http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Cauchy *sn*-symmetric spaces with a *cs*-network (cs^* -network) having property σ -(P)

by

TRAN VAN AN AND LUONG QUOC TUYEN

Electronically published on July 5, 2017

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on July 5, 2017

CAUCHY sn-SYMMETRIC SPACES WITH A cs-NETWORK (cs*-NETWORK) HAVING PROPERTY σ -(P)

TRAN VAN AN AND LUONG QUOC TUYEN

ABSTRACT. In this paper, we introduce the concept of Cauchy sn-symmetric spaces, consider properties of Cauchy sn-symmetric spaces with cs-networks (cs*-networks) having certain σ -(P) properties, and give some characterizations of images of metric spaces under certain sequence-covering π -maps. Then, we give affirmative answers to the problems posed by Y. Tanaka and Y. Ge in [18], and give some partial answers to the problems posed by Y. Ikeda, C. Liu and Y. Tanaka in [6].

1. INTRODUCTION AND PRELIMINARIES

In 2002, Y. Ikeda, C. Liu and Y. Tanaka introduced the notion of σ -strong networks as a generalization of "development" in developable spaces, and consider certain quotient images of metric spaces in terms of σ -strong networks. By means of σ -strong networks, some characterizations for the quotient compact images of metric spaces are obtained (see in [6], [18], for example). It is known that if X is a quotient compact image of a metric space, then X is a symmetric space having a σ -point-finite cs^* -network, see in [6]. Then, the following question was posed by Y. Ikeda, C. Liu and Y. Tanaka.

²⁰¹⁰ Mathematics Subject Classification. Primary 54C10, 54D55, 54E40; Secondary 54E99.

Key words and phrases. cs-network; cs*-network; Cauchy sn-symmetric space; σ -(P)-strong network; property σ -(P); α (P)-map.

 $[\]textcircled{O}2017$ Topology Proceedings.

⁶¹

Question 1.1 ([6]). Let X be a symmetric space having a σ -point-finite cs-network. Is X a quotient, compact image of a metric space?

Recently, Y. Tanaka and Y. Ge introduced the concept of strongly g-developable spaces. It was shown that every strongly g-developable space is a sequence-covering quotient compact, σ -image of a metric space, and every sequence-covering quotient π , σ -image of a metric space is a Cauchy symmetric, \aleph -space, see in [18]. Then, Y. Tanaka and Y. Ge posed the question:

Question 1.2 (Question 3.5, [18]). Is every Cauchy symmetric, \aleph -space a strongly g-developable space?

In this paper, we introduce the concept of Cauchy *sn*-symmetric spaces as a generalization of "Cauchy symmetric spaces", consider properties of Cauchy *sn*-symmetric spaces with *cs*-networks (*cs*^{*}-networks) having certain σ -(P) properties, and give some characterizations of images of metric spaces under certain sequence-covering π -maps. As an application of this result, we give partial answers to the Question 1.1, and give affirmative answers to the Question 1.2.

Throughout this paper, all spaces are assumed to be T_1 and regular, all maps are continuous and onto, \mathbb{N} denotes the set of all natural numbers. Let \mathcal{P} and \mathcal{Q} be two families of subsets of X, we denote $(\mathcal{P})_x = \{P \in \mathcal{P} : x \in P\}$ and $\mathcal{P} \land \mathcal{Q} = \{P \cap Q : P \in \mathcal{P}, Q \in \mathcal{Q}\}$. We say that \mathcal{P} is a *network at* x in X, if $x \in \bigcap \mathcal{P}$, and whenever $x \in U$ with U is open in X, then $x \in P \subset U$ for some $P \in \mathcal{P}$; \mathcal{P} is a *network* for X, if for each $x \in X$, $(\mathcal{P})_x$ is a network at x. For a sequence $\{x_n\}$ converging to x and $P \subset X$, we say that $\{x_n\}$ is *eventually* in P if $\{x\} \bigcup \{x_n : n \geq m\} \subset P$ for some $m \in \mathbb{N}$, and $\{x_n\}$ is *frequently* in P if some subsequence of $\{x_n\}$ is eventually in P.

Definition 1.3 ([19]). For a cover \mathcal{P} of a space X, let (P) be a (certain) covering-property of \mathcal{P} . Let us say that \mathcal{P} has property σ -(P), if \mathcal{P} can be expressed as $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$, where each \mathcal{P}_n is a cover of X having the property (P), and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for all $n \in \mathbb{N}$.

Definition 1.4. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X such that \mathcal{P}_x is a network at x, and if $P_1, P_2 \in \mathcal{P}_x$, then $P \subset P_1 \cap P_2$ for some $P \in \mathcal{P}_x$.

- (1) \mathcal{P} is a weak base [2], if for $G \subset X$, G is open in X iff for every $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$; \mathcal{P}_x is said to be a weak neighborhood base at x.
- (2) \mathcal{P} is an *sn-network* [11], if every element of \mathcal{P}_x is a sequential neighborhood of x for every $x \in X$; \mathcal{P}_x is said to be an *sn-network* at x.

Remark 1.5. (1) weak bases \implies *sn*-networks.

(2) In a sequential space, weak bases \iff sn-networks.

Definition 1.6. Let $f: X \longrightarrow Y$ be a map.

- (1) f is weak-open [21], if there exists a weak base $\mathcal{B} = \bigcup \{\mathcal{B}_y : y \in Y\}$ for Y, and for every $y \in Y$, there exists $x \in f^{-1}(y)$ such that for each open neighborhood U of $x, B \subset f(U)$ for some $B \in \mathcal{B}_y$.
- (2) f is sequence-covering [16] (resp., pseudo-sequence-covering [6]), if every convergent sequence of Y is the image of some convergent sequence (resp., compact subset) of X.
- (3) f is sequentially-quotient [3], if for every convergent sequence S of Y, there exists a convergent sequence L of X such that f(L) is a subsequence of S.
- (4) f is an msss-map (resp., mssc-map) [10], if X is a subspace of the product space ∏_{i∈ℕ} X_i of a family {X_i : i ∈ ℕ} of metric spaces and for each y ∈ Y, there is a sequence {V_i} of open neighborhoods of y such that each p_if⁻¹(V_i) is separable in X_i (resp., each cl(p_if⁻¹(V_i)) is compact in X_i).
- (5) f is an msk-map [8], if X is a subspace of the product space $\prod_{i \in \mathbb{N}} X_i$ of a family $\{X_i : i \in \mathbb{N}\}$ of metric spaces and for each compact subset K of Y and $i \in \mathbb{N}$, $cl(p_i f^{-1}(K))$ is compact in X_i .

Definition 1.7 ([5]). Let d be a d-function on a space X.

- (1) For each $x \in X$, $n \in \mathbb{N}$, let $S_n(x) = \{y \in X : d(x,y) < 1/n\}$.
- (2) For every $P \subset X$, put $d(P) = \sup\{d(x, y) : x, y \in P\}$.
- (3) X is symmetric, if $\{S_n(x) : n \in \mathbb{N}\}\$ is a weak neighborhood base at x for each $x \in X$.
- (4) X is sn-symmetric, if $\{S_n(x) : n \in \mathbb{N}\}$ is an sn-network at x for each $x \in X$.
- **Definition 1.8.** (1) A symmetric space (X, d) is called a *Cauchy* symmetric space ([20]), if every convergent sequence is *d*-Cauchy.
 - (2) An *sn*-symmetric space (X, d) is called a *Cauchy sn-symmetric* space, if every convergent sequence is *d*-Cauchy.
- **Remark 1.9.** (1) symmetric spaces \iff sequential and *sn*-symmetric spaces.
 - (2) Cauchy symmetric spaces \iff sequential and Cauchy *sn*-symmetric spaces.

Definition 1.10. Let $\{\mathcal{P}_n : n \in \mathbb{N}\}$ be a sequence of covers of a space X such that \mathcal{P}_{n+1} refines \mathcal{P}_n for every $n \in \mathbb{N}$.

(1) $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}\$ is a σ -strong network for X [6], if $\{\operatorname{St}(x, \mathcal{P}_n) : n \in \mathbb{N}\}\$ is a network at each $x \in X$.

(2) $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}\$ is a σ -(*P*)-strong network for *X*, if it is a σ -strong network and each \mathcal{P}_n has property (*P*).

Definition 1.11. Let $\mathcal{P} = \bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \}$ be a σ -(P)-strong network for a space X.

- (1) \mathcal{P} is a σ -(P)-strong weak base (resp., sn-network, cs-network, cs^{*}network), if \mathcal{P} is a weak base (resp., sn-network, cs-network, cs^{*}network).
- (2) \mathcal{P} is a σ -(P)-strong network consisting of sn-covers (resp., cs-covers, cs^{*}-covers), if each \mathcal{P}_n is an sn-cover (resp., cs-cover, cs^{*}-cover).

Notation 1.12. Let $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -strong network for a space X. For each $n \in \mathbb{N}$, put $\mathcal{P}_n = \{P_\alpha : \alpha \in \Lambda_n\}$ and endow Λ_n with the discrete topology. Then,

$$M = \left\{ \alpha = (\alpha_n) \in \prod_{n \in \mathbb{N}} \Lambda_n : \{P_{\alpha_n}\} \text{ forms a network at some point } x_\alpha \in X \right\}$$

is a metric space and the point x_{α} is unique in X for every $\alpha \in M$. Define $f: M \to X$ by $f(\alpha) = x_{\alpha}$. Let us call (f, M, X, \mathcal{P}_n) a *Ponomarev's* system, following [14].

From now on, let us restrict the properties (P), (P_1) , (P_2) , (P_3) and (P_4) to the following

- (1) (P) are point-finite, compact-finite, locally finite, point-countable, compact-countable, and locally countable.
- (2) (P_1) are point-finite, compact-finite, and locally finite.
- (3) (P_2) are point-countable, compact-countable, and locally countable.
- (4) (P_3) are point-finite, compact-finite, locally finite, and locally countable.
- (5) (P_4) are point-countable, and compact-countable.

And, let us restrict the prefixes $\alpha(P_1)$ and $\alpha(P_2)$ to the following

- (6) $\alpha(P_1)$ is compact if (P_1) is point-finite, $\alpha(P_1)$ is mssc if (P_1) is locally finite, and $\alpha(P_1)$ is msk if (P_1) is compact-finite.
- (7) $\alpha(P_2)$ is s if (P_2) is point-countable, $\alpha(P_2)$ is cs if (P_2) is compactcountable, and $\alpha(P_2)$ is msss if (P_2) is locally countable.

For some undefined or related concepts, we refer the reader to [4], [17] and [18].

2. Cauchy *sn*-symmetric spaces with a *cs*-network having property σ -(*P*)

Lemma 2.1. The following statements hold for an sn-symmetric space X.

- (1) If X has a cs-network with property σ -(P), then X has an snnetwork with property σ -(P).
- (2) If X has a σ -(P)-strong network consisting of cs-covers, then X has a σ -(P)-strong network consisting of sn-covers.
- (3) If \mathcal{P}_x is a countable sn-network at x, then for each $n \in \mathbb{N}$, there exists $P \in \mathcal{P}_x$ such that $P \subset S_n(x)$.
- (4) If P is a sequential neighborhood at x, then $S_n(x) \subset P$ for some $n \in \mathbb{N}$.

Proof. (1) Let $\mathcal{F} = \bigcup \{\mathcal{F}_n : n \in \mathbb{N}\}$ be a *cs*-network with property σ -(P) for X. We can assume that each \mathcal{F}_n is closed under finite intersections. Since $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for all $n \in \mathbb{N}$, \mathcal{F} is closed under finite intersections. For each $x \in X$, let $\mathcal{P}_x = \{P \in \mathcal{F} : S_n(x) \subset P \text{ for some } n \in \mathbb{N}\}$. Then, each element of \mathcal{P}_x is a sequential neighborhood at x and for $P_1, P_2 \in \mathcal{P}_x$, there exists $P \in \mathcal{P}_x$ such that $P \subset P_1 \cap P_2$. On the other hand, by using proof of [13, Lemma 7], we obtain \mathcal{P}_x is a network at x. Now, we define $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$, and for each $n \in \mathbb{N}$, let $\mathcal{P}_n = \mathcal{F}_n \cap \mathcal{P}$. Then, $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for all $n \in \mathbb{N}$, and $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is an *sn*-network having property σ -(P).

(2) Let $\bigcup \{\mathcal{F}_i : i \in \mathbb{N}\}$ be a σ -(P)-strong network consisting of cscovers for X. For each $i \in \mathbb{N}$, put $\mathcal{P}_i = \{P \in \mathcal{F}_i : \text{ there exist } x \in X, n \in \mathbb{N} \text{ such that } S_n(x) \subset P\}$. Then,

- (a) For each $x \in X$, by using the proof of [13, Lemma 7], there exist $P \in \mathcal{P}_i$ and $n \in \mathbb{N}$ such that $S_n(x) \subset P$. This implies that P is a sequential neighborhood at x.
- (b) For each $P \in \mathcal{P}_i$, there exist $x \in X$ and $n \in \mathbb{N}$ such that $S_n(x) \subset P$. This implies that P is a sequential neighborhood at x.
- (c) $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}\$ is a σ -(*P*)-strong network.

Therefore, $\bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \}$ is a σ -(P)-strong network consisting of sn-covers.

(3) Since \mathcal{P}_x is countable, we can put $\mathcal{P}_x = \{P_n(x) : n \in \mathbb{N}\}$. On the other hand, because \mathcal{P}_x is an *sn*-network at x, we can choose a sequence $\{n_i : i \in \mathbb{N}\}$ such that $\{P_{n_i}(x) : i \in \mathbb{N}\}$ is a decreasing network at x. Then, there exists $i \in \mathbb{N}$ such that $P_{n_i}(x) \subset S_n(x)$.

(4) If not, for each $n \in \mathbb{N}$, there exists $x_n \in S_n(x) - P$. Then, $\{x_n\}$ converges to x. Hence, there exists $m \in \mathbb{N}$ such that $x_n \in P$ for every $n \geq m$. This is a contradiction.

Lemma 2.2. (1) Let X be an sn-symmetric space. Then, sequence $\{d(S_n(x))\}$ converges to 0 for every $x \in X$ iff every convergent sequence in X is d-Cauchy.

(2) X has a σ -strong network consisting of cs-covers iff X is Cauchy sn-symmetric.

Proof. (1) Assume that $\{d(S_n(x))\}$ converges to 0 for every $x \in X$ and $\{y_n\}$ is a sequence converging to $y \in X$. Then, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $d(S_{n_0}(y)) < \varepsilon$. Thus, there exists $m_0 \in \mathbb{N}$ such that $\{y\} \bigcup \{y_n : n \ge m_0\} \subset S_{n_0}(y)$. Therefore, $d(y_i, y_j) < \varepsilon$ for all $i, j \ge m_0$.

Conversely, assume that every convergent sequence in X is d-Cauchy and $x \in X$. We shall show that for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $d(S_n(x)) \leq \varepsilon$ for every $n \geq n_0$. Otherwise, there exists $\varepsilon > 0$ such that for each $n \in \mathbb{N}$, there exists $i_n \geq n$ such that $d(S_{i_n}(x)) > \varepsilon$. We can assume that $i_n < i_{n+1}$ for every $n \in \mathbb{N}$. This follows that for each $n \in \mathbb{N}$, there exist $x_n, y_n \in S_{i_n}(x)$ such that $d(x_n, y_n) > \varepsilon$. Then, the sequence $\{x_n, y_n : n \in \mathbb{N}\}$ converges to x. By assumption, this implies that there exists $k \in \mathbb{N}$ such that $d(x_n, y_n) < \varepsilon$ for all $n \geq k$. This is a contradiction.

(2) Let X have a σ -strong network $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ consisting of *cs*-covers. For each $x, y \in X$ such that $x \neq y$, let $\delta(x, y) = \min\{n : y \notin St(x, \mathcal{P}_n)\}$, we define

$$d(x,y) = \begin{cases} 0 & \text{if } x = y\\ 1/\delta(x,y) & \text{if } x \neq y. \end{cases}$$

Then, d is a d-function on X and $\operatorname{St}(x, \mathcal{P}_n) = S_n(x)$ for all $n \in \mathbb{N}$. Since \mathcal{P} is a σ -strong network consisting of cs-covers, $\{S_n(x) : n \in \mathbb{N}\}$ is an sn-network at each $x \in X$. Therefore, (X, d) is sn-symmetric. Now, we shall show that every convergent sequence in X is d-Cauchy. Indeed, let $\{x_i\}$ be a sequence converging to $x \in X$. Then, for any $\varepsilon > 0$, choose $k \in \mathbb{N}$ such that $1/k < \varepsilon$. Since \mathcal{P}_k is a cs-cover, there exist $P \in \mathcal{P}_k$, and $m \in \mathbb{N}$ such that $x_i \in P$ for all $i \geq m$. This implies that $d(x_i, x_j) < \varepsilon$ for all $i, j \geq m$.

Conversely, let X be Cauchy sn-symmetric. For each $n \in \mathbb{N}$, put $\mathcal{P}_n = \{P \subset X : d(P) < 1/n\}$. Then, $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is a σ -strong network. Furthermore, each \mathcal{P}_n is a cs-cover. In fact, let $\{x_i\}$ be a sequence converging to $x \in U$ with U is open in X. Since X is Cauchy sn-symmetric, there exists $m \in \mathbb{N}$ such that $d(x, x_i) < 1/2n$ and $d(x_i, x_j) < 1/2n$ for all $i, j \geq m$. By putting $P = \{x\} \bigcup \{x_i : i \geq m\}$, we have $P \in \mathcal{P}_n$ and $\{x_i\}$ is eventually in P.

Therefore, $\bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \}$ is a σ -strong network consisting of *cs*-covers for *X*.

66

Theorem 2.3. For a space X, consider the below statements. Then, the following implications $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Rightarrow (4) \Rightarrow (5)$ hold.

- (1) X is a Cauchy sn-symmetric space with a cs-network having property σ -(P);
- (2) X has a σ -(P)-strong network consisting of cs-covers;
- (3) X has a σ -(P)-strong network consisting of sn-covers;
- (4) X has a σ -(P)-strong sn-network;
- (5) X has a σ -(P)-strong cs-network.

If the property (P) is replaced by (P_1) , then we have $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$.

Proof. (1) \Rightarrow (2). Let X be a Cauchy *sn*-symmetric space with a *cs*network having property σ -(P). Then, by Lemma 2.1(1), X has an *sn*network $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ such that each \mathcal{P}_n has property (P) and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for all $n \in \mathbb{N}$. Denote $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ with each \mathcal{P}_x is an *sn*-network at x. For each $m, n \in \mathbb{N}$, put

$$\mathcal{Q}_{m,n}(x) = \left\{ P \in \mathcal{P}_m \cap \mathcal{P}_x : S_m(x) \subset P, \text{ and } d(P) < 1/n \right\};$$

$$A_{m,n} = \left\{ x \in X : \mathcal{Q}_{m,n}(x) = \emptyset \right\}; \quad B_{m,n} = X - A_{m,n};$$

$$\mathcal{Q}_{m,n} = \bigcup \{ \mathcal{Q}_{m,n}(x) : x \in B_{m,n} \}; \text{ and } \mathcal{F}_{m,n} = \mathcal{Q}_{m,n} \bigcup \{ A_{m,n} \}.$$

Then, each $\mathcal{F}_{m,n}$ has property (P). Furthermore, we have

(i) Each $\mathcal{F}_{m,n}$ is a cs-cover. Let $x \in X$ and $L = \{x_i : i \in \mathbb{N}\}$ be a sequence converging to x, then

Case 1. If $x \in B_{m,n}$, then there is $P \in \mathcal{Q}_{m,n}(x)$ such that $S_m(x) \subset P$. Hence, L is eventually in $P \in \mathcal{F}_{m,n}$.

Case 2. If $x \notin B_{m,n}$ and $L \cap B_{m,n}$ is finite, then L is eventually in $A_{m,n} \in \mathcal{F}_{m,n}$.

Case 3. If $x \notin B_{m,n}$ and $L \cap B_{m,n}$ is infinite, then we can assume that $L \cap B_{m,n} = \{x_{i_k} : k \in \mathbb{N}\}$. Since X is Cauchy *sn*-symmetric and L converges to x, there exists $n_0 \in \mathbb{N}$ such that $d(x, x_i) < 1/m$ and $d(x_i, x_j) < 1/m$ for all $i, j \ge n_0$. Now, we pick $k_0 \in \mathbb{N}$ such that $i_{k_0} \ge n_0$. Since $d(x_{i_{k_0}}, x) < 1/m$ and $d(x_{i_{k_0}}, x_i) < 1/m$ for all $i \ge n_0, L$ is eventually in $S_m(x_{i_{k_0}})$. Furthermore, since $x_{i_{k_0}} \in B_{m,n}, S_m(x_{i_{k_0}}) \subset P$ for some $P \in Q_{m,n}(x_{i_{k_0}})$. Hence, $P \in \mathcal{F}_{m,n}$ and L is eventually in P.

Therefore, each $\mathcal{F}_{m,n}$ is a *cs*-cover for X.

(ii) $\{\operatorname{St}(x, \mathcal{F}_{m,n}) : m, n \in \mathbb{N}\}$ is a network at x. Assume that $x \in U$ with U is open in X. Then, $S_n(x) \subset U$ for some $n \in \mathbb{N}$. Since X is Cauchy sn-symmetric, by Lemma 2.2(1), it implies that there exists $j \in \mathbb{N}$ such that $d(S_j(x)) < 1/n$. On the other hand, since \mathcal{P} is a point-countable sn-network, it follows from Lemma 2.1(3) that $P \subset S_j(x)$ for some $P \in \mathcal{P}_x$.

Thus, $P \in \mathcal{P}_k$ for some $k \in \mathbb{N}$. Since P is a sequential neighborhood at x, it follows from Lemma 2.1(4) that there exists $i \in \mathbb{N}$ such that $S_i(x) \subset P$. Put $m = \max\{i, k\}$, we get $S_m(x) \subset S_i(x) \subset P \in \mathcal{P}_k \subset \mathcal{P}_m$. Because d(P) < 1/n, it implies that $P \in \mathcal{Q}_{m,n} \subset \mathcal{F}_{m,n}$. Then, we have $\mathsf{St}(x, \mathcal{F}_{m,n}) \subset S_n(x)$. Therefore, $\{\mathsf{St}(x, \mathcal{F}_{m,n}) : m, n \in \mathbb{N}\}$ is a network at x.

Next, we write $\{\mathcal{F}_{m,n} : m, n \in \mathbb{N}\} = \{\mathcal{H}_i : i \in \mathbb{N}\}$, and for each $n \in \mathbb{N}$, put $\mathcal{G}_n = \bigwedge \{\mathcal{H}_i : i \leq n\}$. Then, $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ is a σ -(*P*)-strong network consisting of *cs*-covers for *X*.

- $(2) \Rightarrow (3)$. By Lemma 2.2(2) and Lemma 2.1(2).
- $(3) \Rightarrow (1)$. By Lemma 2.2(2).
- $(3) \Rightarrow (4) \Rightarrow (5)$. It is obvious.

If the property (P) is replaced by (P_1) , then $(5) \Rightarrow (2)$ holds by [18, Lemma 3.3(1)].

Lemma 2.4. For a Ponomarev's system (f, M, X, \mathcal{P}_n) , the following statements hold.

- (1) f is a π -map.
- (2) f is a $\alpha(P)$ -map, if each \mathcal{P}_n having property (P).
- (3) f is pseudo-sequence-covering, if each \mathcal{P}_n is a point-countable cs^* -cover.
- (4) f is a 1-sequence-covering map, if each \mathcal{P}_n is a point-countable sn-cover.
- (5) f is a compact-covering map, if each \mathcal{P}_n is an sn-cover and each compact subset of X is metrizable.

Proof. By [18, Lemma 2.2], (1) and (3) hold. For (2), see in the proof of [7, Theorem 4], [8, Theorem 2.2], [9, Theorem 2.1], [12, Theorem 1.1], and by [18, Lemma 2.2].

For (4), since each \mathcal{P}_n is an *sn*-cover, it follows from [18, Lemma 2.2] that f is sequence-covering. Furthermore, by (1) and (2), f is a π - and *s*-map. It follows from [1, Theorem 2.5] that f is 1-sequence-covering.

For (5), since each compact subset of X is metrizable and each \mathcal{P}_n is an *sn*-cover, by using the proof of [18, Lemma 3.10], it follows that each \mathcal{P}_n is a *cfp*-cover for X. By [18, Lemma 2.2(2)] this implies that f is compact-covering.

Lemma 2.5. Let $f : M \to X$ be a sequence-covering map, and M be a metric space. Then, the following statements hold.

- (1) X has a cs-network having property σ -(P), if f is a α (P)-map.
- (2) X is Cauchy sn-symmetric, if f is a π -map.

Proof. For (1), by using the proof of [7, Theorem 4], [8, Theorem 4.1], [9, Theorem 5.1], [12, Theorem 1.1] and by [6, Proposition 16(2b)].

Now, let f be a π -map, it follows from [6, Proposition 16(3b)] that X has a σ -strong network consisting of *cs*-covers. So, by Lemma 2.2(2), X is Cauchy *sn*-symmetric, and (2) holds.

Theorem 2.6. The following are equivalent for a space X.

- (1) X is a Cauchy sn-symmetric space with a cs-network having property σ -(P₁);
- (2) X has a σ -(P₁)-strong sn-network;
- (3) X has a σ -(P₁)-strong network consisting of sn-covers;
- (4) X is a 1-sequence-covering compact, $\alpha(P_1)$ -image of a metric space;
- (5) X is a sequence-covering π , $\alpha(P_1)$ -image of a metric space.

It is possible to add the prefix "compact-covering" before "1-sequence-covering" in (4) if we restrict (P_1) to locally finite or compact-finite.

Proof. $(1) \Leftrightarrow (2) \Leftrightarrow (3)$. By Theorem 2.3.

 $(3) \Rightarrow (4)$. Let $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ - (P_1) -strong network consisting of *sn*-covers. Consider the Ponomarev's system (f, M, X, \mathcal{P}_n) . Because each \mathcal{P}_n is an *sn*-cover having property (P_1) , it follows from Lemma 2.4 that f is a 1-sequence-covering compact, $\alpha(P_1)$ -map.

 $(4) \Rightarrow (5)$. It is obvious.

 $(5) \Rightarrow (1)$. By Lemma 2.5.

Now, if property (P_1) are locally finite or compact-finite, then each compact subset of X is metrizable. Hence, by Lemma 2.4(5), f is compact-covering.

Corollary 2.7. The following are equivalent for a space X.

- (1) X is a Cauchy symmetric space with a cs-network having property σ - (P_1) ;
- (2) X has a σ -(P₁)-strong weak base;
- (3) X is a sequential space with a σ -(P₁)-strong network consisting of sn-covers;
- (4) X is a weak-open compact-covering compact, $\alpha(P_1)$ -image of a metric space;
- (5) X is a weak-open π , $\alpha(P_1)$ -image of a metric space.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (5). By Remark 1.9, Theorem 2.6 and [1, Corollary 2.8].

 $(4) \Rightarrow (5)$. It is obvious.

 $(3) \Rightarrow (4)$. Let $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ - (\mathcal{P}_1) -strong network consisting of *sn*-covers for a sequential space X. By Lemma 2.2(2), X is *sn*-symmetric. Since X is sequential, it implies that X is symmetric. Then, every compact subset of X is metrizable ([2]). Consider the Ponomarev's system

 (f, M, X, \mathcal{P}_n) . Since each \mathcal{P}_n is an *sn*-cover having property (P_1) and every compact subset of X is metrizable, it follows from Lemma 2.4 that f is a 1-sequence-covering compact-covering compact, $\alpha(P_1)$ -map. Since X is sequential, f is weak-open by [1, Corollary 2.8]. Hence, (4) holds.

Remark 2.8. By Corollary 2.7, in case that the property (P_1) is locally finite, we get an affirmative answer to the Question 1.2.

Similar to the proof of Theorem 2.6, we have the following theorem.

Theorem 2.9. The following are equivalent for a space X.

- (1) X is a Cauchy sn-symmetric space with a cs-network having property σ -(P₂);
- (2) X is a Cauchy sn-symmetric space has a σ -(P₂)-strong sn-network;
- (3) X has a σ -(P₂)-strong network consisting of sn-covers;
- (4) X is a 1-sequence-covering π , $\alpha(P_2)$ -image of a metric space;
- (5) X is a sequence-covering π , $\alpha(P_2)$ -image of a metric space.

It is possible to add the prefix "compact-covering" before "1-sequence-covering" in (4) if we restrict (P_2) to compact-countable or locally countable.

By Theorem 2.9 and similar to the proof of Corollary 2.7, we obtained the following.

Corollary 2.10. The following are equivalent for a space X.

- (1) X is a Cauchy symmetric space with a cs-network having property σ -(P₂);
- (2) X is a Cauchy symmetric space with a σ -(P₂)-strong weak base;
- (3) X is a sequential space with a σ -(P₂)-strong network consisting of sn-covers;
- (4) X is a weak-open compact-covering π , $\alpha(P_2)$ -image of a metric space;
- (5) X is a weak-open π , $\alpha(P_2)$ -image of a metric space.

3. Cauchy *sn*-symmetric spaces with a cs^* -network having property σ -(*P*)

Lemma 3.1. Let \mathcal{P} be a point-countable cs^* -network for an sn-symmetric space X. Then, the following statements hold.

- (1) For each $x \in X$, there exist a finite subfamily $\mathcal{H} \subset (\mathcal{P})_x$ and $k \in \mathbb{N}$ such that $S_k(x) \subset \bigcup \mathcal{H}$.
- (2) Let $\{x_n\}$ be a sequence converging to $x \in X$. For each $n \in \mathbb{N}$, there is a finite subfamily $\mathcal{H} \subset (\mathcal{P})_x$ such that $\{x_n\}$ is eventually in $\bigcup \mathcal{H} \subset S_n(x)$.

Proof. (1) Assume conversely that there exists $x \in X$ such that $S_n(x) \notin \bigcup \mathcal{H}$ for every $n \in \mathbb{N}$ and for every finite subfamily $\mathcal{H} \subset (\mathcal{P})_x$. Since $(\mathcal{P})_x$ is countable, we can write $\{\mathcal{H} : \mathcal{H} \text{ is a finite subfamily of } (\mathcal{P})_x\} = \{\mathcal{H}_i : i \in \mathbb{N}\}$. Then, for each $m, n \in \mathbb{N}$, there exists $x_{n,m} \in S_n(x) - \bigcup \mathcal{H}_m$. For each $n \geq m$, let $x_{n,m} = y_k$, where k = m + n(n-1)/2. Then, the sequence $\{y_k\}$ converges to x. By [19, Lemma 3], there exist $m, i \in \mathbb{N}$ such that $\{x\} \bigcup \{y_k : k \geq i\} \subset \bigcup \mathcal{H}_m$. Take $j \geq i$ with $y_j = x_{n,m}$ for some $n \geq m$. Then, $x_{n,m} \in \bigcup \mathcal{H}_m$. This is a contradiction.

(2) Since $(\mathcal{P})_x$ is a countable cs^* -network at x, it follows from [15, Lemma 2.2] that $\mathcal{G} = \{\bigcup \mathcal{F} : \mathcal{F} \subset (\mathcal{P})_x, \mathcal{F} \text{ is finite}\}$ is a countable csnetwork at x. Furthermore, by using the proof in [13, Lemma 7], there exists a countable subfamily $\mathcal{Q} \subset \mathcal{G}$ such that \mathcal{Q} is a countable sn-network at x. By Lemma 2.1(3), there exists a finite subfamily $\mathcal{H} \subset (\mathcal{P})_x$ such that $\bigcup \mathcal{H} \subset S_n(x)$.

Lemma 3.2. If \mathcal{P} is a point-countable cs^* -network for a Cauchy snsymmetric space X, then for each $n \in \mathbb{N}$, the collection $\mathcal{F}_n = \{P \in \mathcal{P} : d(P) < 1/n\}$ is a point-countable cs^* -network for X.

Proof. Let $\{x_i\}$ be a sequence converging to $x \in U$ with U open in X. For each $n \in \mathbb{N}$, it follows from Lemma 2.2(1) that there exists $m \in \mathbb{N}$ such that $S_m(x) \subset U$, and $d(S_m(x)) < 1/n$. It follows from Lemma 3.1(2) that there is a finite subfamily $\mathcal{H} \subset (\mathcal{P})_x$ such that $\bigcup \mathcal{H} \subset S_m(x)$ and $\{x_i\}$ is eventually in $\bigcup \mathcal{H}$. Thus, there exists $P \in \mathcal{H}$ such that $\{x_i\}$ is frequently in P. Since $P \subset \bigcup \mathcal{H} \subset S_m(x)$, we have d(P) < 1/n. This implies that $P \in \mathcal{F}_n$. Therefore, \mathcal{F}_n is a point-countable cs^* -network for X.

Theorem 3.3. The following are equivalent for a Cauchy sn-symmetric space X.

- (1) X has a cs^{*}-network having property σ -(P₃);
- (2) X has a σ -(P₃)-strong cs^{*}-network;
- (3) X has a σ -(P₃)-strong network consisting of cs^{*}-covers.

Proof. (1) \Rightarrow (3). Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a cs^* -network having property σ -(P_3) for a Cauchy sn-symmetric space X. We can assume that each \mathcal{P}_n is closed under finite intersections. Since $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for all $n \in \mathbb{N}, \mathcal{P}$ is closed under finite intersections. In case (P_3) is locally countable, we can assume that each element of \mathcal{P} is closed. Now, for each $m, n, k \in \mathbb{N}$, put $\mathcal{Q}_{m,n} = \{P \in \mathcal{P}_m : d(P) < 1/n\},$

 $A_{m,n,k} = \left\{ x \in X : \text{ there exists a finite subfamily} \right.$

$$\mathcal{H}_x \subset (Q_{m,n})_x \text{ such that } S_k(x) \subset \bigcup \mathcal{H}_x \Big\},$$
$$B_{m,n,k} = X - A_{m,n,k}, \text{ and } \mathcal{F}_{m,n,k} = \mathcal{Q}_{m,n} \bigcup \{B_{m,n,k}\}.$$

Then, each $\mathcal{F}_{m,n,k}$ has the property (P_3) . Furthermore, we have

(i) Each $\mathcal{F}_{m,n,k}$ is a cs^{*}-cover for X. Let $L = \{x_i : i \in \mathbb{N}\}$ be a sequence converging to $x \in X$, then

Case 1. If $x \in A_{m,n,k}$, then $S_k(x) \subset \bigcup \mathcal{H}_x$ for some finite subfamily $\mathcal{H}_x \subset (\mathcal{Q}_{m,n})_x$. Since L is eventually in $S_k(x)$, L is eventually in $\bigcup \mathcal{H}_x$. Because \mathcal{H}_x is finite, L is frequently in P for some $P \in \mathcal{Q}_{m,n}$. Therefore, L is frequently in P for some $P \in \mathcal{F}_{m,n,k}$.

Case 2. If $x \notin A_{m,n,k}$ and $L \cap B_{m,n,k}$ is infinite, then L is frequently in $B_{m,n,k} \in \mathcal{F}_{m,n,k}$.

Case 3. If $x \notin A_{m,n,k}$ and $L \cap B_{m,n,k}$ is finite, then there exists $i_0 \in \mathbb{N}$ such that $\{x_i : i \geq i_0\} \subset L \cap A_{m,n,k}$. This implies that for each $i \geq i_0$, there exists a finite subfamily $\mathcal{H}_{x_i} \subset (\mathcal{Q}_{m,n})_{x_i}$ such that $x_i \in S_k(x_i) \subset \bigcup \mathcal{H}_{x_i}$. On the other hand, since L converges to x and X is Cauchy *sn*-symmetric, there exists $j_0 \geq i_0$ such that $d(x, x_i) < 1/k$ and $d(x_i, x_j) < 1/k$ for every $i, j \geq j_0$. Then, we have

* If (P_3) is point-finite, compact-finite or locally finite, then $\mathcal{Q}_{m,n}$ is point-finite. Since $d(x, x_i) < 1/k$ for all $i \ge j_0$, it implies that for each $i \ge j_0$, there exists $P_i \in \mathcal{H}_{x_i}$ such that $\{x, x_i\} \subset P_i$. Furthermore, since $\mathcal{Q}_{m,n}$ is point-finite, the set $\{P_i : i \ge j_0\}$ is finite. Thus, L is frequently in $P_i \in \mathcal{F}_{m,n,k}$ for some $i \ge j_0$.

* If (P_3) is locally countable, then we pick $k_0 \geq j_0$. Since $d(x, x_{k_0}) < 1/k$ and $d(x_i, x_{k_0}) < 1/k$ for all $i \geq j_0$, $\{x, x_i, x_{k_0}\} \subset \bigcup \mathcal{H}_{x_{k_0}}$ for every $i \geq j_0$. Since $\mathcal{H}_{x_{k_0}}$ is finite, there exists a subsequence K of L such that $K \subset P$ for some $P \in \mathcal{H}_{x_{k_0}}$. Furthermore, since P is closed and K converges to x, it implies that $x \in P$. Hence, L is frequently in P for some $P \in \mathcal{F}_{m,n,k}$.

Therefore, each $\mathcal{F}_{m,n,k}$ is a cs^* -cover for X.

(ii) $\{\operatorname{St}(x, \mathcal{F}_{m,n,k}) : m, n, k \in \mathbb{N}\}\$ is a network at x. Let $x \in U$ with U is open in X. Since U is a neighborhood of x, there exists $n_0 \in \mathbb{N}$ such that $S_{n_0}(x) \subset U$. Furthermore, since X is Cauchy sn-symmetric, it follows from Lemma 3.2 that $\mathcal{F}_{n_0} = \{P \in \mathcal{P} : d(P) < 1/n_0\}$ is a point-countable cs^* -network for X. By Lemma 3.1(1), there exist a finite subfamily $\mathcal{H} \subset (\mathcal{F}_{n_0})_x$ and $k_0 \in \mathbb{N}$ such that $S_{k_0}(x) \subset \bigcup \mathcal{H}$. On the other hand, since $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for all $n \in \mathbb{N}$, it follows that $\mathcal{H} \subset \mathcal{P}_{m_0}$ for some $m_0 \in \mathbb{N}$. This implies that $\mathcal{H} \subset \mathcal{Q}_{m_0,n_0}$. Because $S_{k_0}(x) \subset \bigcup \mathcal{H}$, it implies that $x \in A_{m_0,n_0,k_0}$. Then, we have $\operatorname{St}(x, \mathcal{F}_{m_0,n_0,k_0}) \subset U$. Therefore, $\{\operatorname{St}(x, \mathcal{F}_{m,n,k}) : m, n, k \in \mathbb{N}\}$ is a network at x.

Next, we write $\{\mathcal{F}_{m,n,k} : m, n, k \in \mathbb{N}\} = \{\mathcal{H}_i : i \in \mathbb{N}\}$, and for each $i \in \mathbb{N}$, put $\mathcal{G}_i = \bigwedge \{\mathcal{H}_j : j \leq i\}$. Then, $\bigcup \{\mathcal{G}_i : i \in \mathbb{N}\}$ is a σ -(P_3)-strong network consisting of cs^* -covers for X.

 $(3) \Rightarrow (2) \Rightarrow (1)$. It is obvious.

Theorem 3.4. The following are equivalent for a Cauchy sn-symmetric space X.

- (1) X has a cs^* -network having property (P_4) ;
- (2) X has a σ -(P₄)-strong cs^{*}-network;
- (3) X has a σ -(P₄)-strong network consisting of cs^{*}-covers.

Proof. (1) \Rightarrow (3). Let \mathcal{P} be a cs^* -network having property (P_4) . For each $n \in \mathbb{N}$, denote $\mathcal{G}_n = \{P \in \mathcal{P} : d(P) < 1/n\}$. Then, $\bigcup \{\mathcal{G}_n : n \in \mathbb{N} \text{ is a } \sigma - (P_4)\text{-strong network}$. Furthermore, by Lemma 3.2, each \mathcal{G}_n is a cs^* -cover. Therefore, $\bigcup \{\mathcal{G}_i : i \in \mathbb{N}\}$ is a $\sigma - (P_4)$ -strong network consisting of cs^* -covers for X.

 $(3) \Rightarrow (2) \Rightarrow (1)$. It is obvious. \Box

Lemma 3.5. Let $f: M \to X$ be a sequentially-quotient $\alpha(P)$ -map, and M be a metric space. Then, X has a cs^* -network having property σ -(P).

Proof. Since f is a $\alpha(P)$ -map, by using the proof of [6, Theorem 9], [7, Theorem 4], [8, Lemma 2.1], [9, Theorem 2.1], and [12, Theorem 1.1] there exists a base \mathcal{B} for X such that $f(\mathcal{B})$ is a network having property σ -(P). On the other hand, since every cs^* -network is preserved by a sequentially-quotient map, we have $f(\mathcal{B})$ is a cs^* -network.

By Theorem 3.3, Theorem 3.4, Lemma 2.4 and Lemma 3.5, we have:

Corollary 3.6. The following are equivalent for a Cauchy sn-symmetric space X.

- (1) X has a cs^* -network having property σ -(P₁);
- (2) X has a σ -(P₁)-strong cs^{*}-network;
- (3) X has a σ -(P₁)-strong network consisting of cs^{*}-covers;
- (4) X is a pseudo-sequence-covering compact, $\alpha(P_1)$ -image of a metric space;
- (5) X is a sequentially-quotient $\alpha(P_1)$ -image of a metric space.

Remark 3.7. By Corollary 3.6, in case that the property (P_1) is pointfinite and X is Cauchy symmetric, we get a partial answer to the question in [18, Question 3.9], and get an another partial answer to Question 1.1.

Corollary 3.8. The following are equivalent for a Cauchy sn-symmetric space X.

- (1) X has a cs^{*}-network having property σ -(P₂);
- (2) X has a σ -(P₂)-strong cs^{*}-network;
- (3) X has a σ -(P₂)-strong network consisting of cs^{*}-covers;
- (4) X is a pseudo-sequence-covering π , $\alpha(P_2)$ -image of a metric space;
- (5) X is a sequentially-quotient $\alpha(P_2)$ -image of a metric space.

Acknowledgement

The authors would like to express their thanks to the referee for his/her helpful comments and valuable suggestions.

References

- T. V. An and L. Q. Tuyen, Further properties of 1-sequence-covering maps, Comment. Math. Univ. Carolinae 49 (2008), no. 3, 477–484.
- [2] A. V. Arhangel'skii, *Mappings and spaces*, Russian Math. Surveys 21 (1966), no. 4, 115–162.
- [3] J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czech. Math. J. 26 (1976), 174–182.
- [4] R. Engelking, General Topology, PWN-Polish, Scientific Publishers, Warszawa 1977.
- [5] Y. Ge, S. Lin, g-metrizable spaces and the images of semi-metric spaces, Czech. Math. J. 57 (132) (2007), 1141–1149.
- [6] Y. Ikeda, C. Liu and Y. Tanaka, Quotient compact images of metric spaces, and related matters, Topology Appl. 122 (2002), no. 1-2, 237–252.
- [7] Z. Li, A note on ℵ-spaces and g-metrizable spaces, Czech. Math. J. 55 (130) (2005), 803–808.
- [8] Z. Li, S. Jiang, On msk-images of metric spaces, Georgian Math J. 12 (2005), no. 3, 515–524.
- [9] Z. Li, Q. Li, X. Zhou, On sequence-covering msss-maps, Mat. Vesnik 59 (2007), 15–21.
- [10] S. Lin, Locally countable collections, locally finite collections and Alexandroff's problems, Acta Math. Sinica 37 (1994), 491–496, (In Chinese).
- [11] _____, On sequence-covering s-mappings, Adv. Math. (China) **25** (1996), no. 6, 548–551.
- [12] S. Lin and C. Liu, On spaces with point-countable cs-networks, Topology Appl. 74 (1996), 51–60.
- [13] S. Lin, Y. Tanaka, Point-countable k-networks, closed maps, and related results, Topology Appl. 59 (1994), 79–86.
- [14] S. Lin and P. Yan, Notes on cfp-covers, Comment. Math. Univ. Carolinae 44 (2003), 295–306.
- [15] M. Sakai, Function spaces with a countable cs*-network at a point, Topology Appl. 156 (2008), 117–123.
- [16] F. Siwiec, Sequence-covering and countably bi-quotient mappings, Gen. Topology Appl. 1 (1971), 143–154.
- [17] Y. Tanaka, Theory of k-networks II, Questions Answers in Gen. Topology 19 (2001), 27–46.
- [18] Y. Tanaka and Y. Ge, Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math. 32 (2006), no. 1, 99–117.
- [19] Y. Tanaka and Z. Li, Certain covering-maps and k-networks, and related matters, Topology Proc. 27 (2003), no. 1, 317–334.
- [20] N. V. Velichko, Symmetrizable spaces, Math. Note 12 (1972), 784-786.

[21] S. Xia, Characterizations of certain g-first countable spaces, Adv. Math. 29 (2000), 61–64.

Department of Mathematics, Vinh University, Viet Nam $E\text{-}mail\ address:\ \texttt{andhvQyahoo.com}$

Department of Mathematics, Da Nang University, Viet Nam $E\text{-}mail\ address: \texttt{tuyendhdn}@gmail.com}$