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GENERAL PROPERTIES OF THE HYPERSPACE OF
CONVERGENT SEQUENCES

DAVID MAYA, PATRICIA PELLICER-COVARRUBIAS,
AND ROBERTO PICHARDO-MENDOZA

Abstract. Given a Hausdorff space X, the symbol Sc(X) denotes
the topological space which results of endowing the set of all infi-
nite convergent sequences in X with the Vietoris topology. This
hyperspace was introduced in [5].

In this paper we present answers to some questions posed in that
article, namely, we show that if X is either metrizable or second
countable, then X is pathwise connected as long as Sc(X) is so, and
we exhibit a dendroidX for which Sc(X) is not pathwise connected.
Continuing with negative examples, we present a normal (resp.
Fréchet-Urysohn) space whose hyperspace of converging sequences
is not normal (resp. Fréchet-Urysohn).

By proving that the hypothesis X is connected implies that
Sc(X) is connected we generalize one of the results from the arti-
cle mentioned above. Moreover, it is proved here that the reverse
implication holds whenever Sc(X) 6= ∅ and similiar results are ob-
tained when we replace connected with locally connected.

A section is included where the weight, the character and the
density of Sc(X) are compared with the corresponding cardinal
functions of X. Then we turn our attention to the study of the
topological dimension of the hyperspace of convergent sequences of
compact metrizable spaces. Finally, we characterize the continuous
functions from Sc(X) to Sc(Y ) which are inducible.
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1. Introduction

The hyperspace of all nonempty closed subsets of a space X and the
hyperspace of all nonempty connected closed subsets of X are examples
of certain valuable spaces which have been found as topological invari-
ants of X. The study of hyperspaces can provide information about the
topological behavior of the original space and vice versa. It is the pur-
pose of this paper to study a particular invariant space associated with
a Hausdorff space X, namely Sc(X), which consists of all nontrivial con-
vergent sequences in X and was introduced for metric spaces in [5]. Our
main interests are the following: first, to establish relations between con-
nectedness, local connectedness and path connectedness of a Hausdorff
space X and the corresponding properties for Sc(X); second, to study
the interrelation between the main cardinal functions of Sc(X) and those
of X, and, third, to find necessary and sufficient conditions to obtain
that a continuous function between the hyperspaces Sc(X) and Sc(Y ) is
inducible.

After Introduction and Preliminaries, in Section 3 of this paper, some
helpful topological properties are obtained; we also present examples to
show that the normality and the property of being Fréchet-Urysohn are
not preserved by the hyperspace operation Sc(·).

In Section 4 we answer questions 2.14 and 2.15 of [5, p. 802] in the
affirmative for both the class of metrizable spaces and the class of second
countable spaces. A positive answer for [5, Question 2.16, p. 802] is
given as well. We provide an example which shows that questions 2.9
and 2.10 have negative answers. We finish this section by generalizing
[5, Theorem 2.12, p. 801] and exploring the connection between the local
connectedness of the ground space and the corresponding property of its
hyperspace of convergent sequences.

The interrelations between weight, character and density of Sc(X) and
those of the space X are analysed in Section 5. A brief section about
dimension is presented next.

Finally, in Section 7, we give a characterization of the continuous func-
tions g from Sc(X) to Sc(Y ) for which there exists a continuous function
f from X to Y satisfying g(S) = f [S] for every S ∈ Sc(X) (this is done
when X is a crowded sequential Hausdorff space and Y is a Hausdorff
space).

2. Preliminaries

All topological notions and all set-theoretic notions whose definition is
not included here should be understood as in [4] and [9], respectively.
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The symbol ω denotes both, the first infinite ordinal and the first
infinite cardinal. In particular, we consider all nonnegative integers as
ordinals too; thus, n ∈ ω implies that n = {0, . . . , n − 1} and ω \ n =
{k ∈ ω : k ≥ n}. The successor of ω is the ordinal ω + 1 = ω ∪ {ω} and
so the symbols i ∈ ω + 1, i < ω + 1 and i ≤ ω all represent the same.
The set ω \ {0} is denoted by N. As usual, c will be used to represent the
cardinality of the real line, R.

If X is a set and κ is a cardinal, |X| will represent the cardinality of
X and [X]<κ denotes the family of all subsets of X whose cardinality is
< κ. In particular, [X]<ω is the collection of all finite subsets of X and
[X]<n+1 is the collection of all subsets of X having at most n elements,
whenever n ∈ N.

For a function f , ran(f) will denote its range, and given a subset A of
the domain of f , the set {f(x) : x ∈ A} is denoted by f [A].

The cartesian product of a family {Xα : α ∈ I} of sets, i.e., the set of
all functions f from I into

⋃
α∈I Xα such that f(α) ∈ Xα for every α ∈ I,

is denoted by
∏
α∈I Xα.

Given a family A of nonempty sets, we will say that c is a choice
function for A if c : A →

⋃
A and c(A) ∈ A, for each A ∈ A.

In this paper, space means Hausdorff space. For a topological space
X, the symbol τX will denote the collection of all open subsets of X.
Also, for a set A ⊆ X, we will use intX A and clX A (or, if there is no
risk of confusion, A) to represent its interior in X and its closure in X,
respectively.

The topological product of a family of topological spaces {Xα : α ∈ I}
is the topological space which results from endowing the cartesian product∏
α∈I Xα with the product topology.
A convergent sequence in a topological space X is a function f from ω

into X for which there is x ∈ X in such a way that for each U ∈ τX with
x ∈ U there exists n ∈ ω with f [ω \ n] ⊆ U . In this case, we will say that
either f converges to x or x is the limit of f , and this fact will be denoted
by either lim

n→∞
f(n) = x or f(n) → x. We shall write (f(n))n∈ω to refer

to f . If | ran(f)| = ω, we say that f is nontrivial. In connection with this
concept, in this paper, a subset S of a space X will be called a nontrivial
convergent sequence in X if S is countably infinite and there is x ∈ S in
such a way that S \ U ∈ [X]<ω for each U ∈ τX with x ∈ U . When this
happens, the point x is called the limit point of S and we will say that
S converges to x and write either S → x or limS = x. Throughout this
paper, the reader will be able to identify from the context what is the
intended meaning of nontrivial convergent sequence in the discussion.
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In [5, p. 796], additionally, a nontrivial convergent sequence S satisfies
that S \ {limS} is discrete. Notice that a nontrivial convergent sequence,
as defined in this paper in a Hausdorff space, has this property. Thus,
our definition and that of [5, p. 796] are equivalent.

For a space X, let

CL(X) = {A ⊆ X : A is closed in X and A 6= ∅},
K(X) = {A ∈ CL(X) : A is compact},
Sc(X) = {S ∈ K(X) : S is a nontrivial convergent sequence in X} and
C(X) = {A ∈ K(X) : A is connected}.

Given a family U of subsets of X, we define

〈U〉 =
{
A ∈ CL(X) : A ⊆

⋃
U ∧ ∀ U ∈ U (A ∩ U 6= ∅)

}
.

The Vietoris topology is the topology on CL(X) generated by the base
consisting of all sets of the form 〈U〉, where U ∈ [τX ]<ω (see [10, Propo-
sition 2.1, p. 155]). The hyperspaces C(X), Sc(X) and K(X) will be
considered as subspaces of CL(X). In particular, a base for the topol-
ogy of Sc(X) consists of all sets of the form 〈U〉c = 〈U〉 ∩ Sc(X), where
U ∈ [τX ]<ω. For each n ∈ N, we will denote by Fn(X) and F(X) the
subspaces [X]<n+1 \ {∅} and [X]<ω \ {∅}, respectively, of CL(X).

For a subset U of a space X, let U+ = 〈{U}〉, U+
c = 〈{U}〉c, U− =

〈{X,U}〉 and U−c = 〈{X,U}〉c. Thus, when V is open (closed, resp.) in
X, then V + and V − are open (closed, resp.) in CL(X), and hence, V +

c

and V −c are open (closed, resp.) in Sc(X).
A cellular family in a topological spaceX is a pairwise disjoint family of

nonempty open subsets of X. The collection of all finite cellular families
of X is denoted by C(X).

A topological space having no isolated points will be called crowded.
We will say that a topological space X is abundant in sequences if the
set consisting of all points which are the limit of a member of Sc(X) is
dense in X. Equivalently, a space X is abundant in sequences if and only
if Sc(X) is dense in CL(X).

Let us go over an example of a space which is abundant in sequences.
Assume that κ is an infinite cardinal and {Xα : α < κ} is a family of spaces
satisfying |Xα| ≥ 2, for each α < κ. Hence, each nonempty canonical basic
open set in the topological product

∏
α<κXα contains a copy of the cube

2κ, where 2 is endowed with the discrete topology, and since κ ≥ ω, this
means that 2ω, the Cantor set, embeds into any nonempty open subset
of
∏
α<κXα, i.e., this product is abundant in sequences.
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A topological space X is called sequential if for each A ⊆ X with
A 6= A, there exist (xn)n∈ω, a sequence in A, and x ∈ X \ A such that
lim
n→∞

xn = x. Recall that a topological space X is Fréchet-Urysohn if for

all B ⊆ X and for each x ∈ B there is a sequence (xn)n∈ω contained in B
whose limit is x. Every Fréchet-Urysohn space is a sequential space (see
[4, Theorem 1.6.14, p. 53]).

Next, we discuss the interrelations between the properties of being
abundant in sequences, being Fréchet-Urysohn and being sequential in
the class of crowded spaces.

Let X be a crowded sequential space. Since X is crowded, for each
x ∈ X we get x ∈ X \ {x} and so there is a sequence (xn)n∈ω in X \ {x}
whose limit is x. Thus, S = {x}∪{xn : n ∈ ω} ∈ Sc(X) and limS = x. In
other words, all crowded sequential spaces are abundant in sequences, and
therefore, all crowded Fréchet-Urysohn spaces are abundant in sequences.

The long segment (see [4, 3.12.19, p. 237]) is an example of a crowded
space which is abundant in sequences but fails to be sequential and there-
fore it is not Fréchet-Urysohn.

Given a family of topological spaces {Xα : α ∈ I}, the symbol
⊕

α∈I Xα

denotes the topological sum of {Xα : α ∈ I} (see [4, p. 74]).

Lemma 2.1. Let X be a space. Then, the function ϕ :
⊕

m∈NK(X)m →
K(X) defined by ϕ(t) =

⋃
ran(t) is continuous.

Proof. It follows from [10, 2.4.3 of Proposition 2.4, p. 156] and [10, 5.7.2
of Theorem 5.7, p. 168]. �

3. General properties of Sc(X)

In this section we present some topological properties of the hyperspace
Sc(X) which will be used constantly in this paper.

Theorem 3.1. Let X and Y be spaces. If X and Y are homeomorphic,
then Sc(X) and Sc(Y ) are homeomorphic as well.

Proof. Let h : X → Y be a homeomorphism. In the proof of [8, Theo-
rem 1.3, p. 5] it is shown that the function h∗ : CL(X)→ CL(Y ) defined
by h∗(A) = h[A] is a homeomorphism. Notice that if S ∈ Sc(Y ), then
T = h−1[S] ∈ Sc(X) and h[T ] = S, so h∗[Sc(X)] = Sc(Y ). �

Proposition 3.2. For an arbitrary space X, {〈U〉c : U ∈ C(X)} is a base
for Sc(X).

Proof. Start by fixing V ∈ [τX ]<ω and S ∈ Sc(X) in such a way that
S ∈ 〈V〉c. Moreover, assume that S → a.



148 D. MAYA, P. PELLICER-COVARRUBIAS, AND R. PICHARDO-MENDOZA

For each x ∈ S, define Vx = {V ∈ V : x ∈ V } and set Vx =
⋂
Vx.

Clearly, F = {a} ∪ (S \ Va) is a finite set. Now, observe that by letting
V∗ =

⋃
{Vx : x ∈ F} one gets that W ∈ V \ V∗ implies that W ∩ S 6= ∅

and W ∩F = ∅; in other words, W ∩S ∩ Va 6= ∅. This remark guarantees
the existence of c, a choice function for {W ∩S ∩Va :W ∈ V \V∗} (when
V \ V∗ = ∅, c is the empty function). In particular, (S \ Va) ∩ ran(c) = ∅
and S ∩ Va \ ran(c) is a compact subset of X which is disjoint from the
finite set (S \ Va) ∪ ran(c).

From the previous paragraph we deduce that there is a family of open
subsets of X, U = {Ux : x ∈ F ∪ ran(c)}, satisfying

(1) S ∩ Va \ ran(c) ⊆ Ua ⊆ Va,
(2) if x ∈ F ∪ ran(c), then x ∈ Ux ⊆ Vx, and
(3) for all x, y ∈ F ∪ ran(c), x 6= y implies that Ux ∩ Uy = ∅.

Thus, U ∈ C(X) and each member of U hits S. Also, as a consequence of
the equality S = (S ∩ Va \ ran(c)) ∪ ran(c) ∪ (S \ Va), we obtain that U
covers S. Hence, S ∈ 〈U〉c.

To prove that 〈U〉c ⊆ 〈V〉c we will show that each member of V contains
an element of U and invoke [10, 2.3.1 of Lemma 2.3, p. 156]. So, letW ∈ V
be arbitrary. When W ∈ V∗, there is x ∈ F with W ∈ Vx and therefore,
Ux ⊆ Vx ⊆ W . On the other hand, W /∈ V∗ ensures that c(W ) ∈
W ∩S∩Va and, according to condition (2) above, c(W ) ∈ Uc(W ) ⊆ Vc(W );
thus, W ∈ Vc(W ) and Uc(W ) ⊆ Vc(W ) ⊆W . �

Lemma 3.3. Let X be a space. If A ⊆ Sc(X) and S ∈ clSc(X) A, then
S ⊆ clX (

⋃
A).

Proof. By contrapositive, if S \ clX (
⋃

A) 6= ∅, then (X \ clX (
⋃
A))−c is a

neighborhood of S which is disjoint from A. �

The following result generalizes [5, Lemma 1.1, p. 796].

Lemma 3.4. Let X be a space, let A ∈ [CL(X)]<ω be a pairwise disjoint
family and let n ∈ N. If S ∈ Sc(X) satisfies S ∩

⋃
A = ∅, then

En(A, S) =

{
S ∪

⋃
ran(t) : t ∈

∏
A∈A
Fn(A)

}
is a closed nowhere dense subset of Sc(X) which is homeomorphic to∏
A∈A Fn(A).

Proof. To simplify notation, set E = En(A, S) and P =
∏
A∈A Fn(A). Let

us start by proving that the map h : P→ E given by h(t) = S ∪
⋃

ran(t)
is a homeomorphism.
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Clearly, h is a bijection. The continuity of h follows from the fact that,
if ϕ is as in Lemma 2.1, then h(t) = ϕ(t, S) for each t ∈ P. Now, let
us argue that h−1 is continuous. Fix t ∈ P and suppose that {VA : A ∈
A} ⊆ [τX ]<ω is such that t ∈

∏
A∈A(〈VA〉 ∩ Fn(A)). Since S ∩

⋃
A = ∅,

there exist U ∈ τX and {WA : A ∈ A} ⊆ [τX ]<ω with the following
properties:

(1) S ⊆ U ⊆ X \
⋃
A,

(2) t(A) ∈ 〈WA〉 ∩ Fn(A) ⊆ 〈VA〉 for each A ∈ A,
(3) (

⋃
WA) ∩ (

⋃
WB) = ∅ whenever A,B ∈ A with A 6= B,

(4) (
⋃
WA) ∩ (

⋃
(A \ {A})) = ∅ for every A ∈ A, and

(5) U ∩
⋃
{
⋃
WA : A ∈ A} = ∅.

Set U = {U} ∪
⋃
A∈AWA. We have that h(t) ∈ 〈U〉c. When p ∈ P is

such that h(p) ∈ 〈U〉c, conditions (1), (3), (4) and (5) give p(A) ∈ 〈WA〉
for each A ∈ A. Therefore, h−1[〈U〉c ∩ E] ⊆

∏
A∈A(〈VA〉 ∩ Fn(A)).

In order to prove that E is closed, let Q ∈ Sc(X)\E be arbitrary. When
Q * S ∪

⋃
A = S ∪

⋃
A =

⋃
E, we invoke Lemma 3.3 to conclude that

Q /∈ E. On the other hand, if there exists z ∈ S \Q, then Q ∈ (X \ {z})+c
and (X \ {z})+c ∩ E = ∅. Hence, for the rest of the argument, let us
assume that Q ⊆ S∪

⋃
A and S ⊆ Q; in other words, Q = S∪ (Q ∩

⋃
A).

If there exists B ∈ A such that B ∩ Q = ∅, then Q ∈ (X \B)
+
c and

(X \B)
+
c ∩E = ∅. When Q∩A 6= ∅ for each A ∈ A, we deduce from Q /∈ E

that |C ∩ Q| > n for some C ∈ A, and so there is V ∈ C(X) satisfying
|V| = n + 1, (

⋃
V) ∩ (S ∪

⋃
A) \ C = ∅ and such that V ∩ C ∩ Q 6= ∅

for each V ∈ V. Thus, 〈{X} ∪ V〉c is an open neighborhood of Q disjoint
from E. Therefore, Sc(X) \ E is an open subset of Sc(X).

Finally, to show that E has empty interior, suppose that U ∈ C(X) is
such that h(q) ∈ 〈U〉c for some q ∈ P. Fix U ∈ U with limS ∈ U and let
y ∈ U ∩S \{limS} be arbitrary. Then, (S \{y})∪

⋃
ran(q) ∈ 〈U〉c\E. �

Let H(X) ∈ {CL(X),K(X),Sc(X), C(X),F(X)} ∪ {Fn(X) : n ∈ N}.
A topological property P will be called:

(a) H-preserved provided that if a space X has property P , so does
H(X), and

(b) H-reversible if the condition “H(X) has property P ” implies that
X has property P , for any space X.

According to 4.9.2, 4.9.8, 4.9.10, 4.9.11 of [10, Theorem 4.9, pp. 163-
164], the property of being a Ti space for i ∈ {2, 3, 3 1

2} is K-preserved and
therefore H-preserved when H(X) ∈ {Sc(X), C(X),F(X)} ∪ {Fn(X) :
n ∈ N}.

Proposition 3.5. Normality is not Sc-preserved.
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Proof. Let X be Sorgenfrey’s line. In order to prove that Sc(X) is not
normal, by [4, (c) of 1.7.12, p. 60], it suffices to prove that there exists a
separable closed subset of Sc(X) which contains a closed discrete subspace
of cardinality c.

Let us start by noting that the intervals Yi = [−1 + i, i), for i ∈ 2,
are closed subsets of X. On the other hand, S = {1} ∪ {1 + 2−n :
n ∈ ω} ∈ Sc(X) and S is disjoint from Y0 ∪ Y1. Thus, by Lemma 3.4,
E1({Y0, Y1}, S) is a closed subset of Sc(X) which is homeomorphic to
F1(Y0)×F1(Y1). Since each F1(Yi) is homeomorphic to Yi, E1({Y0, Y1}, S)
is homeomorphic to Y = Y0 × Y1. We have that Y is separable and the
set {(x,−x) : x ∈ (−1, 0)} is a closed discrete subspace of Y of cardinality
c. Therefore, Sc(X) is not normal. �

Remark 3.6. Let X, Y0, Y1 and Y be as in Proposition 3.5. We have
that F1(Y0) × F1(Y1) is homeomorphic to Y and the mapping h from
F1(Y0)×F1(Y1) into F2(X) defined by h({x}, {y}) = {x, y} is an embed-
ding such that h [F1(Y0)×F1(Y1)] is a closed subset of F2(X). So, since Y
is separable and contains a closed discrete subspace of cardinality c, we in-
fer that normality is notH-preserved ifH(X) ∈ {K(X),F(X)}∪{Fn(X) :
n ≥ 2}.
Proposition 3.7. Being Fréchet-Urysohn is not Sc-preserved.
Proof. Denote the unit interval [0, 1] by I. Given a cardinal κ, endow κ
with the discrete topology and set J(κ) = (I × κ)/({0} × κ), i.e., J(κ)
is the quotient space of the topological product I × κ which results from
collapsing the set {0} × κ to a single point. Similarly, define S(κ) =
((ω+1)×κ)/({ω}×κ), where the ordinal ω+1 is considered as a linearly
ordered topological space. Usually, J(κ) and S(κ) are called the hedgehog
of κ spines and the sequential fan of κ spines, respectively.

Let X = J(ω1) × 2, where 2 is endowed with the discrete topology.
Observe that X is Fréchet-Urysohn.

By [6, Corollary 1.7 and Example 1.8, p. 303], S(ω1)
2 is not Fréchet-

Urysohn. So, to prove that Sc(X) is not Fréchet-Urysohn, it suffices to
see that there exists a subset of Sc(X) which is homeomorphic to S(ω1)

2.
Fix P,Q ∈ Sc(I) in such a way that limQ = 0 and 0 /∈ P . Now,

let q : I × ω1 → J(ω1) be the natural quotient map and observe that
M = q[Q× (ω1 \ {0})] is a closed subset of J(ω1) homeomorphic to S(ω1)
and disjoint from the convergent sequence R = q[P × {0}]. Set A =
{M × {0},M × {1}} and notice that each element of A is disjoint from
S = R × {0} ∈ Sc(X). Then, by Lemma 3.4, E1(A, S) is a closed subset
of Sc(X) which is homeomorphic to F1(M×{0})×F1(M×{1}). Clearly,
each F1(M × {i}) is homeomorphic to M . Thus, E1(A, S) is homeomor-
phic to S(ω1)

2 and so S(ω1)
2 embeds as a subspace of Sc(X). �
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Remark 3.8. With similar arguments as in Proposition 3.7 one can show
that F1(M × {0})×F1(M × {1}) is homeomorphic to S(ω1)

2 and it can
be embedded in F2(X). Thus, the property of being Fréchet-Urysohn is
not H-preserved when H(X) ∈ {K(X),F(X)} ∪ {Fn(X) : n ≥ 2}.

Proposition 3.9. Let X be a space and let x ∈ X. If (An)n∈ω is a
sequence in K(X) such that x ∈ An for every n ∈ ω and lim

n→∞
An exists

in K(X), then x ∈ lim
n→∞

An.

Proof. Let A = lim
n→∞

An. Suppose that x /∈ A. Since X is T2, we have

that X \ {x} is an open subset of X such that A ∈ (X \ {x})+. Notice
that An /∈ (X \ {x})+ for every n ∈ ω. This contradicts the fact that
(An)n∈ω converges to A in K(X). �

4. Connectedness, path connectedness, and local
connectedness

We begin this section by proving that being connected is a property
which is Sc-preserved and Sc-reversible (as long as the hyperspace of con-
vergent sequences is not empty). In particular, [5, Question 2.16, p. 802]
has a positive answer.

Lemma 4.1. Let X be a connected space and assume that P,Q ∈ Sc(X)
are such that P ⊆ Q and Q \ P is finite. Then, P and Q belong to the
same component of Sc(X).

Proof. Set n = |Q \ P | and define ϕ : Fn(X)→ Sc(X) by ϕ(A) = P ∪ A
for each A ∈ Fn(X) to get a continuous map (see [10, Corollary 5.8.1,
p. 169]). Since X is connected, [10, Theorem 4.10, p. 165] guarantees that
Fn(X) is connected. To finish our argument, note that P,Q ∈ ran(ϕ). �

Theorem 4.2. If X is a connected space, then so is Sc(X).

Proof. Let S1, S2 ∈ Sc(X) be arbitrary and denote by C the component
of Sc(X) containing S1. Assume that {xi : i ≤ ω} and {yi : i ≤ ω} are
adequate enumerations of S1 and S2, respectively.

For each k < ω set Pk = S1 \ {xi : i ≤ k} and Qk = Pk ∪ {yi : i ≤ k}.
From Lemma 4.1 we deduce that Pk and Qk belong to C.

Now, the fact that the sequence (Qk)k<ω converges to S3 = S2 ∪ {xω}
implies that S3 ∈ C and so, Lemma 4.1 gives S2 ∈ C. �

In [5, Theorem 2.6, p. 799] it is proved that connectedness is a Sc-
reversible property in the class of first countable spaces. We will show
that the same result holds in the class of topological spaces with non-void
hyperspace of convergent sequences.
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Theorem 4.3. If X is a topological space for which Sc(X) is non-empty
and connected, then X is connected as well.

Proof. Let X be a space such that Sc(X) is nonempty and connected. In
order to prove connectedness of X, let U, V ∈ τX satisfying X = U ∪ V
and U ∩ V = ∅. Let S ∈ Sc(X) and set a = limS. Then, either a ∈ U
or a ∈ V . We may assume that a ∈ U . So, we shall show that V = ∅.
Notice that U+

c and V −c are disjoint open subsets of Sc(X) whose union
is Sc(X). By the connectedness of Sc(X), we obtain that either U+

c = ∅
or V −c = ∅. Observe that S \ U is finite and so S ∩ U ∈ U+

c . Thus, we
deduce that V −c = ∅. If there were a point x in V , we would have that
S∪{x} ∈ V −c , a contradiction. Therefore, V = ∅ and X is connected. �

A discrete space having at least two points can be used to show that
the condition in Theorem 4.3 on the hyperspace of nontrivial convergent
sequences can not be weakened.

Recall that a path in a space X is a continuous map from the unit
interval I = [0, 1] into X. In [5, Example 2.8, p. 800], the authors show
that path connectedness is not Sc-preserved. They ask if path connect-
edness is a Sc-reversible property ([5, Question 2.14, p. 802]) and if for
each arbitrary path α : I → Sc(X), it is possible to find a path in X
connecting one point of α(0) with one point of α(1) ([5, Question 2.15,
p. 802]). In this section we give positive answers to these questions for the
class of metrizable spaces and for the class of second countable spaces.

A topological space will be called zero-dimensional if it possesses a base
consisting of closed sets. Given a space X, the symbol K0(X) is going
to represent the subspace of CL(X) consisting of all non-empty compact
zero-dimensional subspaces of X. Note that Sc(X) ⊆ K0(X).

Lemma 4.4. Assume X is either metrizable or second countable. If
α : I → Sc(X) is a path, then for each p ∈ α(0) there is a path β : I → X
in such a way that β(t) ∈ α(t), whenever t ∈ I, and β(0) = p.

Proof. By [10, 5.6.2, p. 168], Y =
⋃

ran(α) is a compact subspace of X
and so, Y is metrizable.

Let us show that K =
⋃
t∈I({t} × α(t)) is a closed subset of the topo-

logical product I × Y . If (t, y) ∈ (I × Y ) \K, then y /∈ α(t) so, there are
disjoint U, V ∈ τX with y ∈ U and α(t) ⊆ V , i.e., α(t) ∈ V +. Now, let
G ∈ τI be such that t ∈ G and α[G] ⊆ V +. We will argue that G × U
misses K. Indeed, for each (s, z) ∈ G×U we get s ∈ G and so, α(s) ⊆ V ,
which together with z ∈ U gives z /∈ α(s) and hence, (s, z) /∈ K.

Denote by πI : I × Y → I and πY : I × Y → Y the corresponding
projections and set η = πI � K to get a continuous map η : K → I.
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Note that if t ∈ I, then η−1(t) = {t}×α(t) is a compact non-empty zero-
dimensional subspace of K. Thus, if we prove that η is open, we would be
able to invoke [12, Theorem 2.1, p. 186] in order to obtain an embedding
h : I → K satisfying h(0) = (0, p) ∈ η−1(0) and h−1 = η � ran(h). This,
in turn, would imply that β = πY ◦ h is a path in X (actually in Y )
fulfilling all our requirements. Hence, we only need to verify that η is
open.

Suppose that G ∈ τI and U ∈ τX are arbitrary. Set V = K ∩ (G× U)
and fix (t, y) ∈ V . Since y ∈ U ∩ α(t), we have that α(t) ∈ U− and so,
there is W ∈ τI with t ∈ W and α[W ] ⊆ U−. For each s ∈ G ∩W , there
exists z ∈ α(s) ∩ U and so, s = η(s, z) ∈ η[V ]. In other words, G ∩W is
an open neighborhood of t contained in η[V ]. �

In the following result, we prove that path connectedness is Sc-reversible
in the class of metrizable spaces and in the class of second countable
spaces, thus answering [5, Question 2.14, p. 802] in the affirmative.

Theorem 4.5. Assume X is metrizable or second countable. If Sc(X) is
nonempty and pathwise connected, then so is X.

Proof. Fix S0 ∈ Sc(X) and w ∈ S0 \ {limS0}. Then, there is a path
α : I → Sc(X) satisfying α(0) = S0 and α(1) = S1 = S0 \ {w}. Thus,
by Lemma 4.4, there exists a path β : I → X such that β(0) = w and
β(1) ∈ S1. In particular, β(1) 6= w. Hence, the path component K of w
in X is nondegenerate.

Let S2 ∈ Sc(K) and fix p ∈ X. Set S3 = S2 ∪ {p} ∈ Sc(X). By
assumption, there exists a path in Sc(X) joining S3 and S2. Hence,
by Lemma 4.4 there exists a path γ : I → X such that γ(0) = p and
γ(1) ∈ S2 ⊆ K. This shows that p ∈ K and, therefore, X is pathwise
connected. �

In questions 2.9 and 2.10 [5, p. 801], the authors ask if Sc(X) is path
connected when X is either a hereditarily arcwise connected continuum (a
continuum is a compact connected metric space) or a dendroid (a dendroid
is an arcwise connected continuum satisfying that the intersection of two
connected closed subsets is connected). Our following example answers
these questions in the negative.

Example 4.6. A dendroid X such that Sc(X) is not pathwise connected.

For each n ∈ N let Ln be the segment in the plane that joins the points
(0, 1

n ) and (1, 0). Define A =
⋃
n∈N Ln and Â = {−z : z ∈ A}. Set X =

clR2(A ∪ Â) and observe that X is a dendroid. We will denote the point
(0, 0) by y.
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Define S0 = {(0, 1
m ) : m ∈ N} ∪ {(0,− 1

m ) : m ∈ N} ∪ {y} and fix
S1 ∈ A+

c . We will show that there is no path in Sc(X) joining S0 and S1.
Suppose to the contrary that there exists a path α : I → Sc(X) such that
α(0) = S0 and α(1) = S1. Consider the set T = {t ∈ I : |α(t) ∩A| = ω =

|α(t) ∩ Â|} and set s = supT . Let us argue that y ∈ α(s). There exists
a sequence (tn)n∈N of elements of T converging to s. By the continuity
of α, we have that α(s) = lim

n→∞
α(tn). For each n ∈ N, observe that

y = limα(tn), then y ∈ α(tn). Thus, by Proposition 3.9, we infer that
y ∈ α(s). Fix U ∈ C(X) such that α(s) ∈ 〈U〉c and, moreover, if U is
the element of U that contains y, assume that (−1, 0), (1, 0) /∈ U . Choose
t1 ∈ T and t2 ∈ I \ T such that α

[
[t1, t2]

]
⊆ 〈U〉c. Since t2 /∈ T , we will

assume without loss of generality that α(t2) ∩ Â is finite. Furthermore,
since t1 ∈ T , then y = limα(t1) and α(t1) ∩ Â intersects infinitely many
path components of U . Since α(t2) ∩ Â is finite, there exists a path
component K of U such that K ∩ α(t1) ∩ Â 6= ∅ and K ∩ α(t2) = ∅. Let
p ∈ K ∩ α(t1) ∩ Â. Applying Lemma 4.4 to the convergent sequences
α(t1) and α(t2), there exists a path β : [t1, t2] →

⋃
α
[
[t1, t2]

]
such that

β(t1) = p and β(t2) ∈ α(t2). Since β
[
[t1, t2]

]
⊆
⋃
α
[
[t1, t2]

]
⊆
⋃
U

and U is pairwise disjoint, β
[
[t1, t2]

]
⊆ K; hence β(t2) ∈ K ∩ α(t2), a

contradiction.

Now we turn our attention to local connectedness.

Theorem 4.7. If X is a locally connected space, then so is Sc(X).

Proof. Let B be a base for X consisting of open, connected sets. It is well
known that {〈U〉 : U ∈ [B]<ω} is a base for K(X); hence, we only need to
prove that each element of {〈U〉c : U ∈ [B]<ω} is connected.

Fix U ∈ [B]<ω. For each U ∈ U setQU = {S ∈ 〈U〉c : limS ∈ U}. Also,
if QU 6= ∅, define ϕU : Sc(U)×

∏
V ∈U\{U} F(V )→ QU by ϕ(t) =

⋃
ran(t).

Using [10, 5.7.2, p. 168] one can show that ϕU is a surjective map. Hence,
by Theorem 4.2 and [10, Theorem 4.10, p. 165], QU is connected.

Observe that 〈U〉c =
⋃
U∈U QU . In order to prove that 〈U〉c is con-

nected it suffices to show that if U, V ∈ U are such that QU 6= ∅ 6= QV ,
then QV ∩QU 6= ∅. Fix SV ∈ QV and S ∈ Sc(U). Let {xn : n ≤ ω} and
{yn : n ≤ ω} be adequate enumerations of SV ∩ V and of S, respectively.
For each k ∈ ω define Pk = {yn : n > k} ∪ (SV \ V )∪ {xn : n ≤ k}. Then
Pk ∈ QU for each k ∈ ω. Since lim

k→∞
Pk = SV ∪ {yw}, we conclude that

SV ∪ {yw} ∈ QV ∩QU . �

Lemma 4.8. Let X be a space. If G is an open subset of Sc(X), then⋃
G is an open subset of X.
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Proof. Let S ∈ G be arbitrary. Since G is open in Sc(X), there exists
U ∈ C(X) such that S ∈ 〈U〉c ⊆ G. Note that for each z ∈

⋃
U , S ∪{z} ∈

〈U〉c ⊆ G and so, z ∈
⋃
G. In other words,

⋃
U ∈ τX and S ⊆

⋃
U ⊆⋃

G. �

Theorem 4.9. Let X be a space and let x ∈ X. If Sc(X) is locally
connected and there exists S0 ∈ Sc(X) such that x 6= limS0, then X is
locally connected at x.

Proof. We will proceed by contrapositive. Suppose that X is not locally
connected at x. Then there exists an open set W such that x ∈ W and
no open and connected neighborhood of x is contained in W . Fix two
disjoint open sets Vx and V , such that x ∈ Vx ⊆W and S0 \ {x} ⊆ V .

Let G be an open subset of Sc(X) such that S0∪{x} ∈ G ⊆ 〈{Vx, V }〉c.
We will show that G is not connected. By Lemma 4.8 we know that

⋃
G is

an open subset of X and so, Vx∩
⋃

G is an open neighborhood of x which,
by assumption, is not connected. Let W1 and W2 be two nonempty and
disjoint open sets whose union is Vx ∩

⋃
G. We will assume that x ∈W1.

Define

O1 = G ∩
〈
{V,W1}

〉
c

and O2 = G ∩ (W2)
−
c ,

to get two open subsets of G with S0∪{x} ∈ O1. Furthermore, if y ∈W2,
then y ∈

⋃
G, i.e., there exists S′ ∈ G such that y ∈ S′. Thus, S′ ∈ O2.

Next, for each S ∈ G observe that S ∈ O1 if and only if ∅ 6= S ∩ Vx ⊆
W1. As a consequence of these remarks we deduce that O1 and O2 are
disjoint and their union is equal to G. In other words, G is not connected.
Therefore Sc(X) is not locally connected at S0 ∪ {x}. �

To simplify our notation, define for each space X the set LX = {limS :
S ∈ Sc(X)}.

Corollary 4.10. If X is a space, any of the following conditions implies
that Sc(X) is locally connected if and only if X is.

(1) |LX | ≥ 2.
(2) X is a sequential space.

Proof. Observe that Theorem 4.7 gives the reverse implication in the re-
quired equivalence for both cases. Also, when (1) holds we just need to
invoke Theorem 4.9 to get the direct implication. So, let us suppose that
X is sequential and that Sc(X) is locally connected.

IfX is discrete, thenX is locally connected. Hence, we will assume that
X has an accumulation point z. Since z ∈ X \ {z}, let us fix S ∈ Sc(X)
with S \ {z} ⊆ X \ {z} and z = limS ∈ LX . We will prove that |LX | ≥ 2
by contradiction: suppose that LX = {z}. By assumption there is a
connected open neighborhood G of S in Sc(X). Let U ∈ C(X) and U ∈ U
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be such that S ∈ 〈U〉c ⊆ G and z ∈ U . Now choose x ∈ S ∩ U \ {z} and
observe that S \ {x} ∈ 〈U〉c. If x were an accumulation point of X, there
would be S1 ∈ Sc(X) such that x = limS1 ∈ LX = {z}, a contradiction.
Therefore, x is an isolated point of X. Define O = G ∩ {x}−c and note
that O is a closed and open subset of G. Since S ∈ O ⊆ G \ {S \ {x}},
we infer that G is not connected, again a contradiction. This proves that
|LX | ≥ 2 and the local connectedness of X follows. �

Question 4.11. Is it true that the local connectedness of Sc(X) implies
that of X for arbitrary spaces X with nonempty hyperspace Sc(X)?

5. Cardinal functions

In this section we compare three main cardinal functions (weight, char-
acter and density) of a space X with those of Sc(X). Note that if X is the
remainder of the Stone-Čech compactification of ω, then Sc(X) is empty
(see [4, Corollary 3.6.15, p. 175]); this shows that in general the cardinal
functions of X and those of Sc(X) do not coincide, even when X does
not have isolated points. Thus, in this section we will look at spaces X
that have nonempty hyperspace Sc(X) (this is the case, for instance, of
sequential crowded spaces).

Note that, in principle, we are not assuming that the cardinal functions
discussed in this section are infinite. For example, w(X) is the least
cardinality of a base for X, so it might be the case that w(X) < ω. Of
course, one should note that in this case, X would be a finite discrete
space and so Sc(X) would be empty.

5.1. Auxiliary results. Using [10, Proposition 2.1 and 2.3.1 of Lemma
2.3, pp. 155-156], one can show the following result.

Lemma 5.1. If B is a base for a space X, then B = {〈V〉 : V ∈ [B]<ω} is
a base for K(X). In particular, if B is infinite, then |B| = |B| and, thus,
w(K(X)) ≤ w(X).

Lemma 5.2. Let X be a space and let S ∈ Sc(X). Assume that U ,V ∈
[τX ]<ω satisfy that S ∈ 〈V〉c ⊆ 〈U〉c. Also assume that U ∈ U is such that
S ∩ U is finite. Then, there exists V0 ∈ V such that V0 ⊆ U ; moreover, if
S ∩ U = {y} for some y ∈ S, then y ∈ V0.

Proof. Suppose to the contrary that ∅ /∈ {V \ U : V ∈ V}. Let c be a
choice function for {V \ U : V ∈ V}. Observe that S \ U ∈ Sc(X) and
set S1 = (S \ U) ∪ ran(c). It follows that S1 ∈ 〈V〉c. However, since
S1 ∩ U = ∅, we obtain that S1 ∈ 〈V〉c \ 〈U〉c, a contradiction; this proves
the existence of V0. Moreover, suppose that S ∩ U = {y}. Note that
∅ 6= S ∩ V0 ⊆ S ∩ U = {y} and therefore, y ∈ V0. �
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Lemma 5.3. Let X be a space and let U ,V ∈ [τX ]<ω. If ∅ 6= 〈U〉c ⊆ 〈V〉c,
then

⋃
U ⊆

⋃
V.

Proof. Observe that if S ∈ 〈U〉c and x ∈
⋃
U , then S∪{x} ∈ 〈U〉c ⊆ 〈V〉c,

so, x ∈
⋃
V. �

Lemma 5.4. Let X be a space and let A ∈ CL(X). If S ∈ Sc(X) is such
that |S ∩A| ≤ 1, then A can be embedded in Sc(X).

Proof. If S ∩A = ∅, the result follows from [5, Lemma 1.1, p. 796]; thus,
we may assume that S ∩ A = {p} for some p ∈ S. Further, if p 6= limS,
then S \ {p} ∈ Sc(X) and (S \ {p}) ∩ A = ∅ so, again, the result follows
from [5, Lemma 1.1, p. 796]. Hence, we will assume that p = limS.

Define h : A → Sc(X) by h(a) = S ∪ {a}. Since |S ∩ A| ≤ 1, it
is easy to see that h is one-to-one. Let ϕ be as in Lemma 2.1. Since
h(a) = ϕ(S, {a}) for each a ∈ A, we obtain that h is continuous. Next,
fix a nonempty open subset U of A and V ∈ τX such that V ∩ A = U .
In order to prove that h[U ] is open in h[A], fix a ∈ U . We will show that
h(a) ∈ inth[A](h[U ]). We take two cases.
Case 1. a 6= p.

Let U1 and U2 be two disjoint open subsets of X such that a ∈ U1 ⊆ V
and S ⊆ U2. Note that 〈{U1, U2}〉c ∩ h[A] is an open subset of h[A] that
contains S∪{a} = h(a). We will show that 〈{U1, U2}〉c∩h[A] ⊆ h[U ]. Let
Q ∈ 〈{U1, U2}〉c ∩ h[A]. Then Q = h(y) for some y ∈ A and, moreover,
∅ 6= Q ∩ U1 = (S ∪ {y}) ∩ U1. Thus, y ∈ U1 ∩ A ⊆ V ∩ A = U and,
therefore, Q ∈ h[U ]. This shows that h(a) ∈ inth[A](h[U ]).
Case 2. a = p.

Observe that 〈{V,X\A}〉c∩h[A] is an open subset of h[A] that contains
S = h(p). We will show that 〈{V,X \ A}〉c ∩ h[A] ⊆ h[U ]. Let Q ∈
〈{V,X \ A}〉c ∩ h[A]. Then Q = h(y) for some y ∈ A and, moreover,
S ∪ {y} = Q ⊆ V ∪ (X \ A). Thus, y ∈ V ∩ A = U and, therefore,
Q ∈ h[U ]. This shows that h(p) ∈ inth[A](h[U ]). �

5.2. Main Theorems.

Theorem 5.5. Let X be a space with more than one point. Then w(X) =
w(Sc(X)) if and only if Sc(X) 6= ∅.

Proof. The necessity is easy to see.
Next, assume that Sc(X) 6= ∅. Recall that Hausdorff spaces of finite

weight are finite; thus, since Sc(X) 6= ∅, we infer that X has infinite
weight. Therefore, by Lemma 5.1 we obtain that w(Sc(X)) ≤ w(K(X)) ≤
w(X).
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In order to show that w(X) ≤ w(Sc(X)), set κ = w(Sc(X)). According
to Proposition 3.2 and [4, Theorem 1.1.15, p. 17], for each α < κ there
exists Vα ∈ C(X) such that {〈Vα〉c : α < κ} is a base for Sc(X). Define
B =

⋃
α<κ Vα and note that B ∈ [τX ]≤κ. It remains to show that B is a

base for X. To this end fix W ∈ τX and p ∈ W . By assumption we may
also fix S ∈ Sc(X). We take two cases.
Case 1. p = limS.

In this case S ∩W ∈W+
c . Thus there exists α < κ such that S ∩W ∈

〈Vα〉c ⊆ W+
c . Let V ∈ Vα be such that p ∈ V . Then V ∈ B and by

Lemma 5.3, p ∈ V ⊆W .
Case 2. p 6= limS.

Define S1 = S ∪ {p}. Let U1 and U2 be two disjoint open subsets of X
such that p ∈ U1 and S1 \ {p} ⊆ U2. Then S1 ∈ 〈{U1 ∩W,U2}〉c and so,
there exists α < κ such that S1 ∈ 〈Vα〉c ⊆ 〈{U1 ∩W,U2}〉c. According to
Lemma 5.2 there exists V ∈ Vα ⊆ B such that p ∈ V ⊆ U1 ∩W and the
result follows. �

Theorem 5.6. If X is a space, then χ(Sc(X)) ≤ χ(X).
Proof. Let S ∈ Sc(X) and set a = limS. For each x ∈ S, fix Bx, a local
base for X at x, such that |Bx| = χ(x,X). Define BS as follows: B ∈ BS

if and only if there exist Ba ∈ Ba and Bx ∈ Bx, for each x ∈ S \Ba, such
that

B = 〈{Bx : x ∈ (S \Ba) ∪ {a}}〉c.
Since a is not an isolated point of X, χ(a,X) ≥ ω and so we deduce that
|BS | ≤ sup{χ(x,X) : x ∈ S} ≤ χ(X).

In order to prove that BS is a local base for Sc(X) at S, assume that
U ∈ C(X) satisfies that S ∈ 〈U〉c. Start by letting V ∈ U and Ba ∈ Ba
be so that Ba ⊆ V . Now, for each x ∈ S \ Ba let Bx ∈ Bx be such that
Bx ⊆ U , for some U ∈ U . Therefore, B = 〈{Bx : x ∈ (S \Ba) ∪ {a}}〉c ∈
BS and S ∈ B ⊆ 〈U〉c. �

Theorem 5.7. Let X be a space and let S ∈ Sc(X). If y ∈ S \ {limS},
then χ(y,X) ≤ χ(S,Sc(X)).
Proof. Set κ = χ(S,Sc(X)). Proposition 3.2 implies that for each α < κ
there exists Vα ∈ C(X) such that {〈Vα〉c : α < κ} is a local base at S. In
particular, for each α < κ there exists a unique Vα ∈ Vα that contains y.
Define B = {Vα : α < κ}.

In order to prove that B is a local base at y, fix an open set W such
that y ∈ W . Let U1 and U2 be disjoint open subsets of X such that
y ∈ U1 and S \{y} ⊆ U2. Observe that S ∈ 〈{U1∩W,U2}〉c. Hence, there
exists β < κ such that S ∈ 〈Vβ〉c ⊆ 〈{U1∩W,U2}〉c. Thus, by Lemma 5.2
there exists V ∈ Vβ such that y ∈ V ⊆ U1 ∩W . Hence, V = Vβ and,
therefore, B is a local base at y. The conclusion follows from the fact that
|B| ≤ κ. �
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In the rest of this section we will use the following notation: for a space
X, we denote by LX the set {limS : S ∈ Sc(X)}.

Corollary 5.8. If X is a space such that |LX | ≥ 2, then χ(X) =
χ(Sc(X)).

Proof. Given y ∈ X, by assumption there exists S0 ∈ Sc(X) such that
y 6= limS0. Set S = S0 ∪ {y}. Theorem 5.7 implies that χ(y,X) ≤
χ(S,Sc(X)). Therefore χ(X) ≤ χ(Sc(X)) and the result follows from
Theorem 5.6. �

There exist many spaces X such that |LX | = 1 and χ(X) = χ(Sc(X)),
as we now show. Let κ > 0 be a cardinal, let S(κ) be the sequential fan of
κ spines (see Proposition 3.7) and let q : (ω+1)×κ→ S(κ) be the natural
quotient map. Set S = q

[
(ω + 1)× 1

]
. Note that q

[
(ω + 1)× (κ \ 1)

]
∩ S

has exactly one element. Since q
[
(ω + 1) × (κ \ 1)

]
is homeomorphic to

S(κ), Lemma 5.4 and Theorem 5.6 imply that χ(S(κ)) = χ
(
Sc(S(κ))

)
.

However, the authors do not know the answer to the following question.

Question 5.9. Is it true that χ(X) = χ(Sc(X)) for every space X such
that Sc(X) is nonempty?

Lemma 5.10. If X is a space such that Sc(X) 6= ∅, then d(Sc(X)) ≥ ω.

Proof. Fix S ∈ Sc(X) and note that
{
S \ {y} : y ∈ S \ {limS}

}
⊆

Sc(X), thus Sc(X) is infinite. Moreover, Sc(X) is Hausdorff (see [10,
4.9.8, p. 164]). The result follows from the fact that Hausdorff spaces of
finite density are finite. �

Theorem 5.11. Let X be a nonempty space. Then Sc(X) 6= ∅ if and
only if d(X) ≤ d(Sc(X)).

Proof. Assume that Sc(X) 6= ∅. Set κ = d(Sc(X)) and let D be a dense
subset of Sc(X) of cardinality κ. Define D =

⋃
D and observe that

Lemma 5.10 implies that |D| ≤ κ. In order to show that D is dense in
X, let U be a nonempty open subset of X. By assumption there exists
S ∈ Sc(X) and we may take y ∈ U . Observe that S ∪ {y} ∈ U−c (i.e.,
U−c is a nonempty open subset of Sc(X)), thus there exists S1 ∈ D∩U−c .
Hence ∅ 6= S1 ∩ U ⊆ D ∩ U . Therefore, d(X) ≤ d(Sc(X)).

The converse is immediate. �

Lemma 5.12. If X is a space, then d(LX) ≤ d(Sc(X)).

Proof. If Sc(X) is empty so is LX , thus we may assume that Sc(X) 6= ∅.
Also, if |LX | < ω, then d(LX) = |LX | < d(Sc(X)) by Lemma 5.10. Hence,
let us assume that LX is infinite (and so, d(LX) ≥ ω).
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Let E be a subset of Sc(X) such that |E| < d(LX). We will show that
E is not dense in Sc(X). Note that |

⋃
E| < d(LX). Thus there exists a

nonempty open subset V of LX such that (
⋃

E) ∩ V = ∅. Let U ∈ τX
be such that U ∩ LX = V . Since U ∩ LX 6= ∅, it is easy to see that U+

c

is a nonempty open subset of Sc(X). On the other hand, if S ∈ E, then
limS ∈ (

⋃
E)∩LX , which implies that S /∈ U+

c . Therefore, E is not dense
in Sc(X). �

In our following example we construct a space X such that d(X) <
d(Sc(X)). To this end we consider the ordinal ω with the discrete topol-
ogy, we denote by βω its Stone-Čech compactification and by ω∗ the
remainder of such compactification. The ordinal ω + 1 is considered as a
linearly ordered topological space.

Example 5.13. Let X =
(
βω×(ω+1)

)
\(ω×{ω}). Recall that Sc(βω) =

∅ (see [4, Corollary 3.6.15, p. 175]). Hence, LX = ω∗×{ω}, thus d(LX) = c
(see [4, Corollary 3.6.12, Example 3.6.18, p. 175 and 1.7.12 (a), p. 60]).
Note that d(X) = ω, therefore by Lemma 5.12 we obtain that d(X) <
c ≤ d(Sc(X)).

Lemma 5.14. For any space X, d(Sc(X)) ≤ d(X)d(LX).

Proof. We may assume that Sc(X) 6= ∅. Recall that Hausdorff spaces of
finite density are finite; thus, since Sc(X) 6= ∅ we infer that d(X) ≥ ω.

Fix dense subsets E and P of X and of LX , respectively, such that
|E| = d(X) and |P | = d(LX). For each x ∈ P fix Sx ∈ Sc(X) such that
limSx = x. Define

G = {(Sx \ F ) ∪H : (x ∈ P ) ∧ (F ∈ [Sx \ {x}]<ω) ∧ (H ∈ [E]<ω)}.
Since d(X) ≥ ω, we deduce that |G| = |E||P | = d(X)d(LX). Let us show
that G is dense in Sc(X). Fix U ∈ [τX ]<ω with 〈U〉c 6= ∅, let S ∈ 〈U〉c and
fix U ∈ U such that limS ∈ U . Since U ∩LX 6= ∅, we may take x ∈ U ∩P .
Set H = ran(e), where e is a choice function for {V ∩E : V ∈ U}. Finally,
define F = Sx \ U , to obtain that (Sx \ F ) ∪ H ∈ G ∩ 〈U〉c. Therefore,
d(Sc(X)) ≤ d(X)d(LX). �

Corollary 5.15. Let X be a space such that Sc(X) 6= ∅. Then d(X) =
d(Sc(X)) if and only if d(LX) ≤ d(X).

Proof. The necessity follows from Lemma 5.12. The fact that d(X) ≥ ω,
Theorem 5.11 and Lemma 5.14 imply the sufficiency. �

Corollary 5.16. If X is a crowded sequential space, then d(X)=d(Sc(X)).

Proof. Since X is crowded and sequential, we have that LX = X; in
particular Sc(X) 6= ∅ and the result follows from Corollary 5.15. �
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6. Dimension

It is a well-known result that the property of a space being both metriz-
able and separable is K-preserved and therefore, it is also Sc-preserved
(see Theorem 5.5).

Given a metric separable space X, its topological dimension, dim(X),
should be understood as in [7]. Note that dim(K(X)) and dim(Sc(X))
make sense by the remarks from the previous paragraph.

Lemma 6.1. Let X be a space and assume that {Ln : n ∈ ω} is a sequence
of pairwise disjoint elements of K(X) that converges to a singleton {xω}.
Then

∏
n∈ω Ln can be embedded in Sc(X).

Proof. Set P =
∏
n∈ω Ln and for each n ∈ ω denote by πn : P → Ln

the nth projection. Since {Ln : n ∈ ω} is pairwise disjoint, the function
g : P → Sc(X) given by g(s) = ran(s) ∪ {xω} is well defined and one-
to-one. Next we will show that g is continuous. To this end fix s ∈ P
and U ∈ C(X) such that g(s) ∈ 〈U〉c. Take U ∈ U with xω ∈ U and
define A = {n ∈ ω : Ln ⊆ U}. For each n ∈ ω \ A pick Un ∈ U such
that s(n) ∈ Un. Define V =

⋂
n∈ω\A πn

−1[Un ∩Ln]. Clearly V is an open
subset of P and s ∈ V . Now, if t ∈ V , it follows easily that g(t) ⊆

⋃
U ;

further, t(n) ∈ g(t) ∩ Un for each n ∈ ω \ A and xω ∈ g(t) ∩ U , which
implies that g(t) ∈ 〈U〉c. Therefore g is continuous and, since each Ln is
compact, we conclude that g is an embedding. �

Our next result follows from [7, Remark, p. 34].

Lemma 6.2. If {X1, . . . , Xn} is a finite family of compact 1-dimensional
spaces, then dim (

∏n
i=1Xi) = n.

Lemma 6.3. Each compact metric space X of finite dimension ≥ 1 con-
tains a 1-dimensional continuum.

Proof. We proceed by induction. If dim(X) = 1, then X has a nondegen-
erate component (see [7, D), p. 22]) which is a 1-dimensional continuum.
Next assume that the lemma holds for n-dimensional compact metric
spaces and let X be a compact metric space of dimension n + 1. Then
there exist p ∈ X and a neighborhood V of p whose boundary has dimen-
sion n; applying the induction hypothesis to such boundary we obtain the
desired conclusion. �

By an arc in a topological space X we mean a subspace of X which is
homeomorphic to the unit interval [0, 1].

Theorem 6.4. Consider the following conditions for a space X.
(1) Sc(X) contains a Hilbert cube, i.e., a copy of the topological prod-

uct [0, 1]ω.
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(2) X contains an arc.
(3) dim(X) 6= 0.
(4) dim(Sc(X)) =∞.
(5) dim(K(X)) =∞.

Then (1) and (2) are equivalent. Moreover, if X is compact and metric
(thus, metric and separable) then (3), (4) and (5) are equivalent.

Proof. Assume that Sc(X) contains a Hilbert cube Q and let S1 and S2 be
two distinct elements of Q. We may assume that there exists z ∈ S1 \S2.
Choose a path α : [0, 1] → Q from S1 to S2 and use Lemma 4.4 to get a
path γ : [0, 1]→ X from z to a point of S2. Since ran(γ) has at least two
points, it contains an arc (see [13, Corollary 31.6, p. 222]).

Note that if A is an arc inX, there is a sequence of pairwise disjoint arcs
{Ln : n ∈ ω} ⊆ K(A) which converges to a singleton and so, Lemma 6.1
guarantees that condition (1) holds.

For the rest of the proof let us assume that X is compact metric. Also,
for each A ⊆ X, the symbol diam(A) will denote the diameter of A in X.

Assume (3). Since X is compact, it has a nondegenerate component
Y , which is evidently a continuum. Fix S = {xn : n ∈ ω + 1} ∈ Sc(Y )
and a cellular family {Wn : n ∈ ω} in the subspace Y \ {xω} with the
following properties:

S ∩Wn = {xn} for each n ∈ ω and lim
n→∞

diam(Wn) = 0.

According to [11, Corollary 5.5, p. 74], for each n ∈ ω there exists a
nondegenerate continuum Kn such that xn ∈ Kn ⊆Wn. Thus Lemma 6.1
implies that

∏
n∈ωKn can be embedded in Sc(X).

If Km is infinite-dimensional for some m ∈ ω, condition (4) follows
immediately; hence we may assume that each Kn is 1-dimensional for
each n ∈ ω (Lemma 6.3). In this case (4) follows using Lemma 6.2.
Further, since Sc(X) ⊆ K(X) then (4) implies (5). Finally, it is known
that if X is 0-dimensional so is K(X) ([10, 4.13.1, p. 166]); therefore (5)
implies (3). �

Question 6.5. Let X be a metric separable space. Is it true that either
dim(Sc(X)) ∈ {−1, 0} or dim(Sc(X)) = ∞? In other words, can the
assumption on the compactness of X be removed in Theorem 6.4?

7. Inducible mappings

Let X and Y be spaces and let f : X → Y be a mapping. For a
fixed hyperspace H(X) ∈ {K(X),Sc(X), C(X),F(X)}∪{Fn(X) : n ∈ N}
define the H-induced mapping H(f) : H(X)→ K(Y ) by

H(f)(A) = f [A] for each A ∈ H(X).
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It is known that K(f) is continuous (see [10, 5.10.1 of Theorem 5.10,
p. 170]) and ran(H(f)) ⊆ H(Y ) whenever H(X) ∈ {K(X), C(X),F(X)}∪
{Fn(X) : n ∈ N}. Now, if H(X) ∈ {Sc(X), C(X),F(X)} ∪ {Fn(X) : n ∈
N}, then H(X) ⊆ K(X) and H(f) is the restriction of K(f) to H(X);
thus, H(f) is continuous.

In connection with the concept of induced mapping, it is natural to
ask under what conditions an arbitrary mapping between the hyperspaces
H(X) and H(Y ) is an induced one. An answer to this question is pre-
sented in this section when H(X) = Sc(X). This question has been
studied for other hyperspaces in [1], [2] and [3].

7.1. Auxiliary results. First, we characterize the mappings f from a
sequential space into a space Y such that ran(Sc(f)) ⊆ Sc(Y ).

A continuous function f between topological spaces is called a strong
light map provided that each fiber f−1(y) is discrete.
Theorem 7.1. Let X and Y be spaces and let f : X → Y be a map. If
f is strong light, then f [S] ∈ Sc(Y ) for every S ∈ Sc(X).
Proof. Let S ∈ Sc(X). By the continuity of f , to prove that f [S] ∈
Sc(Y ) it suffices to verify that f [S] is infinite countable. First, notice
that |f [S]| ≤ |S| = ω, so f [S] is countable. Now, to check that f [S] is
infinite, we assume to the contrary that f [S] is finite; hence there exists
y ∈ f [S] such that Q = S ∩ f−1(y) is infinite. Since Q is closed and
Q ⊆ S, we have that Q ∈ Sc(X). Thus, f−1(y) can not be discrete
because {limQ} is not an open subset of f−1(y). �

Theorem 7.2. Assume X and Y are topological spaces and let f : X → Y
be a (not necessarily continuous) function. If X is sequential and

{f [S] : S ∈ Sc(X)} ⊆ Sc(Y ),

then f is a strong light map.
Proof. Suppose (xn)n∈ω is a sequence in X converging to some x ∈ X.
We claim that (f(xn))n∈ω converges to f(x) in Y (observe that this claim,
together with [4, Proposition 1.6.15, p. 53], implies that f is continuous).
Set S = {xn : n ∈ ω} ∪ {x}. We have two cases.

First, if S /∈ Sc(X), then S is finite and so there is m ∈ ω satisfying
{xn : n ∈ ω \ m} ∪ {x} = {x}. Clearly, this equality implies that our
claim holds.

Now, if S ∈ Sc(X), our hypotheses give f [S] ∈ Sc(Y ). Let z be
the limit of f [S]. Seeking a contradiction, assume z 6= f(x) and set
A = S ∩ f−1(z) ⊆ S \{x}. If A were finite, S \A ∈ Sc(X), but f [S \A] =
f [S] \ {z} /∈ Sc(Y ). On the other hand, A being infinite, would imply
A∪{x} ∈ Sc(X) and f [A∪{x}] = {z, f(x)} /∈ Sc(Y ). Therefore, z = f(x)
and this completes the proof of our claim.
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In order to prove that all fibers of f are discrete, suppose w ∈ X is an
accumulation point of f−1(y), for some y ∈ Y . Then, A = f−1(y) \ {w}
is not a closed subset of X and so, by assumption, there exists (wn)n∈ω,
a sequence in A which converges to some a ∈ X \ A. Since A = f−1(y),
we deduce that a = w, i.e., S = {wn : n ∈ ω} ∪ {w} ∈ Sc(X), but
f [S] = {y} /∈ Sc(Y ); a contradiction. �

According to [4, Corollary 3.6.15, p. 175] and [4, 3.6.A, p. 179], there
are spaces which are infinite and crowded, but have no non-trivial con-
vergent sequences. We will use this information in our next example,
which shows that the assumption on Theorem 7.2 of X being sequential
is essential.

Example 7.3. Fix M , a non-empty crowded space with Sc(M) = ∅, and
set X =M ⊕ (ω + 1), where the ordinal ω + 1 is endowed with the order
topology. By letting f : X → ω + 1 be such that f [M ] = {f(ω)} = {ω}
and f(n) = n, for each n ∈ ω, we obtain a continuous function. Also,
S ∈ Sc(X) implies that the set S ∩ M is finite and so, {f [S] : S ∈
Sc(X)} ⊆ Sc(ω + 1), but f fails to be a strong light map.

The next result follows from theorems 7.1 and 7.2.

Corollary 7.4. Let X be a sequential space and Y be a topological space.
If f : X → Y is an arbitrary function, the following statements are equiv-
alent.

(1) f is a strong light map.
(2) {f [S] : S ∈ Sc(X)} ⊆ Sc(Y ).

Theorem 7.5. Suppose f is a function from the sequential space X into
the topological space Y . If {f [S] : S ∈ Sc(X)} ⊆ Sc(Y ), then f is contin-
uous and Sc(f) is a continuous function from Sc(X) into Sc(Y ).

Proof. The continuity of f follows from Theorem 7.2. By [10, 5.10.1
of Theorem 5.10, p. 170], K(f) is continuous. So, since Sc(f) is the
restriction of K(f) to Sc(X), we can conclude that Sc(f) is continuous
and, by assumption, ran(Sc(f)) ⊆ Sc(Y ). �

Suppose Y is a strong light image of a space X (i.e., there is a strong
light map from X onto Y ). Since Y is, in particular, a continuous image
of X, we have that d(Y ) ≤ d(X). Thus, it is natural to ask if the extra
assumption of the map being strong light would imply a fixed inequality
between φ(X) and φ(Y ), where φ is one of the cardinal functions we
discussed in the previous section. Our next examples show that the answer
is no.
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Example 7.6. Let J(ω1) be the hedgehog of ω1 spines (see the proof of
Proposition 3.7) and I be the unit interval, [0, 1]. Denote by q : I ×ω1 →
J(ω1) the natural quotient map and define f : J(ω1)→ I by (f ◦q)(t, α) =
t, for each (t, α) ∈ I × ω1. Observe that f is a surjective strong light
map and J(ω1) is a crowded Fréchet-Urysohn space. Moreover, a minor
modification of the argument used in [4, Example 1.4.17, p. 33] shows
that χ(J(ω)) > ω and since J(ω1) contains a copy of J(ω), we deduce
that

w(I) = χ(I) < χ(J(ω)) ≤ χ(J(ω1)) ≤ w(J(ω1)).

Also, d(J(ω1)) = ω1 > d(I).

Example 7.7. Let q : I ×ω → J(ω) be the natural quotient map. Then,
q is a strong light map, I × ω is a crowded metrizable space, and

w(I × ω) = χ(I × ω) < χ(J(ω)) ≤ w(J(ω)).

Also, d(I × ω) = d(J(ω)).

7.2. Main Theorems. Let X and Y be spaces and let H(X) be a hy-
perspace. A mapping g : H(X)→ H(Y ) is said to be inducible provided
that there exists a mapping f : X → Y such that g = H(f). In [2, The-
orem 5.2, p. 256], the author characterizes inducible mappings when X
and Y are continua and H(X) ∈ {K(X), C(X),F(X)}∪ {Fn(X) : n ∈ N}
(see also [1, Theorem 2.1, p. 105] and [3, Theorem 2.2, p. 7]). In or-
der to find necessary and sufficient conditions for a mapping between the
hyperspaces Sc(X) and Sc(Y ) to be an induced one, it is convenient to
introduce some concepts and notation.

Throughout this section, X and Y denote a crowded sequential space
and a space, respectively.

Let g : Sc(X) → Sc(Y ) be a map. Define the relation `g as follows:
(x, y) ∈ `g if and only if there exists S ∈ Sc(X) such that limS = x and
lim g(S) = y. Since X is crowded and sequential, then each point of X is
the limit point of an element of Sc(X), hence, the domain of `g is X.

Recall that `g[A] is the set {y ∈ Y : ∃x ∈ A((x, y) ∈ `g)}, whenever
A ⊆ X.

Consider the following properties:
(1)g if S,Q ∈ Sc(X) satisfy limS = limQ, then lim g(S) = lim g(Q).
(2)g g−1[{y}−c ] ⊆ {S ∈ Sc(X) : y ∈ `g[S]} for every y ∈ Y .
Clearly, `g is a function if and only if condition (1)g holds.

Lemma 7.8. Let g : Sc(X) → Sc(Y ) be a map. If g satisfies (1)g, then
`g[S] ⊆ g(S) for every S ∈ Sc(X).
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Proof. Let S ∈ Sc(X) and y ∈ `g[S]. Then, there exists x ∈ S such that
`g(x) = y. Let Q ∈ Sc(X) be such that limQ = x. Denote limS by
a. Assume that Q = {qn : n ∈ ω} ∪ {x} and S = {sn : n ∈ ω} ∪ {a}.
For each k ∈ ω, define Sk = {qn : n ∈ ω \ k} ∪ {sn : n ∈ k} ∪ {x, a}.
Notice that Sk ∈ Sc(X), that limSk = x for every k ∈ ω and that
lim
k→∞

Sk = S. Thus, by the continuity of g, lim
k→∞

g(Sk) = g(S). Now,

since lim g(Sk) = `g(x) = y, we obtain that y ∈ g(Sk) for every k ∈ ω.
Hence, by Proposition 3.9, we can conclude that y ∈ g(S). This ends the
proof. �

Theorem 7.9. Let g : Sc(X)→ Sc(Y ) be a map. Then, g is inducible if
and only if (1)g and (2)g are satisfied.

Proof. First, suppose that there exists a map f : X → Y such that
g = Sc(f). In order to see that Sc(f) satisfies (1)Sc(f), let x ∈ X and
S ∈ Sc(X) be such that limS = x. Then, limSc(f)(S) = f(limS) = f(x).
Thus, `Sc(f) = f and `Sc(f) is a function. Hence, condition (1)Sc(f) holds.
Now, take y ∈ Y . We have that

{S ∈ Sc(X) : y ∈ `Sc(f)[S]} = {S ∈ Sc(X) : y ∈ f [S]} = Sc(f)−1[{y}−c ].

Therefore, (2)Sc(f) is satisfied.
Next, we assume that (1)g and (2)g are true. Then, `g is a function.

We are going to verify that g(S) = `g[S] for every S ∈ Sc(X). Let
S ∈ Sc(X) and y ∈ g(S). Then, S ∈ g−1[{y}−c ]. Since (2)g is satisfied,
we obtain that y ∈ `g[S]. Thus, g(S) ⊆ `g[S]. By Lemma 7.8, we have
that `g[S] ⊆ g(S). Therefore, `g[S] = g(S) ∈ Sc(Y ) for every S ∈ Sc(X).
So, by Theorem 7.2, `g is a strong light map. This proves that g = Sc(`g)
and so g is inducible. �

7.3. Examples. The following examples show that properties (1)g and
(2)g are independent in the sense that none of them is implied by the
other.

Example 7.10. There exists a map g : Sc([0, 1])→ Sc(R) satisfying (1)g
but not (2)g.

Define g : Sc([0, 1])→ Sc(R) by g(S)= S∪{−1} for every S∈ Sc([0, 1]).
First, we shall prove the continuity of g. Let ϕ :

⊕
m∈NK(R)m → K(R) be

as in Lemma 2.1. Notice that g(S) = ϕ(S, {−1}) for every S ∈ Sc([0, 1]).
Hence, since ϕ is continuous, so is g. Now, from the fact that lim g(S) =
limS for every S ∈ Sc([0, 1]), we have that `g is a function. So, (1)g
is satisfied. Clearly, g−1[{−1}−c ] = Sc([0, 1]). Since `g(x) = x for every
x ∈ [0, 1], we obtain that {S ∈ Sc([0, 1]) : −1 ∈ `g[S]} = ∅. Thus, (2)g is
not satisfied.
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Example 7.11. Consider the following subspaces of R: X = (0, 1)∪(1, 2)
and Y = (−1, 0)∪X. We will exhibit a map g : Sc(X)→ Sc(Y ) satisfying
(2)g but not (1)g.

Define f : (0, 1)→ Y by f(x) = −x and let i : X → Y be the inclusion
map. For each S ∈ Sc(X), let

g(S) =

{
Sc(f)(S), if S ∈ (0, 1)+c ,
Sc(i)(S), if S ∈ (1, 2)−c .

Clearly, f and i are strong light maps. Hence, by Corollary 7.4 and
Theorem 7.5, Sc(f) : Sc((0, 1)) → Sc(Y ) and Sc(i) : Sc(X) → Sc(Y )
are continuous. From the fact that (0, 1)+c and (1, 2)−c are disjoint open
subsets of Sc(X) whose union is Sc(X), it follows that g is well defined
and continuous.

Next, let A ∈ (0, 1)+c and set B = A ∪ { 32}. We have that B ∈ (1, 2)−c ,
limA = limB, lim g(A) = − limA and lim g(B) = limA. Hence, g does
not satisfy (1)g.

Now, to see that (2)g is satisfied, let p ∈ Y and let S ∈ g−1[{p}−c ].
Notice that (|p|, p) ∈ `g and |p| ∈ S. Then, p ∈ `g[S]. This finishes the
proof.

We conclude this paper with some final remarks and questions.

Let H(X) ∈ {K(X), C(X),Sc(X),F(X)} ∪ {Fn(X) : n ∈ N}. Given
two mappings between hyperspaces g1, g2 : H(X)→ H(Y ), we will write
g1 ≺ g2 provided that g1(A) ⊆ g2(A) for every A ∈ H(X). In [2,
Theorem 5.2, p. 256], the partial order ≺ on the set of all mappings
between H(X) and H(Y ) when X and Y are continua and H(X) ∈
{K(X), C(X),F(X)} ∪ {Fn(X) : n ∈ N} is used to classify the inducible
mappings (see also [1, Theorem 2.1, p. 105] and [3, Theorem 2.2, p. 7]).
Let X be a crowded sequential space, let Y be a space and let g : Sc(X)→
Sc(Y ) be a mapping. Consider the following properties:
(A)g The set {x ∈ X : ∃Q ∈ Sc(X)(limQ = x ∧ lim g(Q) = y)} is a

discrete subspace of X for every y ∈ Y .
(B)g g is minimal with respect to ≺ and (1)g (i.e., if a mapping g0 :

Sc(X)→ Sc(Y ) satisfies (1)g and g0 ≺ g, then g0 = g).

Question 7.12. Assume that g satisfies (1)g, (A)g and (B)g. Does g satisfy
(2)g?

In [5, p. 796], the authors ask if Sc(Q) and Sc(R\Q) are homeomorphic.
In connection with that question, we think the following are interesting
too.

Question 7.13. Are Sc(R2) and Sc(R3) homeomorphic?
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Question 7.14. More generally: Do there exist two distinct natural num-
bers n and m such that Sc(Rn) and Sc(Rm) are homeomorphic?
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