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CAUCHY sn-SYMMETRIC SPACES
WITH A ¢s-NETWORK (cs*-NETWORK)
HAVING PROPERTY o-(P)

TRAN VAN AN AND LUONG QUOC TUYEN

ABsTRACT. In this paper, we introduce the concept of Cauchy
sn-symmetric spaces, consider properties of Cauchy sn-symmetric
spaces with cs-networks (cs*-networks) having certain o-(P) prop-
erties, and give some characterizations of images of metric spaces
under certain sequence-covering m-maps. Then, we give affirmative
answers to the problems posed by Y. Tanaka and Y. Ge in [18],
and give some partial answers to the problems posed by Y. Ikeda,
C. Liu and Y. Tanaka in [6].

1. INTRODUCTION AND PRELIMINARIES

In 2002, Y. Ikeda, C. Liu and Y. Tanaka introduced the notion of
o-strong networks as a generalization of “development” in developable
spaces, and consider certain quotient images of metric spaces in terms of o-
strong networks. By means of o-strong networks, some characterizations
for the quotient compact images of metric spaces are obtained (see in [6],
[18], for example). It is known that if X is a quotient compact image of
a metric space, then X is a symmetric space having a o-point-finite cs*-
network, see in [6]. Then, the following question was posed by Y. Ikeda,
C. Liu and Y. Tanaka.
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Question 1.1 ([6]). Let X be a symmetric space having a o-point-finite
cs-network. Is X a quotient, compact image of a metric space?

Recently, Y. Tanaka and Y. Ge introduced the concept of strongly g-
developable spaces. It was shown that every strongly g-developable space
is a sequence-covering quotient compact, o-image of a metric space, and
every sequence-covering quotient m, o-image of a metric space is a Cauchy
symmetric, N-space, see in [18]. Then, Y. Tanaka and Y. Ge posed the
question:

Question 1.2 (Question 3.5, [18]). Is every Cauchy symmetric, R-space
a strongly g-developable space?

In this paper, we introduce the concept of Cauchy sn-symmetric spaces
as a generalization of “Cauchy symmetric spaces”, consider properties of
Cauchy sn-symmetric spaces with cs-networks (cs*-networks) having cer-
tain o-(P) properties, and give some characterizations of images of metric
spaces under certain sequence-covering m-maps. As an application of this
result, we give partial answers to the Question 1.1, and give affirmative
answers to the Question 1.2.

Throughout this paper, all spaces are assumed to be T and regular, all
maps are continuous and onto, N denotes the set of all natural numbers.
Let P and Q be two families of subsets of X, we denote (P), = {P €
P:zePland PNQ={PNQ:PecP,Q e Q} Wesay that P is a
network at x in X, if x € (P, and whenever € U with U is open in
X, then x € P C U for some P € P; P is a network for X, if for each
x € X, (P), is a network at x. For a sequence {z,} converging to x and
P C X, we say that {z,} is eventually in P if {} U{zp, :n >m} C P
for some m € N, and {x,} is frequently in P if some subsequence of {z,}
is eventually in P.

Definition 1.3 ([19]). For a cover P of a space X, let (P) be a (certain)
covering-property of P. Let us say that P has property o-(P), if P can
be expressed as | J{P, : n € N}, where each P, is a cover of X having the
property (P), and P,, C P41 for all n € N.

Definition 1.4. Let P = |J{P, : © € X} be a cover of a space X such
that P, is a network at x, and if Py, P, € P, then P C P; N P, for some
Pep,.
(1) P is a weak base [2], if for G C X, G is open in X iff for every
r € G, there exists P € P, such that P C G; P, is said to be a
weak neighborhood base at x.
(2) P is an sn-network [11], if every element of P, is a sequential
neighborhood of x for every z € X; P, is said to be an sn-network
at .
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Remark 1.5. (1) weak bases = sn-networks.
(2) In a sequential space, weak bases <= sn-networks.

Definition 1.6. Let f: X — Y be a map.

(1) fis weak-open [21], if there exists a weak base B=J{B, : y € Y}
for Y, and for every y € Y, there exists z € f~!(y) such that for
each open neighborhood U of 2, B C f(U) for some B € B,,.

(2) f is sequence-covering [16] (resp., pseudo-sequence-covering [6]),
if every convergent sequence of Y is the image of some convergent
sequence (resp., compact subset) of X.

(3) [ is sequentially-quotient [3], if for every convergent sequence S
of Y, there exists a convergent sequence L of X such that f(L) is
a subsequence of S.

(4) f is an msss-map (resp., mssc-map) [10], if X is a subspace of
the product space [,y Xi of a family {X; : ¢ € N} of metric
spaces and for each y € Y, there is a sequence {V;} of open
neighborhoods of y such that each p;f~1(V;) is separable in X;
(resp., each c1(p;f~*(V;)) is compact in X;).

(5) f is an msk-map [8], if X is a subspace of the product space
[I;cn Xi of a family {X; : i € N} of metric spaces and for each
compact subset K of Y and i € N, c1(p;f~!(K)) is compact in
X,.

Definition 1.7 ([5]). Let d be a d-function on a space X.

(1) Foreach x € X, n € N, let S,,(z) = {y € X : d(z,y) < 1/n}.

(2) For every P C X, put d(P) = sup{d(z,y) : x,y € P}.

(3) X is symmetric, if {S,(z) : n € N} is a weak neighborhood base
at « for each x € X.

(4) X is sn-symmetric, if {S,(x) : n € N} is an sn-network at x for
each r € X.

Definition 1.8. (1) A symmetric space (X,d) is called a Cauchy
symmetric space ([20]), if every convergent sequence is d-Cauchy.

(2) An sn-symmetric space (X,d) is called a Cauchy sn-symmetric
space, if every convergent sequence is d-Cauchy.

Remark 1.9. (1) symmetric spaces <= sequential and sn-symmetric
spaces.

(2) Cauchy symmetric spaces <= sequential and Cauchy sn-symmetric
spaces.

Definition 1.10. Let {P,, : n € N} be a sequence of covers of a space X
such that P, refines P,, for every n € N.
(1) |U{Pn : n € N} is a o-strong network for X [6], if {St(x,P,) :n €
N} is a network at each = € X.
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(2) U{Pn : n € N} is a o-(P)-strong network for X, if it is a o-strong
network and each P,, has property (P).

Definition 1.11. Let P = |J{P,, : n € N} be a o-(P)-strong network for
a space X.

(1) P is ao-(P)-strong weak base (resp., sn-network, cs-network, cs*-
network), if P is a weak base (resp., sn-network, cs-network, cs*-
network).

(2) P is a o-(P)-strong network consisting of sn-covers (resp., cs-
covers, cs*-covers), if each P, is an sn-cover (resp., cs-cover,
cs*-cover).

Notation 1.12. Let [J{P, : n € N} be a o-strong network for a space
X. For each n € N, put P,, = {P, : @ € A,} and endow A,, with the
discrete topology. Then,

M = {a: (o) € H Ay, i {P,, } forms a network at some point z, € X}
neN

is a metric space and the point z, is unique in X for every a € M. Define
f: M — X by f(a) = xo. Let us call (f,M,X,P,) a Ponomarev’s
system, following [14].

From now on, let us restrict the properties (P), (Py), (P), (P;) and
(Py4) to the following

(1) (P) are point-finite, compact-finite, locally finite, point-countable,
compact-countable, and locally countable.

(2) (Py) are point-finite, compact-finite, and locally finite.

(3) (P») are point-countable, compact-countable, and locally count-
able.

(4) (P3) are point-finite, compact-finite, locally finite, and locally
countable.

(5) (Py) are point-countable, and compact-countable.

And, let us restrict the prefixes a(P;) and a(P,) to the following

(6) a(Py) is compact if (Py) is point-finite, a(P;) is mssc if (Py) is
locally finite, and «(Py) is msk if (P;) is compact-finite.

(7) a(Py) is s if (P) is point-countable, a(Py) is ¢s if (Py) is compact-
countable, and «(P,) is msss if (P) is locally countable.

For some undefined or related concepts, we refer the reader to [4], [17]
and [18].
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2. CAUCHY sn-SYMMETRIC SPACES WITH A ¢s-NETWORK
HAVING PROPERTY o-(P)

Lemma 2.1. The following statements hold for an sn-symmetric space
X.

(1) If X has a cs-network with property o-(P), then X has an sn-
network with property o-(P).

(2) If X has a o-(P)-strong network consisting of cs-covers, then X
has a o-(P)-strong network consisting of sn-covers.

(3) If P, is a countable sn-network at x, then for each n € N, there
exists P € P, such that P C S, (z).

(4) If P is a sequential neighborhood at x, then S,(z) C P for some
n € N.

Proof. (1) Let F = |J{F, : n € N} be a cs-network with property o-(P)
for X. We can assume that each F,, is closed under finite intersections.
Since F,, C F,41 for all n € N, F is closed under finite intersections.
For each z € X, let P, = {P € F : S, (z) C P for some n € N}. Then,
each element of P, is a sequential neighborhood at x and for P, P, € P,,
there exists P € P, such that P C P, N P,. On the other hand, by using
proof of [13, Lemma 7], we obtain P, is a network at . Now, we define
P = U{P: : x € X}, and for each n € N, let P, = F,, N P. Then,
Pn C Ppyq for all n € N, and P = [J{P, : n € N} is an sn-network
having property o-(P).

(2) Let |U{F; : i € N} be a o-(P)-strong network consisting of cs-
covers for X. For each i € N, put P; = {P € F; : there exist z € X,n €
N such that S,,(z) C P}. Then,

(a) For each x € X, by using the proof of [13, Lemma 7], there exist
P € P; and n € N such that S,,(z) C P. This implies that P is a
sequential neighborhood at x.
(b) For each P € P;, there exist z € X and n € N such that S, (z) C
P. This implies that P is a sequential neighborhood at x.
(¢) U{Pyn : n € N} is a o-(P)-strong network.
Therefore, | J{P, : n € N} is a o-(P)-strong network consisting of sn-
covers.

(3) Since P, is countable, we can put P, = {P,(z) : n € N}. On the
other hand, because P, is an sn-network at z, we can choose a sequence
{n; : i € N} such that {P,,(z) : i € N} is a decreasing network at x.
Then, there exists ¢ € N such that P,,(z) C S, (z).

(4) If not, for each n € N, there exists x,, € Sp(z) — P. Then, {z,}
converges to . Hence, there exists m € N such that x,, € P for every
n > m. This is a contradiction. O
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Lemma 2.2. (1) Let X be an sn-symmetric space. Then, sequence
{d(Sn(a:))} converges to 0 for every x € X iff every convergent
sequence in X is d-Cauchy.

(2) X has a o-strong network consisting of cs-covers iff X is Cauchy
sn-symmetric.

Proof. (1) Assume that {d(S,(z))} converges to 0 for every z € X and
{yn} is a sequence converging to y € X. Then, for each £ > 0, there exists
ng € N such that d(S,,(y)) < e. Thus, there exists mg € N such that
{y} Hyn : n > mo} C Sp,(y). Therefore, d(y;,y;) < € for all i, j > my.

Conversely, assume that every convergent sequence in X is d-Cauchy
and x € X. We shall show that for every ¢ > 0, there exists ng € N such
that d(Sn(z)) < e for every n > ng. Otherwise, there exists € > 0 such
that for each n € N, there exists i,, > n such that d(S;, (z)) > . We can
assume that ,, < 7,41 for every n € N. This follows that for each n € N,
there exist @, yn € i, (z) such that d(z,,y,) > €. Then, the sequence
{Zn,yn : n € N} converges to z. By assumption, this implies that there
exists k € N such that d(x,,y,) < € for all n > k. This is a contradiction.

(2) Let X have a o-strong network P = [J{P,, : n € N} consisting of
cs-covers. For each x,y € X such that  # y, let §(z,y) = min{n : y ¢
St(x,Pn)}, we define

_J0 if z=y
Ae8) = {1/a<x,y> if 24y,

Then, d is a d-function on X and St(z,P,) = S,(x) for all n € N. Since
P is a o-strong network consisting of cs-covers, {S,(z) : n € N} is an
sn-network at each x € X. Therefore, (X,d) is sn-symmetric. Now, we
shall show that every convergent sequence in X is d-Cauchy. Indeed, let
{z;} be a sequence converging to x € X. Then, for any € > 0, choose
k € N such that 1/k < e. Since Py is a cs-cover, there exist P € Py, and
m € N such that x; € P for all ¢ > m. This implies that d(z;,z;) < ¢ for
all i, 5 > m.

Conversely, let X be Cauchy sn-symmetric. For each n € N, put
P, ={P C X : d(P) < 1/n}. Then, J{P, : n € N} is a o-strong
network. Furthermore, each P, is a cs-cover. In fact, let {z;} be a
sequence converging to x € U with U is open in X. Since X is Cauchy sn-
symmetric, there exists m € N such that d(z,z;) < 1/2n and d(z;, z;) <
1/2n for all i, 5 > m. By putting P = {z} |J{x; : i > m}, we have P € P,
and {z;} is eventually in P.

Therefore, | J{P,, : n € N} is a o-strong network consisting of cs-covers
for X. ]
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Theorem 2.3. For a space X, consider the below statements. Then, the
following implications (1) < (2) < (3) = (4) = (5) hold.
(1) X is a Cauchy sn-symmetric space with a cs-network having prop-
erty o-(P);
(2) X has a o-(P)-strong network consisting of cs-covers;
(3) X has a o-(P)-strong network consisting of sn-covers;
(4) X has a o-(P)-strong sn-network;
(5) X has a o-(P)-strong cs-network.
If the property (P) is replaced by (Py), then we have (1) < (2) < (3) &

(4) & (5).

o~~~

Proof. (1) = (2). Let X be a Cauchy sn-symmetric space with a cs-
network having property o-(P). Then, by Lemma 2.1(1), X has an sn-
network P = |J{P,, : n € N} such that each P, has property (P) and
Ppn C Pry1 for all n € N. Denote P = ([ J{P, : € X} with each P, is an
sn-network at x. For each m,n € N, put

Q@) = {P € P NPyt Spulx) C P, and d(P) < 1/n};
Am,n - {{I? € X: Qm,n(x) = @}a Bm,n =X - Am,n;
Qmm = U{Qm,n(x) T e Bm,n}; and ]:m,n = Qm,n U{Am,n}

Then, each F,, , has property (P). Furthermore, we have

(1) Fach Fpp is a cs-cover. Let © € X and L = {x; : i € N} be a
sequence converging to x, then

Case 1. If © € By, 5, then there is P € Q,, () such that S,,(z) C P.
Hence, L is eventually in P € F,, ,.

Case 2. If ¢ ¢ By, and LN By, is finite, then L is eventually in
Am,n S fm,n-

Case 8. If © ¢ B,,, and L N B, , is infinite, then we can assume
that L N By, = {2y, : k € N}. Since X is Cauchy sn-symmetric and
L converges to x, there exists ny € N such that d(x,z;) < 1/m and
d(z;,25) < 1/m for all 4,5 > ng. Now, we pick ko € N such that iy, > no.
Since d(zi,,, x) < 1/mand d(z;, , ;) < 1/mforalli > ng, L is eventually
in Sy (i, ). Furthermore, since x;, € Bimyn, Sm(zi,,) C P for some
Pe Qm,n(xiko). Hence, P € F,, » and L is eventually in P.

Therefore, each F,, ,, is a cs-cover for X.

(ii) {st(x, Fmn) : m,n € N} is a network at x. Assume that x € U
with U is open in X. Then, S, (z) C U for some n € N. Since X is Cauchy
sn-symmetric, by Lemma 2.2(1), it implies that there exists j € N such
that d(S;j(z)) < 1/n. On the other hand, since P is a point-countable sn-
network, it follows from Lemma 2.1(3) that P C S;(z) for some P € P,.
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Thus, P € Py for some k € N. Since P is a sequential neighborhood
at z, it follows from Lemma 2.1(4) that there exists ¢« € N such that
Si(xz) C P. Put m = max{i, k}, we get Sy, (z) C S;(z) C P € P, C Pp,.
Because d(P) < 1/n, it implies that P € Q,, , C Fynn- Then, we have
St(x, Frun) C Sp(x). Therefore, {St(z, Fi.n) : m,n € N} is a network
at x.

Next, we write {F n : m,n € N} = {H, : i € N}, and for each n € N,
put G, = A{H;:i <n}. Then, | J{G, : n € N} is a o-(P)-strong network
consisting of cs-covers for X.

(2) = (3). By Lemma 2.2(2) and Lemma 2.1(2).

(3) = (1). By Lemma 2.2(2).

(3) = (4) = (5). It is obvious.

If the property (P) is replaced by (P;), then (5) = (2) holds by [18,
Lemma 3.3(1)]. O

Lemma 2.4. For a Ponomarev’s system (f,M,X,P,), the following
statements hold.
(1) f is a m-map.
(2) f is a a(P)-map, if each Py, having property (P).
(3) [ is pseudo-sequence-covering, if each Py, is a point-countable cs* -
cover.
(4) f is a 1-sequence-covering map, if each P, is a point-countable
sn-cover.
(5) f is a compact-covering map, if each Py is an sn-cover and each
compact subset of X is metrizable.

Proof. By [18, Lemma 2.2], (1) and (3) hold. For (2), see in the proof
of [7, Theorem 4], [8, Theorem 2.2], [9, Theorem 2.1], [12, Theorem 1.1],
and by [18, Lemma 2.2].

For (4), since each P, is an sn-cover, it follows from [18, Lemma 2.2]
that f is sequence-covering. Furthermore, by (1) and (2), f is a 7- and
s-map. It follows from [1, Theorem 2.5] that f is 1-sequence-covering.

For (5), since each compact subset of X is metrizable and each P, is
an sn-cover, by using the proof of [18, Lemma 3.10], it follows that each
Pn is a cfp-cover for X. By [18, Lemma 2.2(2)] this implies that f is
compact-covering. (]

Lemma 2.5. Let f: M — X be a sequence-covering map, and M be a
metric space. Then, the following statements hold.
(1) X has a cs-network hawing property o-(P), if f is a a(P)-map.
(2) X is Cauchy sn-symmetric, if f is a m-map.

Proof. For (1), by using the proof of [7, Theorem 4], [8, Theorem 4.1], [9,
Theorem 5.1], [12, Theorem 1.1] and by [6, Proposition 16(2b)].



CAUCHY sn-SYMMETRIC SPACES WITH A ¢s-NETWORK... 69

Now, let f be a m-map, it follows from [6, Proposition 16(3b)] that X
has a o-strong network consisting of cs-covers. So, by Lemma 2.2(2), X
is Cauchy sn-symmetric, and (2) holds. O

Theorem 2.6. The following are equivalent for a space X.

(1) X is a Cauchy sn-symmetric space with a cs-network having prop-
erty o-(Py);
(2) X has a o-(Py)-strong sn-network;
(3) X has a o-(Py)-strong network consisting of sn-covers;
(4) X is a 1-sequence-covering compact, a(Py)-image of a metric
space;
(5) X is a sequence-covering w, a(Py)-image of a metric space.
It is possible to add the prefix “compact-covering” before “1-sequence-cover-
ing” in (4) if we restrict (Py) to locally finite or compact-finite.

Proof. (1) & (2) < (3). By Theorem 2.3.

(3) = (4). Let U{Pn : n € N} be a o-(Py)-strong network consisting
of sn-covers. Counsider the Ponomarev’s system (f, M, X,P,). Because
each P, is an sn-cover having property (P;), it follows from Lemma 2.4
that f is a 1-sequence-covering compact, a(P;)-map.

(4) = (5). It is obvious.

(5) = (1). By Lemma 2.5.

Now, if property (P;) are locally finite or compact-finite, then each
compact subset of X is metrizable. Hence, by Lemma 2.4(5), f is compact-
covering. O

Corollary 2.7. The following are equivalent for a space X.

(1) X is a Cauchy symmetric space with a cs-network having property
U_(Pl);'

(2) X has a o-(Py)-strong weak base;

(3) X is a sequential space with a o-(Py)-strong network consisting
of sn-covers;

(4) X is a weak-open compact-covering compact, o(Py)-image of a
metric space;

(5) X is a weak-open w, a(Py)-image of a metric space.

Proof. (1) & (2) & (3) & (5). By Remark 1.9, Theorem 2.6 and [1,
Corollary 2.8].

(4) = (5). It is obvious.

(3) = (4). Let U{Pr : n € N} be a o-(P)-strong network consisting of
sn~-covers for a sequential space X. By Lemma 2.2(2), X is sn-symmetric.
Since X is sequential, it implies that X is symmetric. Then, every com-
pact subset of X is metrizable (|2]). Consider the Ponomarev’s system
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(f, M, X, P,). Since each P, is an sn-cover having property (P;) and ev-
ery compact subset of X is metrizable, it follows from Lemma 2.4 that f
is a 1-sequence-covering compact-covering compact, «(P;)-map. Since X
is sequential, f is weak-open by [1, Corollary 2.8]. Hence, (4) holds. [

Remark 2.8. By Corollary 2.7, in case that the property (P;) is locally
finite, we get an affirmative answer to the Question 1.2.

Similar to the proof of Theorem 2.6, we have the following theorem.

Theorem 2.9. The following are equivalent for a space X.

(1) X is a Cauchy sn-symmetric space with a cs-network having prop-
erty o-(Py);
(2) X is a Cauchy sn-symmetric space has a o-(Py)-strong sn-net-
work;
(3) X has a o-(P)-strong network consisting of sn-covers;
(4) X is a I-sequence-covering w, a(Pz)-image of a metric space;
(5) X is a sequence-covering 7, a(Ps)-image of a metric space.
It is possible to add the prefix “compact-covering” before “I1-sequence-cover-
ing” in (4) if we restrict (Py) to compact-countable or locally countable.

By Theorem 2.9 and similar to the proof of Corollary 2.7, we obtained
the following.

Corollary 2.10. The following are equivalent for a space X.

(1) X is a Cauchy symmetric space with a cs-network having property
O'-(PQ),’

(2) X is a Cauchy symmetric space with a o-(Py)-strong weak base;

(3) X is a sequential space with a o-(Py)-strong network consisting
of sn-covers;

(4) X is a weak-open compact-covering w, a(Py)-image of a metric
space;

(5) X is a weak-open w, a(Ps)-image of a metric space.

3. CAUCHY sn-SYMMETRIC SPACES WITH A ¢s*-NETWORK
HAVING PROPERTY o0-(P)

Lemma 3.1. Let P be a point-countable cs*-network for an sn-symmetric
space X. Then, the following statements hold.

(1) For each © € X, there exist a finite subfamily H C (P), and
k € N such that Si(z) C JH.

(2) Let {xn} be a sequence converging to x € X. For each n € N,
there is a finite subfamily H C (P)y such that {x,} is eventually
in UH C Sy(z).
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Proof. (1) Assume conversely that there exists z € X such that S, (z) ¢
U #H for every n € N and for every finite subfamily # C (P),. Since (P),
is countable, we can write {# : H is a finite subfamily of (P),} = {H, :
i € N}. Then, for each m,n € N, there exists z,_ ., € Sp(x) — |JHm. For
each n > m, let =, ,, = Y, where k = m+n(n—1)/2. Then, the sequence
{yr} converges to x. By [19, Lemma 3|, there exist m,i € N such that
{z} Hyw : k > i} C UHm. Take j > i with y; = x,, 1, for some n > m.
Then, @y m € |JHm. This is a contradiction.

(2) Since (P), is a countable cs*-network at z, it follows from [15,
Lemma 2.2| that G = {UF : F C (P)a, F is finite} is a countable cs-
network at z. Furthermore, by using the proof in [13, Lemma 7], there
exists a countable subfamily @ C G such that Q is a countable sn-network
at z. By Lemma 2.1(3), there exists a finite subfamily # C (P), such
that UH C S, (z). O

Lemma 3.2. If P is a point-countable cs*-network for a Cauchy sn-
symmetric space X, then for each n € N, the collection F, = {P € P :
d(P) < 1/n} is a point-countable cs*-network for X .

Proof. Let {x;} be a sequence converging to x € U with U open in X. For
each n € N, it follows from Lemma 2.2(1) that there exists m € N such
that S, (z) C U, and d(Sy,(z)) < 1/n. It follows from Lemma 3.1(2) that
there is a finite subfamily # C (P), such that |JH C Sy, (z) and {z;} is
eventually in [ J#. Thus, there exists P € H such that {x;} is frequently
in P. Since P C UH C Sy, (z), we have d(P) < 1/n. This implies that
P € F,,. Therefore, F,, is a point-countable cs*-network for X. O

Theorem 3.3. The following are equivalent for a Cauchy sn-symmetric
space X.

(1) X has a cs*-network having property o-(Ps);

(2) X has a o-(P3)-strong cs*-network;

(3) X has a o-(Ps)-strong network consisting of ¢s*-covers.

Proof. (1) = (3). Let P = J{P, : n € N} be a cs*-network having
property o-(P3) for a Cauchy sn-symmetric space X. We can assume
that each P, is closed under finite intersections. Since P, C P,41 for
all n € N, P is closed under finite intersections. In case (Ps) is locally
countable, we can assume that each element of P is closed. Now, for each
m,n,k €N, put Qp,, ={P € Pp, : d(P) < 1/n},

Amone = {x € X : there exists a finite subfamily

Hy C (Qmon)x such that Sk(z) C UHx},

Bm,n,k =X - Am,n,ky and ]:mm,k = Qm,n U{Bmm,k}-
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Then, each F, » i has the property (Ps). Furthermore, we have

(i) Each Fpynk is a cs*-cover for X. Let L = {z; : i € N} be a
sequence converging to x € X, then

Case 1. If © € Ay, then Si(z) C |JH, for some finite subfamily
Hy C (Qmon)z- Since L is eventually in Si(x), L is eventually in |JH,.
Because M is finite, L is frequently in P for some P € Q,, ,,. Therefore,
L is frequently in P for some P € F, p k-

Case 2. If x ¢ Ay i and LN By, 1 is infinite, then L is frequently
in Bm,n,k € ]:m,n,kw

Case 3. If © ¢ A, pnk and L N By, is finite, then there exists
i € N such that {z; : ¢ > o} C LN Ay pnk. This implies that for
each i > i, there exists a finite subfamily H,, C (Qm.n)z; such that
x; € Sp(x;) C UMy, On the other hand, since L converges to z and X is
Cauchy sn-symmetric, there exists jo > ig such that d(z,x;) < 1/k and
d(z;, ;) < 1/k for every i,j > jo. Then, we have

« If (P3) is point-finite, compact-finite or locally finite, then Q,, , is
point-finite. Since d(z,x;) < 1/k for all i > jo, it implies that for each
i > jo, there exists P; € H,, such that {x,x;} C P,. Furthermore, since
O, is point-finite, the set {P; : i > jo} is finite. Thus, L is frequently
in P; € Fpy i for some i > jo.

« If (P3) is locally countable, then we pick kg > jo. Since d(zx,zg,) <
1/k and d(x;,2r,) < 1/k for all i > jo, {z,zi, 2k} C UHs,, for every
i > jo. Since Hg, is finite, there exists a subsequence K of L such
that K C P for some P € H, . Furthermore, since P is closed and K
converges to x, it implies that * € P. Hence, L is frequently in P for
some P € Fp, -

Therefore, each Fy, 1 is a cs*-cover for X.

(i) {St(z, Fm.nk) : myn,k € N} is a network at x. Let x € U with
U is open in X. Since U is a neighborhood of x, there exists ng € N
such that S,,(x) C U. Furthermore, since X is Cauchy sn-symmetric,
it follows from Lemma 3.2 that F,, = {P € P : d(P) < 1/ng} is a
point-countable ¢s*-network for X. By Lemma 3.1(1), there exist a finite
subfamily H C (Fy, ). and ko € N such that Sk, (z) C |JH. On the other
hand, since P, C P, for all n € N, it follows that H C P,,, for some
mo € N. This implies that H C Qy, n,- Because S, (x) C U H, it implies
that @ € Ay ongko- Then, we have St(z, Fingngky) C U. Therefore,
{St(z, Finnk) : m,n, k € N} is a network at .

Next, we write {Fp n i : m,n,k € N} = {#; : i € N}, and for each
it e N, put G; = AN{#H; : j < i}. Then, | J{G; : i € N} is a o-(Ps)-strong
network consisting of ¢s*-covers for X.

(3) = (2) = (1). It is obvious. O
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Theorem 3.4. The following are equivalent for a Cauchy sn-symmetric
space X.

(1) X has a cs*-network having property (Py);
(2) X has a o-(Py)-strong cs*-network;
(3) X has a o-(Py)-strong network consisting of cs*-covers.

Proof. (1) = (3). Let P be a cs*-network having property (Py). For
each n € N, denote G, = {P € P : d(P) < 1/n}. Then, J{Gn :n € N
is a 0-(Py)-strong network. Furthermore, by Lemma 3.2, each G, is a
es*-cover. Therefore, |J{G; : i € N} is a o-(Py)-strong network consisting
of cs*-covers for X.

(3) = (2) = (1). It is obvious. O

Lemma 3.5. Let f: M — X be a sequentially-quotient a(P)-map, and
M be a metric space. Then, X has a cs*-network having property o-(P).

Proof. Since f is a a(P)-map, by using the proof of [6, Theorem 9], [7,
Theorem 4], [8, Lemma 2.1], [9, Theorem 2.1], and [12, Theorem 1.1]
there exists a base B for X such that f(B) is a network having property
o-(P). On the other hand, since every cs*-network is preserved by a
sequentially-quotient map, we have f(B) is a cs*-network. (]

By Theorem 3.3, Theorem 3.4, Lemma 2.4 and Lemma 3.5, we have:

Corollary 3.6. The following are equivalent for a Cauchy sn-symmetric
space X.

(1) X has a cs*-network having property o-(P1);

(2) X has a o-(Py)-strong cs*-network;

(3) X has a o-(Py)-strong network consisting of cs*-covers;

(4) X is a pseudo-sequence-covering compact, a(Py)-image of a met-
ric space;

(5) X is a sequentially-quotient a(Py)-image of a metric space.

Remark 3.7. By Corollary 3.6, in case that the property (P;) is point-
finite and X is Cauchy symmetric, we get a partial answer to the question
in [18, Question 3.9], and get an another partial answer to Question 1.1.

Corollary 3.8. The following are equivalent for a Cauchy sn-symmetric
space X.

(1) X has a cs*-network having property o-(Py);

(2) X has a o-(Py)-strong cs*-network;

(3) X has a o-(Pz)-strong network consisting of ¢s*-covers;

(4) X is a pseudo-sequence-covering w, a(Pa)-image of a metric space;
(5) X is a sequentially-quotient a(P2)-image of a metric space.
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