http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Some characterizations of pre-metrizability

by

A. García-Máynez and M. A. López-Ramírez

Electronically published on August 24, 2017

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on August 24, 2017

SOME CHARACTERIZATIONS OF PRE-METRIZABILITY

A. GARCÍA-MÁYNEZ† AND M. A. LÓPEZ-RAMÍREZ

ABSTRACT. The class of pre-metrizable spaces (i.e., perfect preimages of metrizable spaces) coincides with the class of paracompact p-spaces. In this paper we give three additional characterizations. One of them is the following:

(1) A Tychonoff space X is pre-metrizable if and only if there exists a zero set H in $X \times \beta X$ such that $\Delta(X) \subseteq H \subseteq X \times X$, where βX is the Stone-Čech compactification of X and $\Delta(X) = \{(x, x) : x \in X\}.$

Another one depends on the existence of a countable family of normal covers of X satisfying a certain property.

The final characterization requires X to be in the class of pseudoparacompact spaces, which includes both pseudocompact and paracompact spaces, together with an additional property which requires every open cover of X to be semi-normal.

1. Definitions and preliminary results

All spaces considered in this paper are completely regular and Hausdorff. As usual, βX denotes the Stone-Čech compactification of a space X. The *p*-spaces were originally defined by A. V. Arhangel'skii in [1]. Čech-complete and Moore spaces, and hence, locally compact and metrizable spaces, are examples of *p*-spaces. An interesting subclass of Čech-complete spaces are *ultracomplete* spaces:

²⁰¹⁰ Mathematics Subject Classification. 54C10, 54C25, 54D70, 54E15.

 $Key\ words$ and phrases. p-space, p-paracompact, pre-metrizable, perfect map, normal cover, p-frame.

We are very grateful with Professor I. Gotchev and the rest of the organizers of the 17^{th} Spring Topology Conference and Dynamics, for the kind attention during and before the event.

 $[\]dagger$ This article is dedicated to the memory of Professor Adalberto García-Maynez y Cervantes (1945–2016), example and guide of many, but above all, friend in difficult times, when few are.

 $[\]textcircled{O}2017$ Topology Proceedings.

Definition 1.1. A space X is *ultracomplete* if X has a countable local basis as a subspace of βX (see [7]).

We have the following characterizations [11]:

Theorem 1.2. A space X is a p-space if and only if there exists a G_{δ} set L in $X \times \beta X$ such that $\Delta(X) = \{(x, x) : x \in X\} \subseteq L \subseteq X \times X$.

We quote the following characterization of pre-metrizable spaces [1]:

Theorem 1.3. A space X is pre-metrizable if and only if X is a paracompact p-space.

Among the multiple characterizations of paracompactness ([21] and [20]), we state the following:

Theorem 1.4. X is paracompact if and only if $X \times \beta X$ is a normal space.

Theorem 1.5. X is paracompact if and only if every open cover α of X has an open barycentric refinement β , i.e., $\beta^{\Delta} = \{St(x,\beta) : x \in X\}$ refines α (see [19]).

Corollary 1.6. If α is an open cover of a paracompact space X, there exists a sequence $\alpha_1, \alpha_2, \ldots$, of open covers of X such that α_1^{Δ} refines α and for every natural number n, α_{n+1}^{Δ} refines α_n .

Definition 1.7. Dropping the assumption of paracompactness, we say a sequence of open covers $\alpha_1, \alpha_2, \ldots$, of a space X is *normal* if for every $n \in \mathbb{N}, \alpha_{n+1}^{\Delta}$ refines α_n . An open cover γ of a space X is said to be *normal* if γ belongs to a normal sequence of covers.

Therefore, Theorem 1.5 may be re-stated as follows:

Theorem 1.8. A space X is paracompact if and only if every open cover of X is normal.

If A is a closed subset of a space X, we consider two types of embeddings:

Definition 1.9. A is C_1 -embedded in X if for every zero set K in X disjoint from A, there exists a zero set H in X such that $A \subseteq H \subseteq X \setminus K$.

For instance, every pseudocompact subset of a space X is C_1 -embedded in X (see [12]). It is obvious that every zero set in X is C_1 -embedded in X.

Definition 1.10. A is C_2 -embedded in X if for every closed set L disjoint from A, there exist zero sets H, K in X such that $A \subseteq H \subseteq X \setminus K \subseteq X \setminus L$.

Clearly, every C_2 -embedded set A in X is C_1 -embedded in X. By Urysohn's lemma, a space X is normal if and only if every closed subset of X is C_2 -embedded in X.

Definition 1.11. For every subset A of X, we define:

$$A^* = \beta X \setminus Cl_{\beta X}(X \setminus A).$$

Clearly A^* is open in βX and it is the largest open set in βX whose intersection with X is $int_X A$. We always have $A^* \subseteq Cl_{\beta X} A$.

For every pair of subsets A, B of X we have $(A \cap B)^* = A^* \cap B^*$. If A and B are cozero sets we also have $(A \cup B)^* = A^* \cup B^*$ (see [14]).

Definition 1.12. For every open cover α of a space X we define:

$$L(\alpha) = \bigcup \{A^* : A \in \alpha\};$$
$$E(\alpha) = \bigcup \{A \times A^* : A \in \alpha\}.$$

It is easy to see that $E(\alpha)$ is an open set in $X \times \beta X$ containing $\Delta(X)$ and $L(\alpha)$ is an open neighborhood of X in βX .

Definition 1.13. Let $A \subseteq X$ and let V be a neighborhood of A. We say V is a *strong neighborhood* of A if there exists a zero set H in X and a cozero set U in X such that $A \subseteq H \subseteq U \subseteq V$.

The following characterization of normal covers is in [13]:

Theorem 1.14. An open cover α of a space X is normal if and only if $E(\alpha)$ is a strong neighborhood of $\Delta(X)$.

Therefore, using Tamano's Theorem 1.4, we have:

Theorem 1.15. A space X is paracompact if and only if $\Delta(X)$ is C_2 -embedded in $X \times \beta X$.

The next characterization of normal covers of a topological space is well know (see, for example, [3], p. 122, [16], Theorems 1.2 and 1.4 and [17], Theorem 1.2, among others):

Theorem 1.16. An open cover α of a space X is normal if and only if α has a locally finite cozero refinement.

We close this section by defining a class of spaces containing all paracompact and all pseudocompact spaces and a class of open covers containing all normal covers.

Definition 1.17. A space X is *pseudo-paracompact* if $\Delta(X)$ is C_1 -embedded in $X \times \beta X$.

Definition 1.18. An open cover α of a space X is *semi-normal* if there exists a cozero set U in $X \times \beta X$ such that $\Delta(X) \subseteq U \subseteq E(\alpha)$.

2. CHARACTERIZATIONS VIA FRAMES

Definition 2.1. A *frame* of a space X is simply a non-empty family $\{\alpha_i : i \in J\}$ of open covers of X. If every α_i is normal (resp., seminormal) we say that the frame $\{\alpha_i : i \in J\}$ is normal (resp., semi-normal).

Definition 2.2. Let $\{\alpha_i : i \in J\}$ be a frame in X and let η be a filter in X.

- (1) η is *Cauchy* with respect to $\{\alpha_i : i \in J\}$ if for every $i \in J$, we have $\eta \cap \alpha_i \neq \emptyset$.
- (2) η is cofinally Cauchy with respect to $\{\alpha_i : i \in J\}$ if for every $i \in J$, we can find an element $V_i \in \alpha_i$ such that $V_i \cap N \neq \emptyset$ for every $N \in \eta$.

Definition 2.3. For every filter η in a space X, we define its adherence set as

$$A_{\eta} = \bigcap \{ Cl_{\beta X} N : N \in \eta \}.$$

Definition 2.4.

- (1) A frame $\{\alpha_i : i \in J\}$ is *ultracomplete* if every cofinally Cauchy filter η in X satisfies $X \cap A_\eta \neq \emptyset$.
- (2) A frame $\{\alpha_i : i \in J\}$ is of $\check{C}ech type$ if every Cauchy filter η satisfies $A_\eta \subseteq X$.
- (3) A frame $\{\alpha_i : i \in J\}$ is of *p*-type if every fixed Cauchy filter η in X satisfies $A_\eta \subseteq X$.

Definition 2.5. Let W be an open neighborhood of X in βX . Select an open cover $\alpha_W = \{V_x : x \in X\}$, where $x \in V_x \subseteq Cl_{\beta X}V_x \subseteq W$. We say then that α_W is *induced* by W. Likewise, if T is an open neighborhood of $\Delta(X)$ in βX , $\{V_x : x \in X\}$ is induced by T if $\Delta(X) \subseteq \bigcup \{V_x \times Cl_{\beta X}V_x : x \in X\} \subseteq T$.

The next lemma can be found in [9, 3.1.5]:

Lemma 2.6. Let $\{K_i : i \in J\}$ be a family of compact sets in a space T_2 with the PIF. If $\bigcap_{i \in J} K_i \subseteq U$, U an open set of X, then there exists $J_0 \subseteq J$, J_0 finite such that $\bigcap_{i \in J_0} K_i \subseteq U$.

We give now the following characterizations:

Theorem 2.7. Let $\{\alpha_i : i \in J\}$ be an ultracomplete frame of a space X. Then $\{L(\alpha_i) : i \in J\}$ is a local basis of X in βX . Conversely, if $\{W_i : i \in J\}$ is a local basis of X in βX and if α_{W_i} is a cover of X induced by W_i $(i \in J)$, then $\{\alpha_{W_i} : i \in J\}$ is an ultracomplete frame of X.

Proof. (Necessity) Let T be an open set in βX such that $X \subseteq T \neq \beta X$. Define $K = \beta X \setminus T$ and let η be the filter in X consisting of all possible intersections $X \cap U$, where U is a neighborhood of K in βX . Since $A_{\eta} = K \subseteq \beta X \setminus X$, η cannot be cofinally Cauchy with respect to $\{\alpha_i : i \in J\}$. Therefore, for some $i \in J$ and for every $G \in \alpha_i$, there exists an open neighborhood L_G of K in βX such that $G \cap L_G = \emptyset$. Therefore, if $G \in \alpha_i$, we have $G \subseteq G^* \subseteq Cl_{\beta X}G \subseteq \beta X \setminus L_G$. We deduce then that $L(\alpha_i) \cap K = \emptyset$, or $L(\alpha_i) \subseteq T$.

(Sufficiency) Let $\{W_i : i \in J\}$ be a local basis of X in βX and for each $i \in J$, let α_{W_i} be a cover of X induced by W_i . We prove that $\{\alpha_{W_i} : i \in J\}$ is an ultracomplete frame of X. Let η be a cofinally Cauchy filter with respect to $\{\alpha_{W_i} : i \in J\}$. For each $i \in J$, select an element $L_i \in \alpha_{W_i}$ such that $L_i \cap N \neq \emptyset$ for each $N \in \eta$. We must prove that $X \cap A_\eta \neq \emptyset$. Suppose, on the contrary, that $K = \bigcap \{Cl_{\beta X}N : N \in \eta\} \subseteq \beta X \setminus X$. By hypotesis, there exists an index $i \in J$ such that $W_i \subseteq \beta X \setminus K$. Therefore, for each $L \in \alpha_{W_i}$, we have:

 $L \subseteq L^* \subseteq Cl_{\beta X} L \subseteq W_i \subseteq \beta X \backslash K.$

The set $U = \beta X \setminus Cl_{\beta X}L_i$ is a neighborhood of K. By Lemma 2.6, we deduce the existence of an element $N \in \eta$ such that $N \subseteq \beta X \setminus Cl_{\beta X}L_i$, in contradiction with $L_i \cap N \neq \emptyset$.

Corollary 2.8. [15] The character $\chi(X, \beta X)$ coincides with the least infinite cardinal number κ such that X has an ultracomplete frame of cardinality lower than or equal to κ . Therefore, X is ultracomplete if and only if X has a countable ultracomplete frame.

Theorem 2.9. Let $\{\alpha_i : i \in J\}$ be a frame of X of Čech-type. Then $X = \bigcap \{L(\alpha_i) : i \in J\}$. Conversely, if $\{W_i : i \in J\}$ is a family of open neighborhoods of X in βX such that $X = \bigcap \{W_i : i \in J\}$ and if α_{W_i} is a cover of X induced by W_i $(i \in J)$, then $\{\alpha_{W_i} : i \in J\}$ is a frame of X of Čech-type.

Proof. (Necessity) We must prove that $X = \bigcap \{L(\alpha_i) : i \in J\}$. Suppose, on the contrary, that there exists a point $z \in \beta X \setminus X$ such that $z \in L(\alpha_i)$ for every $i \in J$. Select $V_i \in \alpha_i$ such that $z \in V_i^*$. Therefore the family:

$$\eta_0 = \{ V_{i_1} \cap V_{i_2} \cap \dots \cap V_{i_k} : k \in \mathbb{N} \}$$

is a filterbase in X, (each element of η_o is non-empty, because $V_{i_1} \cap V_{i_2} \cap \cdots \cap V_{i_k} = \emptyset$ would imply that $\emptyset = (V_{i_1} \cap V_{i_2} \cap \cdots \cap V_{i_k})^* = V_{i_1}^* \cap V_{i_2}^* \cap \cdots \cap V_{i_k}^*$, contradicting the fact that $z \in V_{i_1}^* \cap V_{i_2}^* \cap \cdots \cap V_{i_k}^*$). The filter η of X with basis η_0 is then Cauchy with respect to $\{\alpha_i : i \in J\}$. Our hypothesis implies that $A_\eta \subseteq X$. But also $z \in A_\eta$ since $z \in (V_{i_1} \cap V_{i_2} \cap \cdots \cap V_{i_k})^* \subseteq Cl_{\beta X}(V_{i_1} \cap V_{i_2} \cap \cdots \cap V_{i_k})$ for each choice $i_i, i_2, \ldots, i_k \in J$ and this is a contradiction.

(Sufficiency) Let η be a Cauchy filter with respect to $\{\alpha_{W_i} : i \in J\}$. Proceeding by contradiction, suppose there exists a point $z \in A_\eta \cap (\beta X \setminus X)$. Choose $L_i \in \eta \cap \alpha_{W_i}$. By construction, $Cl_{\beta X}L_i \subseteq W_i$. Therefore, $z \in \bigcap \{W_i : i \in J\} = X$, a contradiction.

Corollary 2.10. The pseudocharacter $\chi(X, \beta X)$ coincides with the least infinite cardinal number κ such that X has a frame of Čech-type of cardinality lower than or equal to κ . Therefore, X is Čech-complete if and only if X has a countable frame of Čech-type.

Theorem 2.11. Let $\{\alpha_i : i \in J\}$ be a frame of X of p-type. Then $L = \bigcap \{E(\alpha_i) : i \in J\}$ is a G_{δ} set in $X \times \beta X$ such that $\Delta(X) \subseteq L \subseteq X \times X$. Conversely, if $\{T_i : i \in J\}$ is a family of open sets in $X \times \beta X$ such that $\Delta(X) \subseteq \bigcap \{T_i : i \in J\} \subseteq X \times X$ and if α_{T_i} is a cover of X induced by T_i $(i \in J)$, then $\{\alpha_{T_i} : i \in J\}$ is a frame of X of p-type.

Proof. (Necessity) Take a pair $(p, z) \in \bigcap \{E(\alpha_i) : i \in J\}, p \in X, z \in \beta X$. Choose an element $V_i \in \alpha_i$ such that $(p, z) \in V_i \times V_i^*$. We prove as in 2.9, that

 $\eta_0 = \{ V_{i_1} \cap V_{i_2} \cap \dots \cap V_{i_k} : k \in \mathbb{N}, i_1, i_2, \dots i_k \in J \}$

is a fixed filterbase in X which is Cauchy with respect to $\{\alpha_i : i \in J\}$. Let η be the filter in X with basis η_0 . By hypothesis, $A_\eta \subseteq X$. Hence $z \in N^* \subseteq Cl_{\beta X}N$ for every $N \in \eta$ and this implies that $z \in A_\eta \subseteq X$, i.e., $\bigcap \{E(\alpha_i) : i \in J\} \subseteq X \times X$.

(Sufficiency) Let η be a fixed filter in X which is Cauchy with respect to $\{\alpha_{T_i} : i \in J\}$. Take a point $p \in X$ such that $p \in N$ for every $N \in \eta$ and let $z \in \bigcap \{Cl_{\beta X}N : N \in \eta\}$. For each $i \in J$, select an element $L_i \in \eta \cap \alpha_{T_i}$. We have then $(p, z) \in L_i \times Cl_{\beta X}L_i \subseteq T_i$. Since $\bigcap \{T_i : i \in J\} \subseteq X \times X$, we conclude that $z \in X$.

Corollary 2.12. X is a p-space if and only if X has a countable frame of p-type.

3. MAIN RESULTS

Definition 3.1. Let $\alpha_1, \alpha_2, \ldots$, be a sequence of open covers of a space X. We say $\alpha_1, \alpha_2, \ldots$ is a $\omega\Delta$ -sequence if whenever $x_n \in St(x, \alpha_n)$, with $x \in X$, the sequence $\{x_n : n \in \mathbb{N}\}$ has a cluster point.

We quote the following theorem (see [5]):

Theorem 3.2. Let $\alpha_1, \alpha_2, \ldots$ be a $\omega\Delta$ -sequence of a space X. If each cover α_i is normal, then there exists a metrizable space Y and a closed continuous surjective map $\varphi : X \to Y$ such that $\varphi^{-1}\varphi(x) = \bigcap \{St(x, \alpha_n) : n \in \mathbb{N}\}$ and $\varphi^{-1}\varphi(x)$ is countably compact for each $x \in X$. Additionally, if each $\bigcap \{St(x, \alpha_n) : n \in \mathbb{N}\}$ is compact, then X is a paracompact p-space.

Definition 3.3. A space X is definitely p if there exists a sequence W_1, W_2, \ldots of cozero sets in $X \times \beta X$ such that $\Delta(X) \subseteq \bigcap_{n=1}^{\infty} W_n \subseteq X \times X$.

We prove now our main result:

Theorem 3.4. The following conditions on a space X are equivalent:

- (1) X is pre-metrizable.
- (2) X is a paracompact p-space.
- (3) X is a pseudoparacompact p-space and every open cover of X is semi-normal.
- (4) X is a pseudoparacompact definitely p-space.
- (5) There exists a zero set K in $X \times \beta X$ such that $\Delta(X) \subseteq K \subseteq X \times X$.
- (6) X has a countable p-frame consisting of normal covers.

Proof. The equivalence of (1) and (2) is well known (see [1]). $(2) \Rightarrow (3)$ This implication is clear because every paracompact space is pseudo-paracompact and every open cover of a paracompact space is normal.

 $(3) \Rightarrow (4)$ Let $\alpha_1, \alpha_2, \ldots$ be a *p*-frame of *X*. Since every cover α_i is seminormal, there exists, for each $i \in \mathbb{N}$, a cozero set W_i in $X \times \beta X$ such that $\Delta(X) \subseteq W_i \subseteq E(\alpha_i)$. By Theorem 2.11 we have $\Delta(X) \subseteq \bigcap_{i=1}^{\infty} W_i \subseteq \bigcap_{i=1}^{\infty} E(\alpha_i) \subseteq X \times X$ and *X* is definitely *p*.

 $(\overline{4}) \Rightarrow (5)$ Let W_1, W_2, \ldots be cozero sets in $X \times \beta X$ such that $\Delta(X) \subseteq \bigcap_{i=1}^{\infty} W_n \subseteq X \times X$. Since $\Delta(X)$ is C_1 -embedded in $X \times \beta X$, for each $i \in \mathbb{N}$ we may find a zero set H_i in $X \times \beta X$ such that $\Delta(X) \subseteq H_i \subseteq W_i$. Hence $H = \bigcap_{i=i}^{\infty} H_i$ is a zero set in $X \times \beta X$ such that $\Delta(X) \subseteq H \subseteq X \times X$.

 $(5)\Rightarrow(6)$ Let H be a zero set in $X \times \beta X$ such that $\Delta(X) \subseteq H \subseteq X \times X$. Define a sequence U_1, U_2, \ldots of cozero sets in $X \times \beta X$ such that $H = \bigcap_{n=1}^{\infty} U_n$ and $Cl_{X \times \beta X} U_{n+1} \subseteq U_n$ for each $n \in \mathbb{N}$. Since H and $X \times \beta X - U_n$ are disjoints zero sets in $X \times \beta X$, we can find a continuous map $\varphi_n : X \times \beta X \to [0, 1 - 2^{-n}]$ such that $\varphi_n^{-1}(0) = H$ and $\varphi_n^{-1}(1 - 2^{-n}) = X \times \beta X - U_n$. Define $g_n : X \times X \to [0, 1]$ by means of the formula:

$$g_n(x,y) = \sup\{\{|\varphi_n(x,p) - \varphi_n(y,p)| : p \in \beta X\}\} x, y \in X.$$

It is easy to prove that g_n is a continuous pseudo-metric in X. For each $n \in \mathbb{N}$, let $\alpha_n = \{V_{2^{-n-1}}^{g_n}(x) : x \in X\}$. Each α_n is a normal cover of X. Besides:

$$V_{2^{-n-1}}^{g_n}(x) \times V_{2^{-n-1}}^{g_n}(x) \subseteq U_n$$

for each $x \in X$ and $n \in \mathbb{N}$. To prove this inclusion, take two points $x', x'' \in V_{2^{-n-1}}^{g_n}(x)$ and suppose, on the contrary, that $(x', x'') \notin U_n$.

Then $\varphi(x', x'') = 1 - 2^{-n}$. On the other hand, by definition of g_n , we have:

$$2^{-n} = 2^{-n-1} + 2^{-n-1} > g_n(x, x') + g_n(x, x'') \ge g_n(x', x'') \ge$$
$$\varphi(x', x'') - \varphi(x'', x'') = \varphi(x', x'') = 1 - 2^{-n}.$$

From here we obtain $1 - 2^{-n} < 2^{-n}$, a contradiction. Therefore:

$$\bigcup\{V_{2^{-n-1}}^{g_n}(x) \times Cl_{\beta X} V_{2^{-n-1}}^{g_n}(x) : x \in X\} \subseteq Cl_{X \times \beta X} U_n \subseteq U_{n-1}$$

We deduce then that the normal covers $\alpha_1, \alpha_2, \ldots$ constitute a countable *p*-frame of the space X.

(6) \Rightarrow (2) Let $\alpha_1, \alpha_2, \ldots$ be a countable *p*-frame of *X* consisting of normal covers. By Theorem 1.16, α_1 has a cozero and locally finite refinement β_1 . We may further require that for each $x \in X$, there exists an element $A_x \in \alpha_1$ such that $St(x, \beta_1) \subseteq Cl_{\beta X}St(x, \beta_1) \subseteq A_x^*$ (see definition 1.11). Inductively, suppose the covers $\beta_1, \beta_2, \ldots, \beta_{n-1}$ have already been defined. Let β_n be a cozero and locally finite cover of *X* such that $St(x, \beta_n) \subseteq Cl_{\beta X}St(x, \beta_n) \subseteq A_x^* \cap B_x^*$, $(A_x \in \alpha_n, B_x \in \beta_{n-1})$. Once all the covers β_n have been constructed, define:

$$K_x = \bigcap_{n=1}^{\infty} St(x, \beta_n)^*, \quad x \in X.$$

Therefore, the set K_x is a compact G_{δ} in βX and hence $\{St(x, \beta_n)^* : n \in \mathbb{N}\}$ is a local basis of K_x in βX . However, $\eta_x = \{St(x, \beta_n) : n \in \mathbb{N}\}$ is a fixed filterbase in X which is Cauchy with respect to the frame $\alpha_1, \alpha_2, \ldots$. Therefore, the adherence $K_x = \bigcap_{n=1}^{\infty} St(x, \beta_n)^* = \bigcap_{n=1}^{\infty} Cl_{\beta X}St(x, \beta_n)$ of η_x is contained in X. Therefore, $\{St(x, \beta_n) : n \in \mathbb{N}\}$ is a local basis of K_x in X and $\beta_1, \beta_2 \ldots$ is a normal $\omega \Delta$ -sequence in X. By Theorem 3.2, X is pre-metrizable.

4. Open problems

We finish this paper with some open problems:

- Q_1 : Is there an example of a semi-normal cover which is not normal?
- Q_2 : Is every definitely *p*-space paracompact?

 Q_3 : Is there an example of a pseudo-paracompact space which is not paracompact nor pseudocompact?

References

- A. V. Arhangel'skii, On a class of spaces containing all metric and all locally bicompact spaces, Amer. Math. Soc. Transl. 92 (1970), 1–39.
- [2] A. V. Arhangelskij, A survey of some recent advances in general topology, old and new problems, Actes, Congrés int. Math. 2 (1970), 16–26.

- [3] R. A. Alo and H. L. Shapiro, Normal topological spaces. Cambridge University Press, London, 1974.
- D. K. Burke and R. A. Stoltenberg, A note on p-spaces and Moore spaces, Pacific J. Math. 30 (1969), 601–608, vol. 3.
- [5] D. K. Burke, On p-spaces and $\omega \triangle$ -spaces, Pacific, J. Math. **35** (1970), 285–286.
- [6] _____, Spaces with a G_{δ} -diagonal, TOPO-12, Proceedings of the Second Pittsburg International Conference on General Topology and its Applications **378** (1972), 95–101.
- [7] D. Buhagiar and I. Yoshioka, Ultracomplete topological spaces, Acta Math. Hungar. 92:(1-2) (2001), 19-26.
- [8] _____, Sums and products of ultracomplete topological spaces, Topology Appl. 122 (2002), 19–26.
- [9] R. Engelking, General Topology, 1989.
- [10] A. García-Máynez, Generalization of the concepts of closed function and Cembedded set, Anales del Instituto de Matemáticas 24 (1984), 13–35.
- [11] _____, A Characterization of T₃ Spaces of Countable Type, Topology Proceedings 10 (1985), 151–158.
- [12] _____, Normal covers and separation, An. Inst. Mat 29 (1989), 1–16.
- [13] _____, Pseudocharacters and Uniform Weights, Bol. Soc. Mat. Mexicana 3 (1997), 165–173.
- [14] _____, A Survey on Wallman Bases, Appl. Gen. Top 8 (2007), 223–227.
- [15] A. Garcia-Máynez and S. Romaguera, Perfect pre-images of cofinally complete metric spaces, Comment. Math. Univ. Carolin. 40-2 (1999), 335–342.
- [16] T. Hoshina, Extensions of mappings II. North-Holland, 1989.
- [17] K. Morita, Paracompactness and product spaces, Fund. Math. 50 (1962), 223-236.
- [18] _____, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365–382.
- [19] M. H. Stone, Paracompactness and product spaces, Bull. Amer. Soc., pages 977– 982, 1948.
- [20] H. Tamano, On paracompacteness, Pacific J. Math. Kyoto Univ. 10 (1960), 162– 193.
- [21] _____, Normality and product spaces, General Topology and its relations to Modern Analysis and Algebra II, (Proc. Sympos. Praga) Academic Press, New York, pages 349–342, 1967.

E-mail address: terry_mcg@hotmail.com

Universidad Tecnológica de México, Bivd. Calacoaya No. 7 Col. La Ermita Atizapán de Zaragoza, Estado de México, 52999