear that Bx→y ∩ By→z ⊆ Bx→z, and
thus ⇓Bx→z ⊇ ⇓(Bx→y ∩ By→z) = ⇓Bx→y ∩ ⇓By→z, as required.

It is easily seen that generally in Ω(B), if F is a finite subset of B,
then ⇓F ≻ ⇓F (rendering computations easier, since showing a ≤ ⇓F
immediately implies the stronger claim a ≺ ⇓F ). Note that if F =
{B1, . . . , Bn} ⊆ B, and x ∈ B1 ∩ · · · ∩ Bk while x /∈ Bk+1 ∪ · · · ∪ Bn,
then, for all y ∈ X, F ⊆ Bx→y precisely when y ∈ B1 ∩ · · · ∩ Bk.
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In other words, B⇓F (x) = B1 ∩ · · · ∩Bk. We now deduce that O(d) ⊆ τ ,
since if x ∈ U and U is open in the open ball topology, then Bε(x) ⊆ U ,
for some ε ≻ 0. Then ε ≻ ⇓F , for some F = {B1, . . . , Bn} ⊆ B as above,
and then B1 ∩ · · · ∩ Bk = B⇓F (x) ⊆ Bε(x) ⊆ U , so U ∈ τ . For the
reverse inclusion, given an open set U ∈ τ and an arbitrary x ∈ U , let
B ∈ B satisfy x ∈ B ⊆ U . Then ⇓{B} ≻ 0 and B⇓{B}(x) = B ⊆ U , so
U ∈ O(d). �

A convenient result is [2, Theorem 4.6]: a set C ⊆ X in an L-valued
metric space is closed in the induced open ball topology if, and only if,
d(x,C) = 0, where d(x,C) =

∧
y∈C d(x, y). In particular, the closure of a

set S is S = {x ∈ X | d(x, S) = 0}.
Remark 2.3. We note that this last result does not hold within Kopper-
man’s notion of continuity spaces valued in value semigroups, and that
more generally this result, which is crucial to the arguments below, is not
automatically true in the quantalic approach to topology.

In [13] the above metrisation result is shown to extend functorially to
yield an equivalence of categories between the category Top of topologi-
cal spaces and the category Metc of all L-valued metric spaces, where L
varies over all value quantales, with morphisms f : (X,L, d) → (X ′, L′, d)
the continuous functions in the usual sense: f : X → Y is continuous
if for all x ∈ X and ε ≻ 0 in L′ there exists δ ≻ 0 in L such that
d(fx, fy) ≺ ε for all y ∈ X with d(x, y) ≺ δ. The equivalency is given
by the induced open ball topology functor O : Metc → Top, which is
surjective on objects. In particular, L-valued metric spaces are models
for topology of theoretical equal strength as the usual models in terms of
abstract open sets. The practical utility of the metric formalism is seen
in [14, 15] where, respectively, connectedness is treated in a unified fash-
ion and various topological invariants are constructed through a metric
mechanism. This work is another result toward establishing the metric
approach for topology as a convenient general formalism.
Definition 2.4. Let (X, τ) be a topological space. The class O−1(X, τ) =
{(X,L, d) ∈ Metc | O(d) = τ} is the class of metrics compatible with τ .

Note that the value quantale L is not fixed! Typically, every topological
space admits many pairs of isomorphic copies of compatible metrics.

Finally, to prepare for the proof of the Niemytzky-Tychonoff theorem,
we require the following definition.
Definition 2.5. Let (X,L, d) be an L-valued metric space. For a subset
S ⊆ X, its diameter is defined to be diam(S) =

∨
x,y∈S d(x, y). A filter F

on X is Cauchy if for all ε ≻ 0 in L there exists F ∈ F with diam(F ) ≤ ε.
The filter F converges if there exists x ∈ X such that Bε(x) ∈ F , for all
ε ≻ 0. (X,L, d) is complete if every Cauchy filter in X converges.
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3. The proof

We first show that if (X, τ) is compact and (X,L, d) is a compatible
L-valued metric on X, then (X,L, d) is complete, for which we assume
a Cauchy filter F is given. Since F , being a filter, satisfies the finite
intersection property, compactness implies the existence of a point x ∈ X
common to all F , F ∈ F , and we claim that F converges to x. Indeed,
given ε ≻ 0 in L let δ ≻ 0 with δ+δ ≺ ε, and let F ∈ F satisfy diam(F ) ≤
δ. Since x ∈ F we have that d(x, F ) = 0 ≺ δ and thus d(x, y) ≺ δ, for some
y ∈ F . Then, for all z ∈ F , we have d(x, z) ≤ d(x, y)+d(y, z) ≤ δ+δ ≺ ε.
It follows that F ⊆ Bε(x), as required.

For the converse implication, assume that (X, τ) is a topological space,
and that U is a cover of X by open sets admitting no finite sub-covering.
We may assume that for all V ∈ τ , if V ⊆ U for some U ∈ U , then V ∈ U ,
so in particular U is a basis for τ . We may further assume that U is closed
under finite unions. Then Û = {Û | U ∈ U}, with Û = X \ U , is a filter
base, and let F be the generated filter. Let L = Ω(U), and define d(x, y) =
⇓Ux→y, where Ux→y = {U ∈ U | x ∈ U =⇒ y ∈ U}. By Theorem 2.2
(X,L, d) is a metric space compatible with (X, τ). Further, we show that
F is Cauchy, for which we fix ε ≻ 0. By Lemma 2.1 ε ≥ ⇓{U1, . . . , Un}
for some finitely many U1, . . . , Un ∈ U and let U = U1 ∪ · · · ∪ Un. Then
Û ∈ F , and we claim that diam(Û) ≤ ε. Given x, y ∈ Û , it suffices to
show that d(x, y) ≤ ⇓{U1, . . . , Un}, namely that {U1, . . . , Un} ∈ d(x, y).
But for each 1 ≤ k ≤ n, clearly x /∈ Uk, and thus Uk ∈ Ux→y, so that
{U1, . . . , Un} ⊆ Ux→y and the claim follows.

It now follows by assumption that F converges, say to x. Fix F ∈ F .
Then, for all ε ≻ 0, F ∩ Bε(x) ̸= ∅, so that d(x, F ) ≤ ε, and as ε ≻ 0
is arbitrary it follows that d(x, F ) = 0. In particular, for all U ∈ U ,
d(x, Û) = 0, and since Û is closed, we conclude that x ∈ Û . But then
x /∈

∪
U , a contradiction.

References

[1] R. Doss, On uniform spaces with a unique structure, American Journal of Math-
ematics, 71(1) (1949), 19–23.

[2] R. C. Flagg. Quantales and continuity spaces, Algebra Universalis, 37(3) (1997),
257–276.

[3] P. Fletcher and W. F. Lindgren, Quasi-uniform spaces, volume 77. Marcel Dekker,
New York, 1982.

[4] Dirk Hofmann, Gavin J Seal, and Walter Tholen, Monoidal Topology: A Categor-
ical Approach to Order, Metric, and Topology, volume 153. Cambridge University
Press, 2014.

[5] R. Kopperman, First-order topological axioms, The Journal of Symbolic Logic,
46(03) (1981), 475–489.



60 ITTAY WEISS

[6] , All topologies come from generalized metrics, American Mathematical
Monthly, 95(2) (1988), 89–97.

[7] H. P. Künzi, S. Romaguera, and S. Salbany, Topological spaces that admit bicom-
plete quasipseudometrics, Ann. Univ. Sci. Budapest, 37 (1994), 185–195.

[8] F. W. Lawvere, Metric spaces, generalized logic, and closed categories [Rend.
Sem. Mat. Fis. Milano 43 (1973), 135–166 (1974); MR0352214 (50 #4701)]. Repr.
Theory Appl. Categ., (1) (2002), 1–37. With an author commentary: Enriched
categories in the logic of geometry and analysis.

[9] V. Niemytzki and A. Tychonoff, Beweis des satzes, dass ein metrisierbarer Raum
dann und nur dann kompakt ist, wenn er in jeder Metrik vollständig ist, Funda-
menta Mathematicae, 12(1) (1928), 118–120.

[10] I. L. Reilly, Quasi-gauge spaces, Journal of the London Mathematical Society,
2(3) (1973), 481–487.

[11] S. Romaguera and S. Salbany, Quasi-metrizable spaces with a bicomplete struc-
ture, Extracta Math, 7 (1992), 99–102.

[12] J. L. Sieber and W. J. Pervin, Completeness in quasi-uniform spaces, Mathema-
tische Annalen, 158(2) (1965), 79–81.

[13] I. Weiss, A note on the metrizability of spaces, Algebra universalis, 73(2) (2015),
179–182.

[14] , Metric characterisation of connectedness for topological spaces, Topology
Appl., 204 (2016), 204–216.

[15] , Metric constructions of topological invariants, Topology Proc., 49 (2017),
85–104.

Department of Mathematics; University of Portsmouth, PO1 3HF, UK
E-mail address: ittay.weiss@port.ac.uk


