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SOME CHARACTERIZATIONS OF
PRE-METRIZABILITY

A. GARCÍA-MÁYNEZ† AND M. A. LÓPEZ-RAMÍREZ

Abstract. The class of pre-metrizable spaces (i.e., perfect pre-
images of metrizable spaces) coincides with the class of paracom-
pact p-spaces. In this paper we give three additional characteriza-
tions. One of them is the following:
(1) A Tychonoff space X is pre-metrizable if and only if there

exists a zero set H in X × βX such that ∆(X) ⊆ H ⊆ X ×
X, where βX is the Stone-Čech compactification of X and
∆(X) = {(x, x) : x ∈ X}.

Another one depends on the existence of a countable family of
normal covers of X satisfying a certain property.

The final characterization requiresX to be in the class of pseudo-
paracompact spaces, which includes both pseudocompact and para-
compact spaces, together with an additional property which re-
quires every open cover of X to be semi-normal.

1. Definitions and preliminary results

All spaces considered in this paper are completely regular and Hausdorff.
As usual, βX denotes the Stone-Čech compactification of a space X.
The p-spaces were originally defined by A. V. Arhangel’skii in [1]. Čech-
complete and Moore spaces, and hence, locally compact and metrizable
spaces, are examples of p-spaces. An interesting subclass of Čech-complete
spaces are ultracomplete spaces:
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Definition 1.1. A space X is ultracomplete if X has a countable local
basis as a subspace of βX (see [7]).

We have the following characterizations [11]:

Theorem 1.2. A space X is a p-space if and only if there exists a Gδ
set L in X × βX such that ∆(X) = {(x, x) : x ∈ X} ⊆ L ⊆ X ×X.

We quote the following characterization of pre-metrizable spaces [1]:

Theorem 1.3. A space X is pre-metrizable if and only if X is a para-
compact p-space.

Among the multiple characterizarions of paracompactness ([21] and
[20]), we state the following:

Theorem 1.4. X is paracompact if and only if X × βX is a normal
space.

Theorem 1.5. X is paracompact if and only if every open cover α of
X has an open barycentric refinement β, i.e., β∆ = {St(x, β) : x ∈ X}
refines α (see [19]).

Corollary 1.6. If α is an open cover of a paracompact space X, there
exists a sequence α1, α2, . . ., of open covers of X such that α∆

1 refines α
and for every natural number n, α∆

n+1 refines αn.

Definition 1.7. Dropping the assumption of paracompactness, we say
a sequence of open covers α1, α2, . . ., of a space X is normal if for every
n ∈ N, α∆

n+1 refines αn. An open cover γ of a space X is said to be normal
if γ belongs to a normal sequence of covers.

Therefore, Theorem 1.5 may be re-stated as follows:

Theorem 1.8. A space X is paracompact if and only if every open cover
of X is normal.

If A is a closed subset of a space X, we consider two types of embed-
dings:

Definition 1.9. A is C1-embedded in X if for every zero set K in X
disjoint from A, there exists a zero set H in X such that A ⊆ H ⊆ X\K.

For instance, every pseudocompact subset of a space X is C1-embedded
in X (see [12]). It is obvious that every zero set in X is C1-embedded in
X.

Definition 1.10. A is C2-embedded in X if for every closed set L disjoint
from A, there exist zero sets H,K in X such that A ⊆ H ⊆ X\K ⊆ X\L.
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Clearly, every C2-embedded set A in X is C1-embedded in X. By
Urysohn’s lemma, a space X is normal if and only if every closed subset
of X is C2-embedded in X.

Definition 1.11. For every subset A of X, we define:

A∗ = βX\ClβX(X\A).

Clearly A∗ is open in βX and it is the largest open set in βX whose
intersection with X is intXA. We always have A∗ ⊆ ClβXA.

For every pair of subsets A,B of X we have (A∩B)∗ = A∗ ∩B∗. If A
and B are cozero sets we also have (A ∪B)∗ = A∗ ∪B∗ (see [14]).

Definition 1.12. For every open cover α of a space X we define:

L(α) =
⋃
{A∗ : A ∈ α};

E(α) =
⋃
{A×A∗ : A ∈ α}.

It is easy to see that E(α) is an open set in X × βX containing ∆(X)
and L(α) is an open neighborhood of X in βX.

Definition 1.13. Let A ⊆ X and let V be a neighborhood of A. We say
V is a strong neighborhood of A if there exists a zero set H in X and a
cozero set U in X such that A ⊆ H ⊆ U ⊆ V .

The following characterization of normal covers is in [13]:

Theorem 1.14. An open cover α of a space X is normal if and only if
E(α) is a strong neighborhood of ∆(X).

Therefore, using Tamano’s Theorem 1.4, we have:

Theorem 1.15. A space X is paracompact if and only if ∆(X) is C2-
embedded in X × βX.

The next characterization of normal covers of a topological space is
well know (see, for example, [3], p. 122, [16], Theorems 1.2 and 1.4 and
[17], Theorem 1.2, among others):

Theorem 1.16. An open cover α of a space X is normal if and only if
α has a locally finite cozero refinement.

We close this section by defining a class of spaces containing all para-
compact and all pseudocompact spaces and a class of open covers con-
taining all normal covers.

Definition 1.17. A spaceX is pseudo-paracompact if ∆(X) is C1-embed-
ded in X × βX.

Definition 1.18. An open cover α of a space X is semi-normal if there
exists a cozero set U in X × βX such that ∆(X) ⊆ U ⊆ E(α).
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2. Characterizations via frames

Definition 2.1. A frame of a space X is simply a non-empty family
{αi : i ∈ J} of open covers of X. If every αi is normal (resp., seminormal)
we say that the frame {αi : i ∈ J} is normal (resp., semi-normal).

Definition 2.2. Let {αi : i ∈ J} be a frame in X and let η be a filter in
X.

(1) η is Cauchy with respect to {αi : i ∈ J} if for every i ∈ J , we
have η ∩ αi 6= ∅.

(2) η is cofinally Cauchy with respect to {αi : i ∈ J} if for every
i ∈ J , we can find an element Vi ∈ αi such that Vi ∩ N 6= ∅ for
every N ∈ η.

Definition 2.3. For every filter η in a space X, we define its adherence
set as

Aη =
⋂
{ClβXN : N ∈ η}.

Definition 2.4.
(1) A frame {αi : i ∈ J} is ultracomplete if every cofinally Cauchy

filter η in X satisfies X ∩Aη 6= ∅.
(2) A frame {αi : i ∈ J} is of Čech − type if every Cauchy filter η

satisfies Aη ⊆ X.
(3) A frame {αi : i ∈ J} is of p-type if every fixed Cauchy filter η in

X satisfies Aη ⊆ X.

Definition 2.5. Let W be an open neighborhood of X in βX. Select an
open cover αW = {Vx : x ∈ X}, where x ∈ Vx ⊆ ClβXVx ⊆ W . We say
then that αW is induced by W . Likewise, if T is an open neighborhood of
∆(X) in βX, {Vx : x ∈ X} is induced by T if ∆(X) ⊆

⋃
{Vx × ClβXVx :

x ∈ X} ⊆ T .

The next lemma can be found in [9, 3.1.5]:

Lemma 2.6. Let {Ki : i ∈ J} be a family of compact sets in a space T2

with the PIF . If
⋂
i∈J Ki ⊆ U , U an open set of X, then there exists

J0 ⊆ J , J0 finite such that
⋂
i∈J0 Ki ⊆ U .

We give now the following characterizations:

Theorem 2.7. Let {αi : i ∈ J} be an ultracomplete frame of a space
X. Then {L(αi) : i ∈ J} is a local basis of X in βX. Conversely, if
{Wi : i ∈ J} is a local basis of X in βX and if αWi

is a cover of X
induced by Wi (i ∈ J), then {αWi

: i ∈ J} is an ultracomplete frame of
X.
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Proof. (Necessity) Let T be an open set in βX such that X ⊆ T 6=
βX. Define K = βX\T and let η be the filter in X consisting of all
possible intersections X ∩ U , where U is a neighborhood of K in βX.
Since Aη = K ⊆ βX\X, η cannot be cofinally Cauchy with respect to
{αi : i ∈ J}. Therefore, for some i ∈ J and for every G ∈ αi, there exists
an open neighborhood LG of K in βX such that G ∩ LG = ∅. Therefore,
if G ∈ αi, we have G ⊆ G∗ ⊆ ClβXG ⊆ βX\LG. We deduce then that
L(αi) ∩K = ∅, or L(αi) ⊆ T .

(Sufficiency) Let {Wi : i ∈ J} be a local basis of X in βX and for each
i ∈ J , let αWi be a cover ofX induced byWi. We prove that {αWi : i ∈ J}
is an ultracomplete frame of X. Let η be a cofinally Cauchy filter with
respect to {αWi

: i ∈ J}. For each i ∈ J , select an element Li ∈ αWi

such that Li ∩N 6= ∅ for each N ∈ η. We must prove that X ∩ Aη 6= ∅.
Suppose, on the contrary, that K =

⋂
{ClβXN : N ∈ η} ⊆ βX\X. By

hypotesis, there exists an index i ∈ J such that Wi ⊆ βX\K. Therefore,
for each L ∈ αWi , we have:

L ⊆ L∗ ⊆ ClβXL ⊆Wi ⊆ βX\K.
The set U = βX\ClβXLi is a neighborhood of K. By Lemma 2.6, we
deduce the existence of an element N ∈ η such that N ⊆ βX\ClβXLi, in
contradiction with Li ∩N 6= ∅. �

Corollary 2.8. [15] The character χ(X,βX) coincides with the least in-
finite cardinal number κ such that X has an ultracomplete frame of cardi-
nality lower than or equal to κ. Therefore, X is ultracomplete if and only
if X has a countable ultracomplete frame.
Theorem 2.9. Let {αi : i ∈ J} be a frame of X of Čech-type. Then
X =

⋂
{L(αi) : i ∈ J}. Conversely, if {Wi : i ∈ J} is a family of open

neighborhoods of X in βX such that X =
⋂
{Wi : i ∈ J} and if αWi

is a
cover of X induced by Wi (i ∈ J), then {αWi

: i ∈ J} is a frame of X of
Čech-type.

Proof. (Necessity) We must prove that X =
⋂
{L(αi) : i ∈ J}. Suppose,

on the contrary, that there exists a point z ∈ βX\X such that z ∈ L(αi)
for every i ∈ J . Select Vi ∈ αi such that z ∈ V ∗i . Therefore the family:

η0 = {Vi1 ∩ Vi2 ∩ · · · ∩ Vik : k ∈ N}
is a filterbase in X, (each element of ηo is non-empty, because Vi1 ∩ Vi2 ∩
· · ·∩Vik = ∅ would imply that ∅ = (Vi1∩Vi2∩· · ·∩Vik)∗ = V ∗i1∩V

∗
i2
∩· · ·∩V ∗ik ,

contradicting the fact that z ∈ V ∗i1 ∩ V
∗
i2
∩ · · · ∩ V ∗ik). The filter η of X

with basis η0 is then Cauchy with respect to {αi : i ∈ J}. Our hypothesis
implies that Aη ⊆ X. But also z ∈ Aη since z ∈ (Vi1 ∩ Vi2 ∩ · · · ∩ Vik)∗ ⊆
ClβX(Vi1 ∩ Vi2 ∩ · · · ∩ Vik) for each choice ii, i2, . . . , ik ∈ J and this is a
contradiction.



82 A. GARCÍA-MÁYNEZ AND M. A. LÓPEZ-RAMÍREZ

(Sufficiency) Let η be a Cauchy filter with respect to {αWi
: i ∈ J}.

Proceeding by contradiction, suppose there exists a point z ∈ Aη ∩
(βX\X). Choose Li ∈ η ∩ αWi

. By construction, ClβXLi ⊆ Wi. There-
fore, z ∈

⋂
{Wi : i ∈ J} = X, a contradiction. �

Corollary 2.10. The pseudocharacter χ(X,βX) coincides with the least
infinite cardinal number κ such that X has a frame of Čech-type of car-
dinality lower than or equal to κ. Therefore, X is Čech-complete if and
only if X has a countable frame of Čech-type.

Theorem 2.11. Let {αi : i ∈ J} be a frame of X of p-type. Then L =⋂
{E(αi) : i ∈ J} is a Gδ set in X × βX such that ∆(X) ⊆ L ⊆ X ×X.

Conversely, if {Ti : i ∈ J} is a family of open sets in X × βX such that
∆(X) ⊆

⋂
{Ti : i ∈ J} ⊆ X ×X and if αTi

is a cover of X induced by Ti
(i ∈ J), then {αTi : i ∈ J} is a frame of X of p-type.

Proof. (Necessity) Take a pair (p, z) ∈
⋂
{E(αi) : i ∈ J}, p ∈ X, z ∈ βX.

Choose an element Vi ∈ αi such that (p, z) ∈ Vi×V ∗i . We prove as in 2.9,
that

η0 = {Vi1 ∩ Vi2 ∩ · · · ∩ Vik : k ∈ N, i1, i2, . . . ik ∈ J}
is a fixed filterbase in X which is Cauchy with respect to {αi : i ∈ J}.
Let η be the filter in X with basis η0. By hypothesis, Aη ⊆ X. Hence
z ∈ N∗ ⊆ ClβXN for every N ∈ η and this implies that z ∈ Aη ⊆ X, i.e.,⋂
{E(αi) : i ∈ J} ⊆ X ×X.
(Sufficiency) Let η be a fixed filter in X which is Cauchy with respect

to {αTi
: i ∈ J}. Take a point p ∈ X such that p ∈ N for every N ∈ η and

let z ∈
⋂
{ClβXN : N ∈ η}. For each i ∈ J , select an element Li ∈ η∩αTi .

We have then (p, z) ∈ Li × ClβXLi ⊆ Ti. Since
⋂
{Ti : i ∈ J} ⊆ X ×X,

we conclude that z ∈ X. �

Corollary 2.12. X is a p-space if and only if X has a countable frame
of p-type.

3. Main results

Definition 3.1. Let α1, α2, . . . , be a sequence of open covers of a space
X. We say α1, α2, . . . is a ω∆-sequence if whenever xn ∈ St(x, αn), with
x ∈ X, the sequence {xn : n ∈ N} has a cluster point.

We quote the following theorem (see [5]):

Theorem 3.2. Let α1, α2, . . . be a ω∆-sequence of a space X. If each
cover αi is normal, then there exists a metrizable space Y and a closed
continuous surjective map ϕ : X → Y such that ϕ−1ϕ(x) =

⋂
{St(x, αn) :

n ∈ N} and ϕ−1ϕ(x) is countably compact for each x ∈ X. Additionally,
if each

⋂
{St(x, αn) : n ∈ N} is compact, then X is a paracompact p-space.
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Definition 3.3. A space X is definitely p if there exists a sequence
W1,W2, . . . of cozero sets inX×βX such that ∆(X) ⊆

⋂∞
n=1Wn ⊆ X×X.

We prove now our main result:

Theorem 3.4. The following conditions on a space X are equivalent:

(1) X is pre-metrizable.
(2) X is a paracompact p-space.
(3) X is a pseudoparacompact p-space and every open cover of X is

semi-normal.
(4) X is a pseudoparacompact definitely p-space.
(5) There exists a zero set K in X × βX such that ∆(X) ⊆ K ⊆

X ×X.
(6) X has a countable p-frame consisting of normal covers.

Proof. The equivalence of (1) and (2) is well known (see [1]). (2)⇒(3)
This implication is clear because every paracompact space is pseudo-
paracompact and every open cover of a paracompact space is normal.

(3)⇒(4) Let α1, α2, . . . be a p-frame of X. Since every cover αi is
seminormal, there exists, for each i ∈ N, a cozero set Wi in X × βX such
that ∆(X) ⊆Wi ⊆ E(αi). By Theorem 2.11 we have ∆(X) ⊆

⋂∞
i=1Wi ⊆⋂∞

i=1E(αi) ⊆ X ×X and X is definitely p.
(4)⇒(5) Let W1,W2, . . . be cozero sets in X × βX such that ∆(X) ⊆⋂∞
i=1Wn ⊆ X×X. Since ∆(X) is C1-embedded in X×βX, for each i ∈ N

we may find a zero set Hi in X ×βX such that ∆(X) ⊆ Hi ⊆Wi. Hence
H =

⋂∞
i=iHi is a zero set in X × βX such that ∆(X) ⊆ H ⊆ X ×X.

(5)⇒(6) Let H be a zero set in X × βX such that ∆(X) ⊆ H ⊆
X × X. Define a sequence U1, U2, . . . of cozero sets in X × βX such
that H =

⋂∞
n=1 Un and ClX×βXUn+1 ⊆ Un for each n ∈ N. Since H

and X × βX − Un are disjoints zero sets in X × βX, we can find a
continuous map ϕn : X × βX → [0, 1 − 2−n] such that ϕ−1

n (0) = H and
ϕ−1
n (1 − 2−n) = X × βX − Un. Define gn : X ×X → [0, 1] by means of

the formula:

gn(x, y) = sup{{|ϕn(x, p)− ϕn(y, p)| : p ∈ βX}}x, y ∈ X.

It is easy to prove that gn is a continuous pseudo-metric in X. For each
n ∈ N, let αn = {V gn2−n−1(x) : x ∈ X}. Each αn is a normal cover of X.
Besides:

V gn2−n−1(x)× V gn2−n−1(x) ⊆ Un
for each x ∈ X and n ∈ N. To prove this inclusion, take two points
x′, x′′ ∈ V gn2−n−1(x) and suppose, on the contrary, that (x′, x′′) /∈ Un.
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Then ϕ(x′, x′′) = 1 − 2−n. On the other hand, by definition of gn, we
have:

2−n = 2−n−1 + 2−n−1 > gn(x, x′) + gn(x, x′′) ≥ gn(x′, x′′) ≥
ϕ(x′, x′′)− ϕ(x′′, x′′) = ϕ(x′, x′′) = 1− 2−n.

From here we obtain 1− 2−n < 2−n, a contradiction. Therefore:⋃
{V gn2−n−1(x)× ClβXV gn2−n−1(x) : x ∈ X} ⊆ ClX×βXUn ⊆ Un−1.

We deduce then that the normal covers α1, α2, . . . constitute a countable
p-frame of the space X.

(6) ⇒ (2) Let α1, α2, . . . be a countable p-frame of X consisting of
normal covers. By Theorem 1.16, α1 has a cozero and locally finite re-
finement β1. We may further require that for each x ∈ X, there exists an
element Ax ∈ α1 such that St(x, β1) ⊆ ClβXSt(x, β1) ⊆ A∗x (see defini-
tion 1.11). Inductively, suppose the covers β1, β2, . . . , βn−1 have already
been defined. Let βn be a cozero and locally finite cover of X such that
St(x, βn) ⊆ ClβXSt(x, βn) ⊆ A∗x ∩ B∗x, (Ax ∈ αn, Bx ∈ βn−1). Once all
the covers βn have been constructed, define:

Kx =

∞⋂
n=1

St(x, βn)∗, x ∈ X.

Therefore, the set Kx is a compact Gδ in βX and hence {St(x, βn)∗ : n ∈
N} is a local basis of Kx in βX. However, ηx = {St(x, βn) : n ∈ N} is a
fixed filterbase in X which is Cauchy with respect to the frame α1, α2, . . ..
Therefore, the adherence Kx =

⋂∞
n=1 St(x, βn)∗ =

⋂∞
n=1 ClβXSt(x, βn)

of ηx is contained in X. Therefore, {St(x, βn) : n ∈ N} is a local basis of
Kx in X and β1, β2 . . . is a normal ω∆-sequence in X. By Theorem 3.2,
X is pre-metrizable. �

4. Open problems

We finish this paper with some open problems:
Q1: Is there an example of a semi-normal cover which is not normal?
Q2 : Is every definitely p-space paracompact?
Q3 : Is there an example of a pseudo-paracompact space which is not

paracompact nor pseudocompact?
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