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CAUCHY sn-SYMMETRIC SPACES
WITH A cs-NETWORK (cs∗-NETWORK)

HAVING PROPERTY σ-(P )

TRAN VAN AN AND LUONG QUOC TUYEN

Abstract. In this paper, we introduce the concept of Cauchy
sn-symmetric spaces, consider properties of Cauchy sn-symmetric
spaces with cs-networks (cs∗-networks) having certain σ-(P) prop-
erties, and give some characterizations of images of metric spaces
under certain sequence-covering π-maps. Then, we give affirmative
answers to the problems posed by Y. Tanaka and Y. Ge in [18],
and give some partial answers to the problems posed by Y. Ikeda,
C. Liu and Y. Tanaka in [6].

1. Introduction and Preliminaries

In 2002, Y. Ikeda, C. Liu and Y. Tanaka introduced the notion of
σ-strong networks as a generalization of “development” in developable
spaces, and consider certain quotient images of metric spaces in terms of σ-
strong networks. By means of σ-strong networks, some characterizations
for the quotient compact images of metric spaces are obtained (see in [6],
[18], for example). It is known that if X is a quotient compact image of
a metric space, then X is a symmetric space having a σ-point-finite cs∗-
network, see in [6]. Then, the following question was posed by Y. Ikeda,
C. Liu and Y. Tanaka.
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Question 1.1 ([6]). Let X be a symmetric space having a σ-point-finite
cs-network. Is X a quotient, compact image of a metric space?

Recently, Y. Tanaka and Y. Ge introduced the concept of strongly g-
developable spaces. It was shown that every strongly g-developable space
is a sequence-covering quotient compact, σ-image of a metric space, and
every sequence-covering quotient π, σ-image of a metric space is a Cauchy
symmetric, ℵ-space, see in [18]. Then, Y. Tanaka and Y. Ge posed the
question:

Question 1.2 (Question 3.5, [18]). Is every Cauchy symmetric, ℵ-space
a strongly g-developable space?

In this paper, we introduce the concept of Cauchy sn-symmetric spaces
as a generalization of “Cauchy symmetric spaces”, consider properties of
Cauchy sn-symmetric spaces with cs-networks (cs∗-networks) having cer-
tain σ-(P) properties, and give some characterizations of images of metric
spaces under certain sequence-covering π-maps. As an application of this
result, we give partial answers to the Question 1.1, and give affirmative
answers to the Question 1.2.

Throughout this paper, all spaces are assumed to be T1 and regular, all
maps are continuous and onto, N denotes the set of all natural numbers.
Let P and Q be two families of subsets of X, we denote (P)x = {P ∈
P : x ∈ P} and P

∧
Q = {P ∩ Q : P ∈ P, Q ∈ Q}. We say that P is a

network at x in X, if x ∈
∩
P, and whenever x ∈ U with U is open in

X, then x ∈ P ⊂ U for some P ∈ P; P is a network for X, if for each
x ∈ X, (P)x is a network at x. For a sequence {xn} converging to x and
P ⊂ X, we say that {xn} is eventually in P if {x}

∪
{xn : n ≥ m} ⊂ P

for some m ∈ N, and {xn} is frequently in P if some subsequence of {xn}
is eventually in P .

Definition 1.3 ([19]). For a cover P of a space X, let (P ) be a (certain)
covering-property of P. Let us say that P has property σ-(P ), if P can
be expressed as

∪
{Pn : n ∈ N}, where each Pn is a cover of X having the

property (P ), and Pn ⊂ Pn+1 for all n ∈ N.

Definition 1.4. Let P =
∪
{Px : x ∈ X} be a cover of a space X such

that Px is a network at x, and if P1, P2 ∈ Px, then P ⊂ P1 ∩P2 for some
P ∈ Px.

(1) P is a weak base [2], if for G ⊂ X, G is open in X iff for every
x ∈ G, there exists P ∈ Px such that P ⊂ G; Px is said to be a
weak neighborhood base at x.

(2) P is an sn-network [11], if every element of Px is a sequential
neighborhood of x for every x ∈ X; Px is said to be an sn-network
at x.
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Remark 1.5. (1) weak bases =⇒ sn-networks.
(2) In a sequential space, weak bases ⇐⇒ sn-networks.

Definition 1.6. Let f : X −→ Y be a map.
(1) f is weak-open [21], if there exists a weak base B =

∪
{By : y ∈ Y }

for Y , and for every y ∈ Y , there exists x ∈ f−1(y) such that for
each open neighborhood U of x, B ⊂ f(U) for some B ∈ By.

(2) f is sequence-covering [16] (resp., pseudo-sequence-covering [6]),
if every convergent sequence of Y is the image of some convergent
sequence (resp., compact subset) of X.

(3) f is sequentially-quotient [3], if for every convergent sequence S
of Y , there exists a convergent sequence L of X such that f(L) is
a subsequence of S.

(4) f is an msss-map (resp., mssc-map) [10], if X is a subspace of
the product space

∏
i∈N Xi of a family {Xi : i ∈ N} of metric

spaces and for each y ∈ Y , there is a sequence {Vi} of open
neighborhoods of y such that each pif

−1(Vi) is separable in Xi

(resp., each cl
(
pif

−1(Vi)
)

is compact in Xi).
(5) f is an msk-map [8], if X is a subspace of the product space∏

i∈N Xi of a family {Xi : i ∈ N} of metric spaces and for each
compact subset K of Y and i ∈ N, cl

(
pif

−1(K)
)

is compact in
Xi.

Definition 1.7 ([5]). Let d be a d-function on a space X.
(1) For each x ∈ X, n ∈ N, let Sn(x) = {y ∈ X : d(x, y) < 1/n}.
(2) For every P ⊂ X, put d(P ) = sup{d(x, y) : x, y ∈ P}.
(3) X is symmetric, if {Sn(x) : n ∈ N} is a weak neighborhood base

at x for each x ∈ X.
(4) X is sn-symmetric, if {Sn(x) : n ∈ N} is an sn-network at x for

each x ∈ X.

Definition 1.8. (1) A symmetric space (X, d) is called a Cauchy
symmetric space ([20]), if every convergent sequence is d-Cauchy.

(2) An sn-symmetric space (X, d) is called a Cauchy sn-symmetric
space, if every convergent sequence is d-Cauchy.

Remark 1.9. (1) symmetric spaces ⇐⇒ sequential and sn-symmetric
spaces.

(2) Cauchy symmetric spaces ⇐⇒ sequential and Cauchy sn-symmetric
spaces.

Definition 1.10. Let {Pn : n ∈ N} be a sequence of covers of a space X
such that Pn+1 refines Pn for every n ∈ N.

(1)
∪
{Pn : n ∈ N} is a σ-strong network for X [6], if {St(x,Pn) : n ∈

N} is a network at each x ∈ X.
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(2)
∪
{Pn : n ∈ N} is a σ-(P )-strong network for X, if it is a σ-strong

network and each Pn has property (P ).

Definition 1.11. Let P =
∪
{Pn : n ∈ N} be a σ-(P )-strong network for

a space X.

(1) P is a σ-(P )-strong weak base (resp., sn-network, cs-network, cs∗-
network), if P is a weak base (resp., sn-network, cs-network, cs∗-
network).

(2) P is a σ-(P )-strong network consisting of sn-covers (resp., cs-
covers, cs∗-covers), if each Pn is an sn-cover (resp., cs-cover,
cs∗-cover).

Notation 1.12. Let
∪
{Pn : n ∈ N} be a σ-strong network for a space

X. For each n ∈ N, put Pn = {Pα : α ∈ Λn} and endow Λn with the
discrete topology. Then,

M =
{
α= (αn)∈

∏
n∈N

Λn : {Pαn} forms a network at some point xα∈ X
}

is a metric space and the point xα is unique in X for every α ∈ M . Define
f : M → X by f(α) = xα. Let us call (f,M,X,Pn) a Ponomarev’s
system, following [14].

From now on, let us restrict the properties (P ), (P1), (P2), (P3) and
(P4) to the following

(1) (P ) are point-finite, compact-finite, locally finite, point-countable,
compact-countable, and locally countable.

(2) (P1) are point-finite, compact-finite, and locally finite.
(3) (P2) are point-countable, compact-countable, and locally count-

able.
(4) (P3) are point-finite, compact-finite, locally finite, and locally

countable.
(5) (P4) are point-countable, and compact-countable.

And, let us restrict the prefixes α(P1) and α(P2) to the following

(6) α(P1) is compact if (P1) is point-finite, α(P1) is mssc if (P1) is
locally finite, and α(P1) is msk if (P1) is compact-finite.

(7) α(P2) is s if (P2) is point-countable, α(P2) is cs if (P2) is compact-
countable, and α(P2) is msss if (P2) is locally countable.

For some undefined or related concepts, we refer the reader to [4], [17]
and [18].
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2. Cauchy sn-symmetric spaces with a cs-network
having property σ-(P )

Lemma 2.1. The following statements hold for an sn-symmetric space
X.

(1) If X has a cs-network with property σ-(P ), then X has an sn-
network with property σ-(P ).

(2) If X has a σ-(P )-strong network consisting of cs-covers, then X
has a σ-(P )-strong network consisting of sn-covers.

(3) If Px is a countable sn-network at x, then for each n ∈ N, there
exists P ∈ Px such that P ⊂ Sn(x).

(4) If P is a sequential neighborhood at x, then Sn(x) ⊂ P for some
n ∈ N.

Proof. (1) Let F =
∪
{Fn : n ∈ N} be a cs-network with property σ-(P )

for X. We can assume that each Fn is closed under finite intersections.
Since Fn ⊂ Fn+1 for all n ∈ N, F is closed under finite intersections.
For each x ∈ X, let Px = {P ∈ F : Sn(x) ⊂ P for some n ∈ N}. Then,
each element of Px is a sequential neighborhood at x and for P1, P2 ∈ Px,
there exists P ∈ Px such that P ⊂ P1 ∩ P2. On the other hand, by using
proof of [13, Lemma 7], we obtain Px is a network at x. Now, we define
P =

∪
{Px : x ∈ X}, and for each n ∈ N, let Pn = Fn ∩ P. Then,

Pn ⊂ Pn+1 for all n ∈ N, and P =
∪
{Pn : n ∈ N} is an sn-network

having property σ-(P ).
(2) Let

∪
{Fi : i ∈ N} be a σ-(P )-strong network consisting of cs-

covers for X. For each i ∈ N, put Pi = {P ∈ Fi : there exist x ∈ X,n ∈
N such that Sn(x) ⊂ P}. Then,

(a) For each x ∈ X, by using the proof of [13, Lemma 7], there exist
P ∈ Pi and n ∈ N such that Sn(x) ⊂ P . This implies that P is a
sequential neighborhood at x.

(b) For each P ∈ Pi, there exist x ∈ X and n ∈ N such that Sn(x) ⊂
P . This implies that P is a sequential neighborhood at x.

(c)
∪
{Pn : n ∈ N} is a σ-(P )-strong network.

Therefore,
∪
{Pn : n ∈ N} is a σ-(P )-strong network consisting of sn-

covers.
(3) Since Px is countable, we can put Px = {Pn(x) : n ∈ N}. On the

other hand, because Px is an sn-network at x, we can choose a sequence
{ni : i ∈ N} such that {Pni(x) : i ∈ N} is a decreasing network at x.
Then, there exists i ∈ N such that Pni(x) ⊂ Sn(x).

(4) If not, for each n ∈ N, there exists xn ∈ Sn(x) − P . Then, {xn}
converges to x. Hence, there exists m ∈ N such that xn ∈ P for every
n ≥ m. This is a contradiction. �
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Lemma 2.2. (1) Let X be an sn-symmetric space. Then, sequence{
d
(
Sn(x)

)}
converges to 0 for every x ∈ X iff every convergent

sequence in X is d-Cauchy.
(2) X has a σ-strong network consisting of cs-covers iff X is Cauchy

sn-symmetric.

Proof. (1) Assume that
{
d
(
Sn(x)

)}
converges to 0 for every x ∈ X and

{yn} is a sequence converging to y ∈ X. Then, for each ε > 0, there exists
n0 ∈ N such that d

(
Sn0(y)

)
< ε. Thus, there exists m0 ∈ N such that

{y}
∪
{yn : n ≥ m0} ⊂ Sn0(y). Therefore, d(yi, yj) < ε for all i, j ≥ m0.

Conversely, assume that every convergent sequence in X is d-Cauchy
and x ∈ X. We shall show that for every ε > 0, there exists n0 ∈ N such
that d

(
Sn(x)

)
≤ ε for every n ≥ n0. Otherwise, there exists ε > 0 such

that for each n ∈ N, there exists in ≥ n such that d
(
Sin(x)

)
> ε. We can

assume that in < in+1 for every n ∈ N. This follows that for each n ∈ N,
there exist xn, yn ∈ Sin(x) such that d(xn, yn) > ε. Then, the sequence
{xn, yn : n ∈ N} converges to x. By assumption, this implies that there
exists k ∈ N such that d(xn, yn) < ε for all n ≥ k. This is a contradiction.

(2) Let X have a σ-strong network P =
∪
{Pn : n ∈ N} consisting of

cs-covers. For each x, y ∈ X such that x ̸= y, let δ(x, y) = min{n : y /∈
St(x,Pn)}, we define

d(x, y) =

{
0 if x = y

1/δ(x, y) if x ̸= y.

Then, d is a d-function on X and St(x,Pn) = Sn(x) for all n ∈ N. Since
P is a σ-strong network consisting of cs-covers, {Sn(x) : n ∈ N} is an
sn-network at each x ∈ X. Therefore, (X, d) is sn-symmetric. Now, we
shall show that every convergent sequence in X is d-Cauchy. Indeed, let
{xi} be a sequence converging to x ∈ X. Then, for any ε > 0, choose
k ∈ N such that 1/k < ε. Since Pk is a cs-cover, there exist P ∈ Pk, and
m ∈ N such that xi ∈ P for all i ≥ m. This implies that d(xi, xj) < ε for
all i, j ≥ m.

Conversely, let X be Cauchy sn-symmetric. For each n ∈ N, put
Pn = {P ⊂ X : d(P ) < 1/n}. Then,

∪
{Pn : n ∈ N} is a σ-strong

network. Furthermore, each Pn is a cs-cover. In fact, let {xi} be a
sequence converging to x ∈ U with U is open in X. Since X is Cauchy sn-
symmetric, there exists m ∈ N such that d(x, xi) < 1/2n and d(xi, xj) <
1/2n for all i, j ≥ m. By putting P = {x}

∪
{xi : i ≥ m}, we have P ∈ Pn

and {xi} is eventually in P .
Therefore,

∪
{Pn : n ∈ N} is a σ-strong network consisting of cs-covers

for X. �
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Theorem 2.3. For a space X, consider the below statements. Then, the
following implications (1) ⇔ (2) ⇔ (3) ⇒ (4) ⇒ (5) hold.

(1) X is a Cauchy sn-symmetric space with a cs-network having prop-
erty σ-(P );

(2) X has a σ-(P )-strong network consisting of cs-covers;
(3) X has a σ-(P )-strong network consisting of sn-covers;
(4) X has a σ-(P )-strong sn-network;
(5) X has a σ-(P )-strong cs-network.

If the property (P ) is replaced by (P1), then we have (1) ⇔ (2) ⇔ (3) ⇔
(4) ⇔ (5).

Proof. (1) ⇒ (2). Let X be a Cauchy sn-symmetric space with a cs-
network having property σ-(P ). Then, by Lemma 2.1(1), X has an sn-
network P =

∪
{Pn : n ∈ N} such that each Pn has property (P ) and

Pn ⊂ Pn+1 for all n ∈ N. Denote P =
∪
{Px : x ∈ X} with each Px is an

sn-network at x. For each m,n ∈ N, put

Qm,n(x) =
{
P ∈ Pm ∩ Px : Sm(x) ⊂ P, and d(P ) < 1/n

}
;

Am,n = {x ∈ X : Qm,n(x) = ∅}; Bm,n = X −Am,n;

Qm,n =
∪
{Qm,n(x) : x ∈ Bm,n}; and Fm,n = Qm,n

∪
{Am,n}.

Then, each Fm,n has property (P ). Furthermore, we have
(i) Each Fm,n is a cs-cover. Let x ∈ X and L = {xi : i ∈ N} be a

sequence converging to x, then
Case 1. If x ∈ Bm,n, then there is P ∈ Qm,n(x) such that Sm(x) ⊂ P .

Hence, L is eventually in P ∈ Fm,n.
Case 2. If x /∈ Bm,n and L ∩ Bm,n is finite, then L is eventually in

Am,n ∈ Fm,n.
Case 3. If x /∈ Bm,n and L ∩ Bm,n is infinite, then we can assume

that L ∩ Bm,n = {xik : k ∈ N}. Since X is Cauchy sn-symmetric and
L converges to x, there exists n0 ∈ N such that d(x, xi) < 1/m and
d(xi, xj) < 1/m for all i, j ≥ n0. Now, we pick k0 ∈ N such that ik0 ≥ n0.
Since d(xik0

, x) < 1/m and d(xik0
, xi) < 1/m for all i ≥ n0, L is eventually

in Sm(xik0
). Furthermore, since xik0

∈ Bm,n, Sm(xik0
) ⊂ P for some

P ∈ Qm,n(xik0
). Hence, P ∈ Fm,n and L is eventually in P .

Therefore, each Fm,n is a cs-cover for X.
(ii) {St(x,Fm,n) : m,n ∈ N} is a network at x. Assume that x ∈ U

with U is open in X. Then, Sn(x) ⊂ U for some n ∈ N. Since X is Cauchy
sn-symmetric, by Lemma 2.2(1), it implies that there exists j ∈ N such
that d

(
Sj(x)

)
< 1/n. On the other hand, since P is a point-countable sn-

network, it follows from Lemma 2.1(3) that P ⊂ Sj(x) for some P ∈ Px.
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Thus, P ∈ Pk for some k ∈ N. Since P is a sequential neighborhood
at x, it follows from Lemma 2.1(4) that there exists i ∈ N such that
Si(x) ⊂ P . Put m = max{i, k}, we get Sm(x) ⊂ Si(x) ⊂ P ∈ Pk ⊂ Pm.
Because d(P ) < 1/n, it implies that P ∈ Qm,n ⊂ Fm,n. Then, we have
St(x,Fm,n) ⊂ Sn(x). Therefore, {St(x,Fm,n) : m,n ∈ N} is a network
at x.

Next, we write {Fm,n : m,n ∈ N} = {Hi : i ∈ N}, and for each n ∈ N,
put Gn =

∧
{Hi : i ≤ n}. Then,

∪
{Gn : n ∈ N} is a σ-(P )-strong network

consisting of cs-covers for X.
(2) ⇒ (3). By Lemma 2.2(2) and Lemma 2.1(2).
(3) ⇒ (1). By Lemma 2.2(2).
(3) ⇒ (4) ⇒ (5). It is obvious.
If the property (P ) is replaced by (P1), then (5) ⇒ (2) holds by [18,

Lemma 3.3(1)]. �
Lemma 2.4. For a Ponomarev’s system (f,M,X,Pn), the following
statements hold.

(1) f is a π-map.
(2) f is a α(P )-map, if each Pn having property (P ).
(3) f is pseudo-sequence-covering, if each Pn is a point-countable cs∗-

cover.
(4) f is a 1-sequence-covering map, if each Pn is a point-countable

sn-cover.
(5) f is a compact-covering map, if each Pn is an sn-cover and each

compact subset of X is metrizable.

Proof. By [18, Lemma 2.2], (1) and (3) hold. For (2), see in the proof
of [7, Theorem 4], [8, Theorem 2.2], [9, Theorem 2.1], [12, Theorem 1.1],
and by [18, Lemma 2.2].

For (4), since each Pn is an sn-cover, it follows from [18, Lemma 2.2]
that f is sequence-covering. Furthermore, by (1) and (2), f is a π- and
s-map. It follows from [1, Theorem 2.5] that f is 1-sequence-covering.

For (5), since each compact subset of X is metrizable and each Pn is
an sn-cover, by using the proof of [18, Lemma 3.10], it follows that each
Pn is a cfp-cover for X. By [18, Lemma 2.2(2)] this implies that f is
compact-covering. �
Lemma 2.5. Let f : M → X be a sequence-covering map, and M be a
metric space. Then, the following statements hold.

(1) X has a cs-network hawing property σ-(P ), if f is a α(P )-map.
(2) X is Cauchy sn-symmetric, if f is a π-map.

Proof. For (1), by using the proof of [7, Theorem 4], [8, Theorem 4.1], [9,
Theorem 5.1], [12, Theorem 1.1] and by [6, Proposition 16(2b)].
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Now, let f be a π-map, it follows from [6, Proposition 16(3b)] that X
has a σ-strong network consisting of cs-covers. So, by Lemma 2.2(2), X
is Cauchy sn-symmetric, and (2) holds. �

Theorem 2.6. The following are equivalent for a space X.
(1) X is a Cauchy sn-symmetric space with a cs-network having prop-

erty σ-(P1);
(2) X has a σ-(P1)-strong sn-network;
(3) X has a σ-(P1)-strong network consisting of sn-covers;
(4) X is a 1-sequence-covering compact, α(P1)-image of a metric

space;
(5) X is a sequence-covering π, α(P1)-image of a metric space.

It is possible to add the prefix “compact-covering” before “1-sequence-cover-
ing” in (4) if we restrict (P1) to locally finite or compact-finite.

Proof. (1) ⇔ (2) ⇔ (3). By Theorem 2.3.
(3) ⇒ (4). Let

∪
{Pn : n ∈ N} be a σ-(P1)-strong network consisting

of sn-covers. Consider the Ponomarev’s system (f,M,X,Pn). Because
each Pn is an sn-cover having property (P1), it follows from Lemma 2.4
that f is a 1-sequence-covering compact, α(P1)-map.

(4) ⇒ (5). It is obvious.
(5) ⇒ (1). By Lemma 2.5.
Now, if property (P1) are locally finite or compact-finite, then each

compact subset of X is metrizable. Hence, by Lemma 2.4(5), f is compact-
covering. �

Corollary 2.7. The following are equivalent for a space X.
(1) X is a Cauchy symmetric space with a cs-network having property

σ-(P1);
(2) X has a σ-(P1)-strong weak base;
(3) X is a sequential space with a σ-(P1)-strong network consisting

of sn-covers;
(4) X is a weak-open compact-covering compact, α(P1)-image of a

metric space;
(5) X is a weak-open π, α(P1)-image of a metric space.

Proof. (1) ⇔ (2) ⇔ (3) ⇔ (5). By Remark 1.9, Theorem 2.6 and [1,
Corollary 2.8].

(4) ⇒ (5). It is obvious.
(3) ⇒ (4). Let

∪
{Pn : n ∈ N} be a σ-(P1)-strong network consisting of

sn-covers for a sequential space X. By Lemma 2.2(2), X is sn-symmetric.
Since X is sequential, it implies that X is symmetric. Then, every com-
pact subset of X is metrizable ([2]). Consider the Ponomarev’s system
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(f,M,X,Pn). Since each Pn is an sn-cover having property (P1) and ev-
ery compact subset of X is metrizable, it follows from Lemma 2.4 that f
is a 1-sequence-covering compact-covering compact, α(P1)-map. Since X
is sequential, f is weak-open by [1, Corollary 2.8]. Hence, (4) holds. �

Remark 2.8. By Corollary 2.7, in case that the property (P1) is locally
finite, we get an affirmative answer to the Question 1.2.

Similar to the proof of Theorem 2.6, we have the following theorem.

Theorem 2.9. The following are equivalent for a space X.
(1) X is a Cauchy sn-symmetric space with a cs-network having prop-

erty σ-(P2);
(2) X is a Cauchy sn-symmetric space has a σ-(P2)-strong sn-net-

work;
(3) X has a σ-(P2)-strong network consisting of sn-covers;
(4) X is a 1-sequence-covering π, α(P2)-image of a metric space;
(5) X is a sequence-covering π, α(P2)-image of a metric space.

It is possible to add the prefix “compact-covering” before “1-sequence-cover-
ing” in (4) if we restrict (P2) to compact-countable or locally countable.

By Theorem 2.9 and similar to the proof of Corollary 2.7, we obtained
the following.

Corollary 2.10. The following are equivalent for a space X.
(1) X is a Cauchy symmetric space with a cs-network having property

σ-(P2);
(2) X is a Cauchy symmetric space with a σ-(P2)-strong weak base;
(3) X is a sequential space with a σ-(P2)-strong network consisting

of sn-covers;
(4) X is a weak-open compact-covering π, α(P2)-image of a metric

space;
(5) X is a weak-open π, α(P2)-image of a metric space.

3. Cauchy sn-symmetric spaces with a cs∗-network
having property σ-(P )

Lemma 3.1. Let P be a point-countable cs∗-network for an sn-symmetric
space X. Then, the following statements hold.

(1) For each x ∈ X, there exist a finite subfamily H ⊂ (P)x and
k ∈ N such that Sk(x) ⊂

∪
H.

(2) Let {xn} be a sequence converging to x ∈ X. For each n ∈ N,
there is a finite subfamily H ⊂ (P)x such that {xn} is eventually
in

∪
H ⊂ Sn(x).
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Proof. (1) Assume conversely that there exists x ∈ X such that Sn(x) ̸⊂∪
H for every n ∈ N and for every finite subfamily H ⊂ (P)x. Since (P)x

is countable, we can write {H : H is a finite subfamily of (P)x} = {Hi :
i ∈ N}. Then, for each m,n ∈ N, there exists xn,m ∈ Sn(x)−

∪
Hm. For

each n ≥ m, let xn,m = yk, where k = m+n(n−1)/2. Then, the sequence
{yk} converges to x. By [19, Lemma 3], there exist m, i ∈ N such that
{x}

∪
{yk : k ≥ i} ⊂

∪
Hm. Take j ≥ i with yj = xn,m for some n ≥ m.

Then, xn,m ∈
∪

Hm. This is a contradiction.
(2) Since (P)x is a countable cs∗-network at x, it follows from [15,

Lemma 2.2] that G = {
∪
F : F ⊂ (P)x,F is finite} is a countable cs-

network at x. Furthermore, by using the proof in [13, Lemma 7], there
exists a countable subfamily Q ⊂ G such that Q is a countable sn-network
at x. By Lemma 2.1(3), there exists a finite subfamily H ⊂ (P)x such
that

∪
H ⊂ Sn(x). �

Lemma 3.2. If P is a point-countable cs∗-network for a Cauchy sn-
symmetric space X, then for each n ∈ N, the collection Fn = {P ∈ P :
d(P ) < 1/n} is a point-countable cs∗-network for X.

Proof. Let {xi} be a sequence converging to x ∈ U with U open in X. For
each n ∈ N, it follows from Lemma 2.2(1) that there exists m ∈ N such
that Sm(x) ⊂ U , and d

(
Sm(x)

)
< 1/n. It follows from Lemma 3.1(2) that

there is a finite subfamily H ⊂ (P)x such that
∪
H ⊂ Sm(x) and {xi} is

eventually in
∪

H. Thus, there exists P ∈ H such that {xi} is frequently
in P . Since P ⊂

∪
H ⊂ Sm(x), we have d(P ) < 1/n. This implies that

P ∈ Fn. Therefore, Fn is a point-countable cs∗-network for X. �
Theorem 3.3. The following are equivalent for a Cauchy sn-symmetric
space X.

(1) X has a cs∗-network having property σ-(P3);
(2) X has a σ-(P3)-strong cs∗-network;
(3) X has a σ-(P3)-strong network consisting of cs∗-covers.

Proof. (1) ⇒ (3). Let P =
∪
{Pn : n ∈ N} be a cs∗-network having

property σ-(P3) for a Cauchy sn-symmetric space X. We can assume
that each Pn is closed under finite intersections. Since Pn ⊂ Pn+1 for
all n ∈ N, P is closed under finite intersections. In case (P3) is locally
countable, we can assume that each element of P is closed. Now, for each
m,n, k ∈ N, put Qm,n = {P ∈ Pm : d(P ) < 1/n},

Am,n,k =
{
x ∈ X : there exists a finite subfamily

Hx ⊂ (Qm,n)x such that Sk(x) ⊂
∪
Hx

}
,

Bm,n,k = X −Am,n,k, and Fm,n,k = Qm,n

∪
{Bm,n,k}.
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Then, each Fm,n,k has the property (P3). Furthermore, we have
(i) Each Fm,n,k is a cs∗-cover for X. Let L = {xi : i ∈ N} be a

sequence converging to x ∈ X, then
Case 1. If x ∈ Am,n,k, then Sk(x) ⊂

∪
Hx for some finite subfamily

Hx ⊂ (Qm,n)x. Since L is eventually in Sk(x), L is eventually in
∪
Hx.

Because Hx is finite, L is frequently in P for some P ∈ Qm,n. Therefore,
L is frequently in P for some P ∈ Fm,n,k.

Case 2. If x /∈ Am,n,k and L ∩ Bm,n,k is infinite, then L is frequently
in Bm,n,k ∈ Fm,n,k.

Case 3. If x /∈ Am,n,k and L ∩ Bm,n,k is finite, then there exists
i0 ∈ N such that {xi : i ≥ i0} ⊂ L ∩ Am,n,k. This implies that for
each i ≥ i0, there exists a finite subfamily Hxi ⊂ (Qm,n)xi such that
xi ∈ Sk(xi) ⊂

∪
Hxi . On the other hand, since L converges to x and X is

Cauchy sn-symmetric, there exists j0 ≥ i0 such that d(x, xi) < 1/k and
d(xi, xj) < 1/k for every i, j ≥ j0. Then, we have

∗ If (P3) is point-finite, compact-finite or locally finite, then Qm,n is
point-finite. Since d(x, xi) < 1/k for all i ≥ j0, it implies that for each
i ≥ j0, there exists Pi ∈ Hxi such that {x, xi} ⊂ Pi. Furthermore, since
Qm,n is point-finite, the set {Pi : i ≥ j0} is finite. Thus, L is frequently
in Pi ∈ Fm,n,k for some i ≥ j0.

∗ If (P3) is locally countable, then we pick k0 ≥ j0. Since d(x, xk0) <
1/k and d(xi, xk0) < 1/k for all i ≥ j0, {x, xi, xk0} ⊂

∪
Hxk0

for every
i ≥ j0. Since Hxk0

is finite, there exists a subsequence K of L such
that K ⊂ P for some P ∈ Hxk0

. Furthermore, since P is closed and K
converges to x, it implies that x ∈ P . Hence, L is frequently in P for
some P ∈ Fm,n,k.

Therefore, each Fm,n,k is a cs∗-cover for X.
(ii) {St(x,Fm,n,k) : m,n, k ∈ N} is a network at x. Let x ∈ U with

U is open in X. Since U is a neighborhood of x, there exists n0 ∈ N
such that Sn0(x) ⊂ U . Furthermore, since X is Cauchy sn-symmetric,
it follows from Lemma 3.2 that Fn0 = {P ∈ P : d(P ) < 1/n0} is a
point-countable cs∗-network for X. By Lemma 3.1(1), there exist a finite
subfamily H ⊂ (Fn0)x and k0 ∈ N such that Sk0(x) ⊂

∪
H. On the other

hand, since Pn ⊂ Pn+1 for all n ∈ N, it follows that H ⊂ Pm0 for some
m0 ∈ N. This implies that H ⊂ Qm0,n0 . Because Sk0(x) ⊂

∪
H, it implies

that x ∈ Am0,n0,k0 . Then, we have St(x,Fm0,n0,k0) ⊂ U . Therefore,
{St(x,Fm,n,k) : m,n, k ∈ N} is a network at x.

Next, we write {Fm,n,k : m,n, k ∈ N} = {Hi : i ∈ N}, and for each
i ∈ N, put Gi =

∧
{Hj : j ≤ i}. Then,

∪
{Gi : i ∈ N} is a σ-(P3)-strong

network consisting of cs∗-covers for X.
(3) ⇒ (2) ⇒ (1). It is obvious. �
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Theorem 3.4. The following are equivalent for a Cauchy sn-symmetric
space X.

(1) X has a cs∗-network having property (P4);
(2) X has a σ-(P4)-strong cs∗-network;
(3) X has a σ-(P4)-strong network consisting of cs∗-covers.

Proof. (1) ⇒ (3). Let P be a cs∗-network having property (P4). For
each n ∈ N, denote Gn = {P ∈ P : d(P ) < 1/n}. Then,

∪
{Gn : n ∈ N

is a σ-(P4)-strong network. Furthermore, by Lemma 3.2, each Gn is a
cs∗-cover. Therefore,

∪
{Gi : i ∈ N} is a σ-(P4)-strong network consisting

of cs∗-covers for X.
(3) ⇒ (2) ⇒ (1). It is obvious. �

Lemma 3.5. Let f : M → X be a sequentially-quotient α(P )-map, and
M be a metric space. Then, X has a cs∗-network having property σ-(P ).

Proof. Since f is a α(P )-map, by using the proof of [6, Theorem 9], [7,
Theorem 4], [8, Lemma 2.1], [9, Theorem 2.1], and [12, Theorem 1.1]
there exists a base B for X such that f(B) is a network having property
σ-(P ). On the other hand, since every cs∗-network is preserved by a
sequentially-quotient map, we have f(B) is a cs∗-network. �

By Theorem 3.3, Theorem 3.4, Lemma 2.4 and Lemma 3.5, we have:

Corollary 3.6. The following are equivalent for a Cauchy sn-symmetric
space X.

(1) X has a cs∗-network having property σ-(P1);
(2) X has a σ-(P1)-strong cs∗-network;
(3) X has a σ-(P1)-strong network consisting of cs∗-covers;
(4) X is a pseudo-sequence-covering compact, α(P1)-image of a met-

ric space;
(5) X is a sequentially-quotient α(P1)-image of a metric space.

Remark 3.7. By Corollary 3.6, in case that the property (P1) is point-
finite and X is Cauchy symmetric, we get a partial answer to the question
in [18, Question 3.9], and get an another partial answer to Question 1.1.

Corollary 3.8. The following are equivalent for a Cauchy sn-symmetric
space X.

(1) X has a cs∗-network having property σ-(P2);
(2) X has a σ-(P2)-strong cs∗-network;
(3) X has a σ-(P2)-strong network consisting of cs∗-covers;
(4) X is a pseudo-sequence-covering π, α(P2)-image of a metric space;
(5) X is a sequentially-quotient α(P2)-image of a metric space.
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