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PERTURBATIONS OF NORMS ON C1-FUNCTION
SPACES AND ASSOCIATED ISOMETRY GROUPS

KAZUHIRO KAWAMURA

Abstract. We study some families of norms and isometry groups
on C1([0, 1]) and C1(T), the spaces of all complex-valued C1-func-
tions on the unit interval [0, 1] and the unit circle T, with the C1-
topology. The norms studied in the present paper are all equivalent,
while their isometry groups are rather different. “Contiuous inter-
polations” among these norms are introduced and perturbations of
the associated isometry groups are studied.

1. Introduction and Preliminaries

The present paper deals with isometry groups associated with norms
defined on C1- function spaces. Two equivalent norms ∥·∥0 and ∥·∥1 on a
continuous function space F (X) over a compact Hausdorff space X may
have rather different isometry groups. As an attempt to understand how
they are similar or different, and how they are related with each other,
we consider a “continuous path” (∥ ·∥t)0≤t≤1 of norms on F (X) and study
how the isometry groups Ut with respect to ∥ · ∥t “vary along the path.”
For example we may ask the following question.
Question 1 ([6]). Let T be an isometry with respect to ∥ · ∥0. Does
there exists a “continuous collection” (Tt)0≤t≤1 of linear operators such
that T0 = T and Tt is a ∥ · ∥t-isometry for each t ∈ [0, 1]?
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A closely related question is:

Question 2. Let T be an isometry with respect to ∥ · ∥0 on F (X) and
assume that ∥ · ∥1 is "close" to ∥ · ∥0. Does there exists an isometry T ′

with respect to ∥ · ∥1 so that T ′ is "close" to T?

In order to study these questions, we need to specify the notion of
continuity as well as the function spaces under consideration. This paper
focuses on the spaces C1([0, 1]) and C1(T), the spaces of all complex-
valued C1-functions on the unit interval [0, 1] and the unit circle T =
{z ∈ C | |z| = 1}, both endowed with the C1-topology. Norms that will
be studied include the following whose isometry groups have been studied
for C1([0, 1]) in [1], [2], [3], [8], [11], [12] etc. Let X = [0, 1] or T. For a
function f ∈ C1(X) and for a point c ∈ X, let:

(1.1)

∥f∥Σ = ||f ||∞ + ||f ′||∞,
∥f∥C = sup0≤t≤1(|f(t)|+ |f ′(t)|),
∥f∥σ,c = |f(c)|+ ||f ′||∞,
∥f∥M = max(∥f∥∞, ∥f ′∥∞).

It turns out that answers to the above questions are related with the
topology of the homeomorphism group Homeo([0, 1]), the mapping space
Map([0, 1],T), and the isometry group Isom(T).

The rest of this section fixes notation and defines families of norms that
are studied in what follows. Section 2 studies norms and isometry groups
on C1([0, 1]) on the basis of some previous results ([5],[6]) which is stated
as Theorem 2.1. Section 3 and Section 4 deal with the space C1(T). We
prove in Section 3 a characterization theorem of isometries on C1(T) with
respect to norms under consideration, a counterpart to Theorem 2.1. We
then proceed in Section 4 to studying the questions above for C1(T).

For a compact Hausdorff space X, C(X) denotes the space of all
complex-valued continuous functions onX with the supremum norm ∥·∥∞.
The unit interval [0, 1] is endowed with the standard metric. Let T be the
unit circle on the complex plane: T = {z ∈ C | |z| = 1}, with the metric
dθ/2π. The covering map π : R → T defined by π(t) = exp(2πit), t ∈ R,
is a local isometry. For a function f : T → C, we define its derivative by

(1.2) f ′(e2πiθ) =
1

2π

d

dt

∣∣∣
t=θ

f(exp(2πit)).

We say that the function f is a C1-function if the above derivative exists
and is continuous.



NORMS AND ISOMETRY GROUPS ON C1- FUNCTION SPACES 171

For X = [0, 1] or T, C1(X) denotes the space of all complex-valued C1-
functions on X with the C1-topology; for a map f ∈ C1(X), the collection
of the sets of the form:

{g ∈ C1(X) | ∥g − f∥∞ < ϵ, ∥g′ − f ′∥∞ < ϵ}

form a neighborhood basis of f . Following [6] and [5] we define families
of norms on C1(X) (X = [0, 1] or T) as follows.

(i) The i-th projection X ×X → X of the product X ×X onto X is
denoted by pi, i = 1, 2. For a compact connected subset D of X×X with
p2(D) = X, we define

(1.3) ∥f∥<D> = sup
(x,y)∈D

(|f(x)|+ |f ′(y)|), f ∈ C1(X).

As was shown in [6, Section 1], for each pair of compact connected subsets
D1, D2 with p2(D1) = p2(D2) = X, the norms ∥ · ∥<D1> and ∥ · ∥<D2>

are equivalent and both induce the C1-topology.
(ii) For p ∈ [1,∞], let

(1.4) ∥f∥[p] = (∥f∥p∞ + ∥f ′∥p∞)1/p, f ∈ C1(X).

We follow the standard convention for p = ∞:

∥f∥[∞] = max(∥f∥∞, ∥f ′∥∞).

The inequality
∥f∥[∞] ≤ ∥f∥[p] ≤ 21/p∥f∥[∞]

implies that the norms ∥ · ∥[p], p ∈ [1,∞], are all mutually equivalent and
induce the C1-topology.

The norms defined in (1.1) are then written as follows:

(1.5)

∥f∥Σ = ∥f∥<[0,1]×[0,1]> = ∥f∥[1],
∥f∥σ,c = ∥f∥<{c}×[0,1]>,
∥f∥C = ∥f∥<∆>, where ∆ = {(t, t)|t ∈ X}, and
∥f∥M = ∥f∥[∞].

Now we introduce topology on the space of norms and on the space of
isometries. For X = [0, 1] or T, let N (X) denotes the space of all norms
on C1(X) which induce the C1-topology. The space N (X) is endowed
with the weakest topology such that the “evaluation map”

ef : N (X) → R, ef (∥ · ∥) = ∥f∥

is continuous for each f ∈ C1(X). Thus a path (∥ · ∥t)0≤t≤1 is continuous
if and only if the function t 7→ ∥f∥t is continuous for each f ∈ C1(X).
Also let GL(C1(X)) be the space of all C-linear isomorphisms on C1(X).



172 KAZUHIRO KAWAMURA

The space GL(C1(X)) is endowed with the weakest topology such that
the map

Ef : GL(C1(X)) → C1(X), Ef (T ) = Tf

is continuous for each f ∈ C1(X) (recall that the space C1(X) is endowed
with the C1-topology). For a norm ∥ · ∥ on C1(X), UX(∥ · ∥) denotes the
group of all surjective C-linear ∥ · ∥-isometries endowed with the subspace
topology of GL(C1(X)). When no confusion occurs, UX(∥ · ∥) is simply
denoted by U(∥ · ∥). Some examples of continuous paths in N (X) are
given below. The first example is most common, while the second and
the third are important for our purpose.

Example 1.1. Let X = [0, 1] or T.
(1) Let ∥ · ∥i, i = 0, 1, be norms in N (X) and for t ∈ [0, 1], let

∥·∥t = (1−t)∥·∥0+t∥·∥1. Then the map t 7→ ∥·∥t is a continuous
path in N (X). In fact the function t 7→ ∥f∥t is continuous for
each f ∈ C1(X).

(2) Let (Dt)0≤t≤1 be a collection of compact connected subsets of
X ×X such that
(i) p2(Dt) = X for each t and
(ii) the map t 7→ Dt is continuous with respect to the Hausdorff

metric.
Then the map t 7→ ∥ · ∥<Dt> is continuous.

(3) Assume that the extended real line R̄ = R∪{±∞} has the natural
topology. Then the map p 7→ ∥ · ∥[p] is a continuous map [1,∞] →
N (X).

2. Isometry groups on the space C1([0, 1])

Throughout this section, 1 denotes the constant function on [0, 1] which
takes the value 1. Also the identity map on [0, 1] is denoted by id. The
following theorem is a consequence of Main Theorem of [6] and Theorem
1.1 of [5]. For 0 ≤ a ≤ b ≤ 1, we define a map φa,bγ : [a, b] → [a, b], γ = ±1,
by the following:

(2.1) φa,b1 (x) = x, φa,b−1(x) = a+ b− x, x ∈ [a, b].

The maps φa,b1 and φa,b−1 are the only isometries on [a, b]. When a = b, the
singleton {a} is called a degenerate interval. Observe φa,a1 = φa,a−1 .

Theorem 2.1. Let T : C1([0, 1]) → C1([0, 1]) be a surjective C-linear
isomorphism.

(1) ([6, Main Theorem]) Let D be a compact connected subset of
[0, 1]× [0, 1] such that p2(D) = [0, 1] and let p1(D) = [a, b], a (pos-
sibly degenerate) subinterval of [0, 1]. Consider the norm ∥ ·∥<D>
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defined by (1.3) and assume that T is a ∥ · ∥<D>-isometry. Then
we have the following.

(1-1) There exist constants κ ∈ T, γ ∈ {±1}, a continuous map
β : [0, 1] → T and a homeomorphism ψ : [0, 1] → [0, 1] such
that, for each f ∈ C1([0, 1]), we have

Tf(x) = κf(φabγ (a)) +

∫ x

a

β(y)f ′(ψ(y))dy, x ∈ [0, 1].

(1-2) If a < b, then we have β|[a, b] ≡ κγ and ψ|[a, b] = φa,bγ . If
moreover 0 = a < b < 1 or 0 < a < b = 1, then we have
γ = 1.

(1-3) Assume that p1(D) = [0, 1] so that a = 0, b = 1, and let
φγ = φ0,1

γ . Then there exist constants κ ∈ T and γ ∈ {±1}
such that

Tf(x) = κf(φγ(x)), f ∈ C1([0, 1]), x ∈ [0, 1].

(2) ([5, Theorem 1.1]) Assume that T is a ∥ · ∥[p]-isometry for p ∈
[1,∞]. If p > 1, assume further that T1 is a constant function.
Then there exist constants κ ∈ T and γ ∈ {±1} which represent
T as in the form of (1-3).

Remark 2.2. (1) If a = b in the statement (1) above, then the
isometries defined by (κ, 1, β, ψ) and (κ,−1, β, ψ) are identical.

(2) The statement (1-3) follows directly from (1-1) and (1-2). In fact,
under the hypothesis of (1-3), we see by (1-2) the maps β and ψ
of (1-1) satisfy β ≡ κγ and ψ = φγ . Then a simple integration in
(1-1) implies (1-3).

Let U(∥ · ∥)const be the subgroup of U(∥ · ∥) consisting of the C-linear
∥ · ∥-isometries T such that T1 is a constant function. The group of all
homeomorphisms of [0, 1] is denoted by Homeo([0, 1]) and Map([0, 1],T)
denotes the group of all continuous maps [0, 1] → T with pointwise mul-
tiplication. Recalling (1.5) and applying Theorem 2.1, we obtain the
following corollary.

Corollary 2.3. (1) U(∥ · ∥Σ) = U(∥ · ∥C) = U(∥ · ∥M )const ∼= T× Z2.
(2) U(∥ · ∥σ,a) ∼= T×Map([0, 1],T)×Homeo([0, 1]).

Remark 2.4. For two isometries Ti ∈ U(∥ · ∥σ,a), i = 1, 2, of the form

Tif(x) = κif(a) +

∫ x

a

βi(y)f
′(ψi(y))dy,
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where κi ∈ T, βi ∈ Map([0, 1],T), ψi ∈ Homeo([0, 1]), the composition
T2 ◦ T1 is given by the formula

(T2 ◦ T1)(f)(x) = κ2κ1f(a) +

∫ x

a

β2(y)β1(y)f
′((ψ1 ◦ ψ2)(y))dy

for f ∈ C1([0, 1]). This naturally gives us a group isomorphism between
U(∥ · ∥σ,a) and the direct product T×Map([0, 1],T)×Homeo([0, 1]). The
same remark applies to (1).

We perform continuous perturbations of isometries on the basis of The-
orem 2.1 and the next proposition. In order to simplify the notation, a
weighted composition operator T defined by Tf(x) = κf(φ(x)) (x ∈
[0, 1], f ∈ C1([0, 1])), for some scalar κ ∈ C and a map φ : [0, 1] → [0, 1]
is denoted by

Tf = κ · (f ◦ φ), f ∈ C1([0, 1]).

Also we introduce a function I(β, ψ, f ; a) on [0, 1] defined by

(2.2) I(β, ψ, f ; a)(x) =

∫ x

a

β(y)f ′(ψ(y))dy, x ∈ [0, 1],

where β ∈ Map([0, 1],T) and ψ ∈ Homeo([0, 1]). An operator T given by
Tf(x) = κf(φ(a)) + I(β, ψ, f ; a)(x) (f ∈ C1([0, 1]), x ∈ [0, 1]) is simply
denoted by

Tf = κf(φ(a)) + I(β, ψ, f ; a), f ∈ C1([0, 1]).

Also let D([0, 1]) be a space of compact connected subsets of [0, 1]× [0, 1]
defined by

D([0, 1]) = {D ⊂ [0, 1]2 | D is compact connected and p2(D) = [0, 1]}

with the Hausdorff distance. The spaces Homeo([0, 1]) and Map([0, 1],T)
are assumed to be equipped with the compact-open topology.

Proposition 2.5. Let d : (0, 1] → D([0, 1]) be a continuous map and let
p1(d(t)) = [at, bt]. Assume that limt→0 at = a, limt→0 bt = b and assume
that Tt is a ∥ · ∥<d(t)>-isometry of the form

Ttf = κtf(φ
at,bt
γt (at)) + I(βt, ψt, f ; at), f ∈ C1([0, 1]),

where κt ∈ T, βt ∈ Map([0, 1],T) and ψt ∈ Homeo([0, 1]).
(1) Assume that limt→0 γt = γ, limt→0 ψt = ψ, limt→0 βt = β for

some γ ∈ {±1}, a homeomorphism ψ ∈ Homeo([0, 1]), and a
continuous map β : [0, 1] → T. Then we have limt→0 Tt = T
where T is an operator of the form

Tf = κf(φa,bγ (a)) + I(β, ψ, f ; a), f ∈ C1([0, 1]).
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(2) Conversely assume that limt→0 Tt = T for some C-linear iso-
morphism T of the form of (1) for some κ ∈ T, γ ∈ {±1},
a continuous map β : [0, 1] → T and a homeomorphism ψ :
[0, 1] → [0, 1]. Then we have limt→0 ψt = ψ, limt→0 βt = β,
and limt→0 φ

at,bt
γt (at) = φa,bγ (a). If in particular a < b, then we

have limt→0 γt = γ.

Proof. (1). For each f ∈ C1([0, 1]), we have, from the assumption, that
limt→0 ∥Ttf − Tf∥∞ = 0 and limt→0 ∥(Ttf)′ − (Tf)′∥∞ = 0.

(2) For each f ∈ C1([0, 1]), we have from the assumption that

lim
t→0

∥Ttf − Tf∥∞ = 0, lim
t→0

∥(Ttf)′ − (Tf)′∥∞ = 0.

Applying the first equality to f = 1, we see limt→0 κt = κ. Next we apply
the second equality to

f = id and f(x) =
x2

2

to see limt→0 βt = β and limt→0 βt · ψt = β · ψ. These two imply
limt→0 ψt = ψ.

Noticing that γt = ±1, we may assume that limt→0 γt = γ∞. By the
above and (1), we see limt→0 Tt = T∞ where T∞ is the operator defined
by

T∞f = κf(φa,bγ∞(a)) + I(β, ψ, f ; a), f ∈ C1([0, 1]).

Hence we have f(φa,bγ∞(a)) = f(φa,bγ (a)) for each f ∈ C1([0, 1]), and thus
φa,bγ∞(a) = φa,bγ (a). If a < b, then this implies γ∞ = γ. If a = b, then
we have limt→0 φ

at,bt
t (at) = φa,aγ∞(a) = a = φa,aγ (a). This proves the

proposition. �

The next theorem Theorem 2.6 is the main result of this section. It
is an extension of what was proven in [6]. Let Homeo+1([0, 1]) (resp.
Homeo−1([0, 1])) be the set of all orientation-preserving (resp. orientation-
reversing) homeomorphisms of [0, 1]. For γ = ±1, let WCγ be the set of
all C-linear isomorphisms of the form:

Tf = κ · (f ◦ φγ), f ∈ C1([0, 1]),

for κ ∈ T and φγ ∈ Homeoγ([0, 1]), and let WC = WC+1∪WC−1. For γ =
±1 and a point c ∈ [0, 1], define Vγc be the set of C-linear isomorphisms
of the form

Tf = κf(c) + I(β, ψ, f ; c), f ∈ C1([0, 1]),

where β ∈ Map([0, 1],T) with β(c) = κγ, ψ ∈ Homeoγ([0, 1]) with ψ(c) =
c. Also let Vc = V+1

c ∪ V−1
c .
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Theorem 2.6. Let c ∈ [0, 1] and let d : [0, 1] → D([0, 1]) be a continuous
map such that

(a) d(0) = {c} × [0, 1], p1(d(1)) = [0, 1], and
(b) for each t ∈ (0, 1), p1(d(t)) is a non-degenerate interval such that

c ∈ p1(d(t)) ̸= [0, 1].
Let ∥ · ∥t = ∥ · ∥<d(t)> so that ∥ · ∥0 = ∥ · ∥σ,c. Then we have the following.

(1) Assume that p1(d(t)) ∩ {0, 1} = ∅ for each t ∈ (0, 1).
(1-1) If (Tt)0≤t≤1 is a continuous collection of isometries associ-

ated with d, then we have T0 ∈ Vc ⊂ U(∥ · ∥0).
(1-2) Conversely for each T ∈ Vc ⊂ U(∥ · ∥0), there exists a con-

tinuous collection (Tt)0≤t≤1 of isometries associated with d
such that T0 = T .

(1-3) Also, for each T ∈ U(∥ · ∥1), there exists a continuous col-
lection (Tt)0≤t≤1 of isometries associated with d such that
T1 = T .

(2) Assume that there is a τ ∈ (0, 1) such that p1(d(τ)) ∩ {0, 1} ̸= ∅.
(2-1) If (Tt)0≤t≤1 is a continuous collection of isometries associ-

ated with d, then T0 ∈ V+1
c and T1 ∈ WC+1.

(2-2) Conversely for each T ∈ V+1
c , there exists a continuous col-

lection (Tt)0≤t≤1 of isometries associated with d such that
T0 = T .

(2-3) Also for each T ∈ WC+1 ⊂ U(∥·∥1), there exists a continuous
collection (Tt)0≤t≤1 of isometries associated with d such that
T1 = T .

First we observe some direct consequences of Theorem 2.1.

Lemma 2.7. (1) Assume that a compact connected set D ∈ D([0, 1])
satisfies p1(D) = p2(D) = [0, 1]. Then we have

U(∥ · ∥<D>) = WC ∼= T× Z2.

(2) For each D ∈ D([0, 1]), we have the inclusion

WC+1 ⊂ U(∥ · ∥<D>).

(3) For each c ∈ [0, 1], we have the inclusion Vc ⊂ U(∥ · ∥σ,c).

We also need the following lemma. For γ ∈ {±1}, the isometry on [0, 1]
defined by (2.1) for a = 0, b = 1 is simply denoted by φγ : [0, 1] → [0, 1].

Lemma 2.8. Let a, b : [0, 1] → [0, 1] be two continuous maps such that
(a) a(t) ≤ b(t) and [a(t), b(t)] ̸= [0, 1] for each t ∈ [0, 1) and
(b) a(1) = 0, b(1) = 1.

Then we have the following.
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(1) For each homeomorphism ψ ∈ Homeo([0, 1]) such that
ψ|[a(0), b(0)] = φ

a(0),b(0)
γ , with γ = ±1, there exists a continuous

map (ψt)0≤t≤1 : [0, 1] → Homeo([0, 1]) such that

ψ0 = ψ, ψ1 = φγ , ψt|[a(t), b(t)] = φa(t),b(t)γ

for each t ∈ [0, 1].
(2) Assume that a(0) = b(0) := c. For each map β ∈ Map([0, 1],T),

there exists a continuous map (βt)0≤t≤1 : [0, 1] → Map([0, 1],T)
such that

β0 = β, β1 ≡ β(c), βt|[a(t), b(t)] ≡ β(c)

for each t ∈ [0, 1].

Proof. (1) Case 1. First we assume that the functions a and b satisfy the
following conditions:

(i) if a(0) = 0, then a(t) = 0 for each t ∈ [0, 1], and
(ii) if b(0) = 1, then b(t) = 1 for each t ∈ [0, 1].

Let ξt : [0, a(0)] → [0, a(t)] and ηt : [b(0), 1] → [b(t), 1] be the linear maps
such that ξt(0) = 0, ξt(a) = a(t) and ηt(b) = b(t), ηt(1) = 1. If a(0) = 0
(resp. b(0) = 1), then the assumption (i) (resp. (ii)) implies the interval
[0, a(t)] (resp. [b(0), 1]) reduces to a singleton {0} (resp. {1}).

Assume that γ = 1 so that ψ(0) = 0 and ψ(1) = 1. Define the map
ψt (0 ≤ t ≤ 1) by:

ψt(x) =

 (ξt ◦ ψ ◦ ξ−1
t )(x), 0 ≤ x ≤ a(t)

x, a(t) ≤ x ≤ b(t)
(ηt ◦ ψ ◦ η−1

t )(x), b(t) ≤ x ≤ 1

For γ = −1 for which we have ψ(0) = 1, ψ(1) = 0, we define ψt (0 ≤ t ≤ 1)
by

ψt(x) =


(ηt ◦ ψ ◦ ξt)(x), 0 ≤ x ≤ a(t)
a(t) + b(t)− x, a(t) ≤ x ≤ b(t)
(ξ−1
t ◦ ψ ◦ η−1

t )(x), b(t) ≤ x ≤ 1

Then (ψt)0≤t≤1 is the desired map.
Case 2. Suppose that a(0) = 0. Then by the assumption (a) we see

b(0) < 1. Since ψ is a homeomorphism on [0, 1] such that ψ([0, b(0)]) =
[0, b(0)], we see ψ(0) = 0 and ψ(b(0)) = b(0). Thus we have γ = 1. Let
a′ : [0, 1] → [0, 1] be the constant function a′ ≡ 0. Then a′ clearly satisfies
the condition (i) of Case 1 and also

(2.3) [a(t), b(t)] ⊂ [a′(t), b(t)].

Applying Case 1 to the functions a′ and b, we obtain a family (ψt)0≤t≤1

such that ψ0 = ψ,ψ1 = φ+1 and ψt|[0, b(t)] = φ
0,b(t)
+1 for each t ∈ [0, 1].
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Due to the inclusion (2.3) and γ = 1, we see that (ψt) is indeed the
desired family for the function a and b. The same argument applies when
b(0) = 1.

This proves (1).
(2) Let βt be the map defined by

βt(x) =

 β(x+ c− a(t)), 0 ≤ x ≤ a(t)
β(c), a(t) ≤ x ≤ b(t)
β(x+ c− b(t)), b(t) ≤ x ≤ 1

Then (βt)0≤t≤1 is the desired map. �

Proof. (of Theorem 2.6). Let p1(d(t)) = [at, bt]. By the hypotheses (a)
and (b), we have at ≤ c ≤ bt, at < bt and [at, bt] ̸= [0, 1] for each t ∈ (0, 1),
and also a0 = b0 = c, a1 = 0, b1 = 1.
(1) By the assumption we have 0 < at < bt < 1 for each t ∈ (0, 1).

(1-1) By Theorem 2.1, each Tt, t ∈ [0, 1) is of the form

Ttf = κtf(φγt(at)) + I(βt, ψt, f ; at), f ∈ C1([0, 1]),

for some γt = ±1, κt ∈ T, βt ∈ Map([0, 1],T) and ψt ∈ Homeoγt([0, 1])
such that

βt|[at, bt] = κtγt, ψt|[at, bt] = φat,btγt .

In particular we have

(2.4) βt(c) = κtγt.

Since at < bt for each t ∈ (0, 1), we see from the continuity of d and (2)
of Propsition 2.5 that the map (0, 1) → {±1}; t 7→ γt is locally constant,
and hence is a constant function. Let γt ≡ γ. Then by (2.4) βt(c) = κtγ.
Also by Proposition 2.5 (2) we see

lim
t→0

κt = κ0, lim
t→0

βt = β0, lim
t→0

ψt = ψ0.

Then β0(c) = κ0γ and ψ0(c) = limt→0 φ
at,bt
γt (c) = c. Thus we see T0 ∈ Vc.

(1-2) Let T ∈ Vc be an isometry of the form

Tf = κf(c) + I(β, ψ, f ; c), f ∈ C1([0, 1]),

with β ∈ Map([0, 1],T) with β(c) = κγ and ψ ∈ Home([0, 1]) with ψ(c) =
c. Apply Lemma 2.8 to the maps ψ and β with the functions a(t) :=
at, b(t) := bt, recalling [a(t), b(t)] ̸= [0, 1] for each t ∈ [0, 1). Then we
obtain (ψt)0≤t≤1 and (βt)0≤t≤1 as in the lemma. Let Tt be the operator
defined by

Ttf = κf(φγt(at)) + I(βt, ψt, f ; at), f ∈ C1([0, 1]).



NORMS AND ISOMETRY GROUPS ON C1- FUNCTION SPACES 179

By Theorem 2.1 and Proposition 2.5, we see Tt ∈ U(∥ · ∥<d(t)>) for each
t ∈ [0, 1] and (Tt)0≤t≤1 is a continuous collection of isometries associated
with d. Notice that T1 is written as

T1f = κf(φγ(0)) + I(κγ, φγ , f ; 0) = κ · (f ◦ φγ),

for f ∈ C1([0, 1]).
(1-3) Assume T ∈ U(∥ · ∥1) = WC (see Lemma 2.7(1)). If T ∈ WC+1,

then (2) of Lemma 2.7 implies T ∈ U(∥ · ∥t). Hence the conclusion follows
directly.

If T ∈ WC−1, then take an orientation reversing homeomorphism ψ ∈
Homeo−1([0, 1]) such that ψ(c) = c. It follows that c ̸= 0, 1 because ψ is
orientation-reversing. We apply Lemma 2.8(1) to find a family (ψt)0≤t≤1

of homeomorphisms. Then the operator Tt defined by

Ttf = κf(φt(at)) + I(−κ, ψt, f ; at), f ∈ C1([0, 1]),

forms a continuous collection of isometries so that, for each f ∈ C1([0, 1]),
we have

T1f(x) = κf(φ−1(0))+I(−κ, φ−1, f ; 0)(x) = κf(1−x) = Tf(x), x ∈ [0, 1]

as desired.

(2) Next we assume that p1(d(τ)) ∩ {0, 1} ≠ ∅ for some τ .
(2-1) Assume that each Tt, t ∈ (0, 1), is of the form

Ttf = κtf(φγt(at)) + I(βt, ψt, f ; at), f ∈ C1([0, 1])

and let

I+ = {t ∈ (0, 1) | ψt ∈ Homeo+1([0, 1])},
I− = {t ∈ (0, 1) | ψt ∈ Homeo−1([0, 1])}.

Since the map (0, 1) → Homeo([0, 1]), t 7→ ψt is continuous, both I+
and I− are closed in (0, 1). Note that 0 = aτ < bτ < 1 or 0 < aτ <
bτ = 1 by the assumption. By Theorem 2.1 we see γτ = 1 and thus
ψτ ∈ Homeo+1([0, 1]). Hence I+ = (0, 1). By the continuity we obtain ψ0

and ψ1 ∈ Homeo+1([0, 1]), which is to be proved.
(2-2) For each T ∈ V+1

c of the form

Tf = κf(c) + I(β, ψ, f ; c), f ∈ C1([0, 1]),

with β(c) = κ and ψ(c) = c, apply Lemma 2.8 to a(t) = at, b(t) = bt and
obtain (ψt) and (βt) satisfying the conditions of the lemma. Then the
operator

Ttf = κf(φγt(at)) + I(βt, ψt, f ; at), f ∈ C1([0, 1])

defines a continuous collection of isometries satisfying T0 = T .
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For T ∈ WC+1, we see from (2) of Lemma 2.7 that T ∈ U(∥ · ∥t). As
in (1-3) this is applied to prove (2-3). This completes the proof of the
theorem. �

We apply the above theorem to obtain information on perturbations
of isometry groups associated with the norms ∥ · ∥Σ, ∥ · ∥σ,c, and ∥ · ∥C .
Recall that ∆ denotes the diagonal set {(x, x) | x ∈ [0, 1]}.

Corollary 2.9. (1) Let d : [0, 1] → D be a continuous map such
that d(0) = ∆, d(1) = [0, 1] × [0, 1] and p1(d(t)) = [0, 1] for each
t ∈ [0, 1]. Then for each t ∈ [0, 1], we have the equality U(∥ · ∥t) =
U(∥ · ∥C) = WC for each t.

(2) Let e : [0, 1] → D be a map such that e(0) = {0} × [0, 1], e(1) =
[0, 1] × [0, 1] and p1(e(t)) is not a singleton for each t ∈ (0, 1] so
that ∥ · ∥σ,0 = ∥ · ∥<e(0)> and ∥ · ∥Σ = ∥ · ∥<e(1)>.

(2-1) If T ∈ V+1
0 , then there exists a continuous collection of

isometries (Tt)0≤t≤1 associated with e such that T0 = T and
T1 ∈ WC+1. While there is no such a collection if T ∈ V−1

0 .
(2-2) If S ∈ WC+1, then there exists a continuous collection of

isometries (St)0≤t≤1 associated with e such that S1 = S and
S0 ∈ V+1

0 . While there is no such a collection if S ∈ WC−1.

Proof. (1) follows directly from Theorem 2.1.
(2) Case 1. First assume that {0, 1} ∩ p1(e(τ)) ̸= ∅ for some τ ∈ (0, 1).

Applying Theorem 2.6 (2) we directly obtain the conclusion in (2-1) and
(2-2).

Case 2. Assume that p1(e(t)) ∩ {0, 1} = ∅ for each t ∈ (0, 1) and let
p1(e(t)) = [at, bt].

(2-1) Let (Tt) be a continuous collection of isometries such that each
Tt is an operator of the form

Ttf = κtf(at) + I(βt, ψt, f ; at), f ∈ C1([0, 1]),

where βt|[at, bt] ≡ κtγt, ψt([at, bt]) = [at, bt]. Since limt→0 at = limt→0 bt =
0, we obtain ψ0(0) = 0. Thus ψ0 ∈ Homeo+1([0, 1]) and we cannot have
such a collection if T0 ∈ V−1

0 .
If T0 ∈ V+1

0 , then we apply (2-2) of Theorem 2.6 to obtain the desired
collection. For each such collection (Tt), the condition (2-1) of Theorem
2.6 ensures that T1 ∈ WC+1.

(2-2) Assume St is an operator of the form

Stf = κtf(at) + I(βt, ψt, f ; at), f ∈ C1([0, 1]),
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where βt|[at, bt] ≡ κtγt, ψt([at, bt]) = [at, bt]. The same argument as in
(2-1) shows that ψ0 ∈ Homeo+1([0, 1]). The two sets

J+ = {t ∈ [0, 1] | ψt ∈ Homeo+1([0, 1])},
J− = {t ∈ [0, 1] | ψt ∈ Homeo−1([0, 1])}

are closed by the continuity of the map [0, 1] ∋ t 7→ ψt ∈ Homeo([0, 1]),
which implies that J+ = [0, 1] and in particular ψ1 is orientation-preserv-
ing. Thus S1 ∈ WC+1 and we cannot have such a collection of isometries
(St)0≤t≤1 with S1 ∈ WC−1. If S1 ∈ WC+1, then we apply (2-3) of
Theorem 2.6 to find the desired collection. By (2-1) of Theorem 2.6, we
see S0 ∈ V+1

0 for each such (St)0≤t≤1.
This proves the corollary. �

Let c : [1,∞] → N ([0, 1]) be the map defined by

c(p) = ∥ · ∥[p], p ∈ [1,∞].

As in Example 1.1, c is a continuous interpolation between the norms
∥ · ∥Σ and ∥ · ∥M . By Theorem 2.1 and Corollary 2.3 we have

U(∥ · ∥[p])const = U(∥ · ∥Σ) ∼= T× Z2.

Hence each T ∈ U(∥·∥Σ) defines the trivial continuous collection of isome-
tries associated with c. The full isometry group U(∥ · ∥M ) has not been
determined yet and the whole picture of the perturbation of these groups
remains unknown to the author.

3. Isometries on C1(T)

The goal of this section is to prove Theorem 3.1 and Theorem 3.2 which
together form a counterpart to Theorem 2.1. Throughout this section, the
constant function taking the value 1 is denoted by 1. The identity on T
is denoted by id. No confusion of these with those of Section 2 will be
caused. Also id : T → T stands for the map defined by id(z) = z̄, z ∈ T.
Notice that (id)′(z) = iz and (īd)′(z) = −iz̄.

Let D be a compact connected subset of T × T such that p2(D) = T
and let I = p1(D). We consider the norm defined in (1.3).

Theorem 3.1. Let T : C1(T) → C1(T) be a surjective C-linear ∥ · ∥<D>-
isometry. Assume either p1(D) = T, or T satisfies the condition:

(∗) T (id) and T (id) are C3-functions.
(1) Assume that I = {a}. Then there exist constants β, κ ∈ T and an

isometry φ : T → T such that

Tf(z) = βf(φ(z)) + (κf(a)− βf(φ(a))) , z ∈ T
for each f ∈ C1(T).
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(2) Assume that I is not a singleton. Then there exist a constant
κ ∈ T and an isometry φ : T → T such that φ(I) = I and

Tf(z) = κf(φ(z)), z ∈ T
for each f ∈ C1(T).

Theorem 3.2. Let T : C1(T) → C1(T) be a surjective C-linear ∥ · ∥[p]-
isometry. When p > 1, assume that T satisfies

(const) T1 is a constant function.
Then there exist a constant κ ∈ T and an isometry φ : T → T such that

Tf(z) = κf(φ(z)), z ∈ T
for each f ∈ C1(T).

In this section, for a norm ∥ · ∥ ∈ N (T), U(∥ · ∥) denotes the group
of all surjective C-linear ∥ · ∥-isometries of C1(T). Also let U(∥ · ∥)∗ and
U(∥ · ∥)const be the subgroups of U(∥ · ∥) consisting of all ∥ · ∥-isometries
satisfying the condition (∗) and the condition (const) respectively. The
group of all isometries on T is denoted by Isom(T). For a subset I of T,
let Isom(T; I) = {φ ∈ Isom(T) | φ(I) = I}. In particular Isom(T; {a}) is
simply denoted by Isom(T; a). Every isometry φ : T → T is written, by
some λ ∈ T and ϵ = ±1, as follows:

φ(z) = λzϵ, z ∈ T
where

zϵ =

{
z if ϵ = 1,
z̄ if ϵ = −1.

(3.1)

This implies
Isom(T) ∼= T× Z2

and
Isom(T; I) ∼= Z2.

for each nondegenerate interval I.

Corollary 3.3. (1) U(∥ · ∥Σ)∗ = U(∥ · ∥C)∗ = U(∥ · ∥M )const ∼= T ×
Isom(T).

(2) U(∥ · ∥σ,a)∗ ∼= T× T× Isom(T).
(3) For an interval I of T which is not a singleton, U(∥ · ∥<I×T>)

∗ ∼=
T× Isom(T; I).

The proof is divided into several steps. We make use of the extreme
point method ([1], [2], [3], [7], [9], [10], [11], [12] etc.). Following the line
of [6] and [5], we express isometries in question as the form of weighted
composition operators. Next we examine weights and homeomorphisms
that appear in the form to obtain the desired result.
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3.1. Isometries as weighted composition operators. As before let
∥ · ∥<D> be the norm defined by (1.3) for a compact connected subset D
of T× T with p2(D) = T and let I = p1(D).

Proposition 3.4. Let T be a ∥ · ∥<D>-isometry. Then there exist a
constant κ ∈ T, a continuous map β : T → T, homeomorphisms φ : I → I
and ψ : T → T such that

Tf(x) = κf(φ(x)), x ∈ I,(3.2)
(Tf)′(y) = β(y)f ′(ψ(y)), y ∈ T.(3.3)

The proof of Proposition 3.4 follows that of Main Theorem of [6] with a
slight modification. In [6] only the real-linearity is assumed, while we as-
sume here that all isometries involved are complex-linear. This additional
assumption considerably simplifies the argument. For completeness we
give most of the argument in our context. For convenience of reference
we will keep the notation of [6] as much as possible.

As in [6], the following elementary lemma will be used in what follows.

Lemma 3.5. ([6])
(1) Let p, q ∈ C. If |p+ λq| = 1 for each λ ∈ T, then we have pq = 0

and |p|2 + |q|2 = 1.
(2) For a, b ∈ C, we have maxz∈T |az + b| = |a|+ |b|. If ab ̸= 0, then

the maximum is attained uniquely at the point z = |a|b
a|b| .

For a compact connected subset D of T × T such that p2(D) = T,
let XD = D × T so that each point of XD is written as (r, s, z), where
(r, s) ∈ D and z ∈ T. For a function f ∈ C1(T), let f̃ ∈ C(XD) be the
function defined by

(3.4) f̃D(r, s, z) = f(r) + zf ′(s), (r, s, z) ∈ XD.

And let AD = {f̃D | f ∈ C1(T)}. It is a C-linear subspace of C(XD). As
in [6, Section 1] we have, by Lemma 3.5,

∥f̃D∥∞ = sup
(r,s,z)∈XD

|f(r) + zf ′(s)| = sup
(r,s)∈D

(|f(r)|+ |f ′(s)|) = ∥f∥<D>

for each f ∈ C1(T). Thus the map Λ : (C1(T), ∥ · ∥<D>) → (AD, ∥ · ∥∞)

defined by Λ(f) = f̃ is a C-linear isometry. Hence every C-linear ∥·∥<D>-
isometry T induces a C-linear ∥ · ∥∞-isometry S on AD given by S =
Λ ◦ T ◦ Λ−1.

Before proceeding, let us recall some terminologies. For a C-subspace
A of C(X) for a compact Hausdorff space X, the complex-dual space
of A with the operator norm is denoted by A∗ and the unit ball of A∗

is denoted by B(A∗). An extreme point of the ball B(A∗) is a point
ξ ∈ B(A∗) with the property that the equality ξ = η+ζ

2 with η, ζ ∈ B(A∗)
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implies η = ζ = ξ. The set of all extreme points of B(A∗) is denoted by
ext(A∗). By repeating the argument of [6, Lemma 1.6] by simply replacing
[0, 1] with T we obtain the next proposition. We omit the proof.

Proposition 3.6. (cf.[12, Lemma 3.1 and p.189]) Let Ω : XD × T →
ext(A∗

D) be the map defined by

Ω((r, s, z), λ) = λδ(r,s,z), (r, s, z) ∈ XD, λ ∈ T.
Then Ω is a homeomorphism with respect to the weak ∗-topology on
ext(A∗

D).

Throughout sections 3.1 and 3.2, we fix a C-linear ∥ · ∥<D>-isometry
T : C1(T) → C1(T). First consider the induced ∥ · ∥∞-isometry S =
Λ ◦ T ◦ Λ−1 : AD → AD and let S∗ : AD → AD be the dual operator. It
is a C-linear isometry with respect to the operator norm on A∗

D. Thus it
satisfies the equality S∗(ext(A∗

D)) = ext(A∗
D), and by Propostion 3.6 it

induces a homeomorphism Φ := Ω−1 ◦ S∗ ◦ Ω : XD × T → XD × T. The
restriction Φ| : XD × 1 : XD × 1 → XD × T is a continuous map written
as

Φ((r, s, z), 1) = ((φ(r, s, z), ψ(r, s, z), w(r, s, z)), α(r, s, z)) ,

where (φ(r, s, z), ψ(r, s, z), w(r, s, z)) ∈ D×T = XD and α(r, s, z) ∈ T. It
is convenient to write the above as,

(3.5) S∗(δ(r,s,z)) = α(r, s, z)δ(φ(r,s,z),ψ(r,s,z),w(r,s,z)),

which is translated in terms of the original isometry T as follows:

(3.6)
Tf(r) + z(Tf)′(s) =

α(r, s, z) {f(φ(r, s, z)) + w(r, s, z)f ′(ψ(r, s, z))} ,
f ∈ C1([0, 1]).

In what follows we simplify the above to obtain the desired conclusion.
First we note, by using the C-linearity of S∗, the following.

Lemma 3.7. The maps φ : XD → I, ψ : XD → T, w : XD → T
are continuous surjections. Also the map α̂ : XD × T → T, defined by
α̂(λ, (r, s, z)) := λα(r, s, z) is a continuous surjection.

Proof. By (3.5) and the C-linearity of the dual map, we have S∗(λδ(r,s,z)) =
λα(r, s, z)δ(φ(r,s,z),ψ(r,s,z),w(r,s,z)). Thus the homeomorphism Φ : XD ×
T → XD × T is written as

Φ((r, s, z), λ) = ((φ(r, s, z), ψ(r, s, z), w(r, s, z)), λα(r, s, z))

= ((φ(r, s, z), ψ(r, s, z), w(r, s, z)), α̂(λ, (r, s, z))) ,

which implies the conclusion. �
Lemma 3.8. For each (r, s, z1), (r, s, z2) ∈ XD, we have φ(r, s, z1) =
φ(r, s, z2) and ψ(r, s, z1) = ψ(r, s, z2).
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Proof. First we prove the following:
(♯) For each triple of distinct points z0, z1, z2 of T, two of
the values φ(r, s, z0), φ(r, s, z1), φ(r, s, z2) are equal.

If it is not the case, then there exists an f ∈ C1(T) such that

f(φ(r, s, z0)) = 1, f(φ(r, s, z1)) = f(φ(r, s, z2)) = 0, and
f ′(ψ(r, s, z0)) = f ′(ψ(r, s, z1)) = f ′(ψ(r, s, z2)) = 0.

By (3.6) we have

Tf(r) + z0(Tf)
′(s) = α(r, s, z0) ∈ T,

T f(r) + z1(Tf)
′(s) = Tf(r) + z2(Tf)

′(s) = 0.

Since z1 ̸= z2, the second equality implies Tf(r) = (Tf)′(s) = 0 which
contradicts the first. This proves (♯).

For two distinct points z1, z2 ∈ T and for each z ∈ T\{z1, z2}, we have
φ(r, s, z) ∈ {φ(r, s, z1), φ(r, s, z2)} by (♯). This and the connectedness of
T imply φ(r, s, z1) = φ(r, s, z2), which proves the conclusion for the map
φ.

A similar argument works to prove the statement on ψ. �

In view of the above lemma we write φ(r, s) := φ(r, s, z), ψ(r, s) :=
ψ(r, s, z) in (3.6).

Lemma 3.9. The function T1 is a constant function. Also α(r, s, z) is
equal to the function T1.

Proof. Recall p1(D) = I. The proof is divided into two cases.
Case 1. I is not a singleton.

Applying (3.6) to the constant function 1, we see that, for each (r, s, z) ∈
XD,

(3.7) (T1)(r) + z(T1)′(s) = α(r, s, z).

Fix an arbitrary point (r, s) ∈ D and observe the equality
|(T1)(r)+ z(T1)′(s)| = 1 for each z ∈ T. Lemma 3.5 (1) implies (T1)(r) ·
(T1)′(s) = 0 and |T1(r)|2 + |(T1)′(s)|2 = 1.

Let G = {(r, s) ∈ D | T1(r) = 0} and H = {(r, s) ∈ D | (T1)′(s) = 0}.
Then G and H are closed in D, mutually disjoint, and G ∪H = D. The
connectedness of D implies H = D or H = ∅. If H = ∅, then T1|I ≡ 0
and hence we have (T1)′|I ≡ 0. For a point r ∈ I with (r, s) ∈ D, we
have T1(r) = 0 = (T1)′(s), contradicting to |T1(r)|2 + |(T1)′(s)|2 = 1.
Therefore we have H = D and hence (T1)′ ≡ 0 and T1 is a constant
function. Applying (3.6) we see α(r, s, z) ≡ T1.

This proves the conclusion for Case 1.



186 KAZUHIRO KAWAMURA

Case 2. I = {a}. In this case D = {a} × [0, 1] and we have φ(a, s, z) ≡ a
for each (a, s, z) ∈ XD. The equation (3.6) reduces to

(3.8) Tf(a) + z(Tf)′(s) = α(a, s, z) {f(a) + w(a, s, z)f ′(ψ(a, s))} .

Applying the above to f = 1 and f = id respectively, we obtain

(3.9) T1(a) + z(T1)′(s) = α(a, s, z),

and

(3.10) (T (id))(a) + z(T (id))′(s)
= α(a, s, z){a+ iw(a, s, z)ψ(a, s)}.

We claim T1(a) ̸= 0. Suppose that T1(a) = 0. Then by the equality
(3.9), we have

(3.11) z(T1)′(s) = α(a, s, z).

Using this to the equality (3.10), we obtain

(3.12) iα(a, s, z)w(a, s, z)ψ(a, s) = T (id)(a)+ z(T (id))′(s)− az(T1)′(s).

By (3.12) and (3.11), we may rewrite (3.8) as follows:

Tf(a) + z(Tf)′(s)

= z(T1)′(s)f(a) + α(a, s, z)w(a, s, z)f ′(ψ(a, s))

= z(T1)′(s)f(a) +

+(iψ(a, s))−1f ′(ψ(a, s)) {T (id)(a) + z(T (id))′(s)− az(T1)′(s)} .
Thus we have, for each f ∈ C1([0, 1]),

iψ(a, s)Tf(a)− (T (id)(a))f ′(ψ(a, s))

= z
{
iψ(a, s)(T1)′(s)f(a)− iψ(a, s)(Tf)′(s) + (T (id))′(s)− a(T1)′(s)

}
.

Noticing that the right hand side (resp. the left hand side) of the above
is a linear term (resp. a constant term) with respect to z, we obtain

(3.13) (Tf)(a) = (iψ(a, s))
−1

(T (id)(a))f ′(ψ(a, s)).

Applying (3.13) to f(z) = z2, z ∈ T, we see
(3.14)

(Tf)(a) = (iψ(a, s))
−1

(T (id)(a)) · 2i(ψ(a, s))2 = 2T (id)(a)ψ(a, s).

As is mentioned in Lemma 3.7, ψ is surjective. Taking two points s±1 ∈ T
so that ψ(a, s±1) = ±1 and using (3.14), we conclude that T (id)(a) = 0.
By (3.13), we obtain Tf(a) = 0 for each f ∈ C1(T). This contradicts the
surjectivity of T . Therefore we obtain T1(a) ̸= 0.

The equality (3.9) with Lemma 3.5 again implies T1(a) · (T1)′(s) = 0.
Thus we have (T1)′ ≡ 0 and T1 is a constant function. Again by (3.9),
we obtain α(r, s, z) ≡ T1 and hence α is a constant function.
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This proves the conlusion in the second case and therefore completes
the proof of the lemma. �

Let α(r, s, z) ≡ T1 ≡ κ from the above lemma. In view of Lemma 3.9,
the formula (3.6) is reduced to

(3.15) Tf(r) + z(Tf)′(s) = κ {f(φ(r, s)) + w(r, s, z)f ′(ψ(r, s))}

for each (r, s, z) ∈ XD and for each f ∈ C1(T).

Lemma 3.10. (1) For each (r, s) ∈ D, we have T (id)(r) = κφ(r, s).
In particular φ(r, s) does not depend on s and we may write
φ(r) := φ(r, s) and obtain a map φ : I → I.

(2) We have w(r, s, z) = zw(r, s, 1) for each (r, s, z) ∈ XD and we
may write w(r, s) := w(r, s, 1).

Proof. (1) Fix (r0, s0) ∈ D arbitrarily and let g = id−φ(r0, s0). We have
g(φ(r0, s0)) = 0 and g′(z) = iz. Applying the above to g, we obtain

(3.16) Tg(r0) + z(Tg)′(s0) = κw(r0, s0, z)iψ(r0, s0)

and in particular |Tg(r0) + z(Tg)′(s0)| = 1 for each z ∈ T. By Lemma
3.5 (1), we have Tg(r0) · (Tg)′(s0) = 0 and |Tg(r0)|2 + |(Tg)′(s0)|2 = 1.

Suppose that (Tg)′(s0) = 0. Then Tg(r0) = iκ · w(r0, s0, z)ψ(r0, s0)
and w(r0, s0, z) does not depend on z. Let w0 = w(r0, s0, z) for simplicity.
By the surjectivity of T , we may take an h ∈ C1([0, 1]) so that Th is a
real-valued function and

Th(r0) = 0 and (Th)′(s0) = 1.

Applying (3.15) to h, we have

z = z(Th)′(s0) = κ {h(φ(r0, s0)) + w0h
′(ψ(r0, s0))} .

The last term of the above does not depend on z, a contradiction. There-
fore we have (Tg)′(s0) ̸= 0 and hence Tg(r0) = 0.

By the C-linearity of T we have

0 = Tg(r0) = T (id)(r0)− φ(r0, s0)T (1)(r0) = T (id)(r0)− κφ(r0, s0).

Since (r0, s0) is an arbitrary point of D, we obtain T (id)(r) = κφ(r, s) and
the map φ(r, s) does not depend on s. Thus we may write φ(r) := φ(r, s).
Then we have

(3.17) T (id)(r) = κφ(r)

for each r ∈ I.
In order to prove (2), we start with

T (id)(r) + z(T (id))′(s) = κ {φ(r) + w(r, s, z)iψ(r, s)} .
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We use (3.17) to obtain

z(T (id))′(s) = iκ · w(r, s, z)ψ(r, s).
Thus

z =
z(T (id))′(s)

(T (id))′(s)
=
w(r, s, z)

w(r, s, 1)

which implies w(r, s, z) = zw(r, s, 1). This proves the lemma. �

Let us write w(r, s) := w(r, s, 1). Summing up these together, the
equality (3.6) is reduced to the following:

(3.18) Tf(r) + z(Tf)′(s) = κ {f(φ(r)) + zw(r, s)f ′(ψ(r, s))} .
Comparing the z-linear and z-constant terms of the above, we obtain the
following.

Tf(r) = κf(φ(r)), r ∈ I,(3.19)
(Tf)′(s) = κw(r, s)f ′(ψ(r, s)), s ∈ T.(3.20)

Now we finish the proof of Proposition 3.4.

Proof. (of Proposition 3.4) The equality (3.2) is exactly (3.19). It remains
to show that the map w and ψ do not depend on r.

Suppose that ψ(r1, s) ̸= ψ(r2, s) for some r1, r2 ∈ I. We can choose
f ∈ C1(T) such that f ′(ψ(r1, s)) = 0 ̸= f ′(ψ(r2, s)). Then by (3.20)

0 = w(r1, s)f
′(ψ(r1, s)) = (Tf)′(s) = w(r2, s)f

′(ψ(r2, s)) ̸= 0,

a contradiction. Thus ψ(r, s) does not depend on r and we write ψ(s) :=
ψ(r, s). Again by (3.20) we have

(T (id))′(s) = iκw(r, s)ψ(s).

Thus w(r, s) does not depend on r either and we write w(s) := w(r, s).
Defining a map β by β(s) = κw(s) and combining it with (3.20), we
obtain (3.3).

This completes the proof of Proposition 3.4. �

3.2. Proof of Theorem 3.1. Let T : C1(T) → C1(T) be a C-linear
∥ · ∥<D>-isometry and apply Propostion 3.4 to find a constant κ ∈ T, a
continuous map β : T → T, homeomorphisms φ : I → I and ψ : T → T
such that

Tf(x) = κf(φ(x)), x ∈ I,(3.21)
(Tf)′(y) = β(y)f ′(ψ(y)), y ∈ T.(3.22)

In order to prove Theorem 3.1, we examine the map and homeomorphisms
above.
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Here we recall some basics on the topology of T. As before π : R → T
denotes the covering map defined by π(t) = exp(2πit). For a map ϕ : T →
T, let ϕ̄ : R → R be a lift of ϕ, that is, a map satisfying π◦ϕ̄ = ϕ◦π. For two
lifts ϕ1, ϕ2 of ϕ, there exists an integer m ∈ Z such that ϕ1(t)−ϕ2(t) = m
for each t ∈ R. The degree deg(ϕ) ∈ Z of a map ϕ : T → T is the
unique integer γϕ satisfying ϕ̄(t+ 1) = ϕ̄(t) + γϕ for each t ∈ R. If ϕ is a
homeomorphism, then γϕ = ±1. If ϕ is further an isometry, then we have
dϕ̄
dt ≡ γϕ. If two maps ϕ1, ϕ2 : T → T are homotopic, in particular if they
are sufficiently close, then we have deg(ϕ1) = deg(ϕ2).

Lemma 3.11. Assume that I is not a singleton. Then φ : I → I is an
isometry and ψ|I = φ. Also β|I is a constant function.

Proof. Fix arbitrarily a lift φ̄ : R → R of φ. For f ∈ C1(T), let f̄ = f ◦π.
Fix an interior point e2πiθ of I. By differentiating (3.21) we obtain

(Tf)′(e2πiθ) =
d

dt

∣∣∣
t=θ

Tf(π(t)) =
d

dt

∣∣∣
t=θ

κf(φ(π(t)))

= κ
d

dt

∣∣∣
t=θ

f̄(φ̄(t)) = κ
dφ̄

dt

∣∣∣
t=θ

· df̄
ds

∣∣∣
s=φ̄(θ)

= κ
dφ̄

dt
(θ)f ′(φ(e2πθ)).

Comparing the above with (3.22) and using the continuity of the functions
involved, we see the equality

(3.23) κ
dφ̄

dt
(θ)f ′(φ(x)) = β(x)f ′(ψ(x))

holds for each x = e2πiθ ∈ I and for each f ∈ C1(T). If φ(z) ̸= ψ(z)
for some z ∈ I, take a C1-function f such that f ′(φ(z)) = 0 ̸= f ′(ψ(z)).
This contradicts (3.23) and hence we have ψ|I = φ. We then have, again
by (3.23),

β(e2πiθ) = κ
dφ̄

dt
(θ)

for each θ. Since |β(x)| = 1 for each x ∈ I and since dφ̄
dt is a real number,

we have dφ̄
dt ≡ γ, a real constant. Thus φ̄(t) = γt + constant. Since φ is

a homeomorphism, we obtain γ = ±1 and thus φ is an isometry. Also
β(z) = κγ for each z ∈ I and hence β|I ≡ κγ. �

The above lemma proves Theorem 3.1 when p1(D) = T. For the proof
in the case p1(D) ̸= T, we use the hypothesis (∗) to proceed as below.
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Lemma 3.12. Let ψ : T → T be a C2-diffeomorphism and let β : T → T
be a C1-map such that, for each C1-function f ∈ C1(T), there exists a
C1-function F ∈ C1(T) such that

F ′(z) = β(z)f ′(ψ(z)), z ∈ T.

Then β is a constant map and ψ is an isometry.

Proof. Fix a lift ψ̄ : R → R of ψ. Take an arbitrary f ∈ C1([0, 1]) and let
f̄ = f ◦ π, β̄ = β ◦ π. For the function F as in the assumption and for
each z = e2πiθ ∈ T we have

d

dt

∣∣∣
t=θ

F̄ (t) = 2πF ′(z) = 2πβ(z)f ′(ψ(z))

= β̄(θ)
d

dt

∣∣∣
t=ψ̄(θ)

f̄(t),

hence,

(3.24)
d

dt
F̄ (t) = β̄(t)

df̄

dt
(ψ̄(t)).

Since ψ is a diffeomorphism, we notice that ˙̄ψ(t) := d
dt ψ̄(t) ̸= 0 for each

t. Integrating (3.24) and applying integration by parts, we see

0 = F̄ (1)− F̄ (0) =

∫ 1

0

β̄(t)
df̄

dt
(ψ̄(t))dt

=

[(
β̄(t)
˙̄ψ(t)

)
· f̄(ψ̄(t))

]1
0

−
∫ 1

0

d

dt

{
β̄(t)
˙̄ψ(t)

}
(f̄ ◦ ψ̄)(t)

= −
∫ 1

0

d

dt

{
β̄(t)
˙̄ψ(t)

}
(f̄ ◦ ψ̄)(t)dt

for each f ∈ C1(T). For the last equality we use the equality ψ̄(1) =

ψ̄(0) ± 1 and ˙̄ψ(0) = ˙̄ψ(1) and use also that β̄ and f̄ are both periodic
functions of period 1. Every g ∈ C1(T) is written as g = f ◦ ψ and,
for ḡ = g ◦ π, we have ḡ = f̄ ◦ ψ̄. Hence for each C1-periodic function
h : R → C of period 1, we have:∫ 1

0

d

dt

{
β̄(t)
˙̄ψ(t)

}
h(t)dt = 0.

Therefore the function β̄(t)/ ˙̄ψ(t) is a constant function. Let β̄(t) = c ˙̄ψ(t)
for some constant c. Since ψ̄(t) is a real-valued function and |β̄(t)| ≡ 1, we
see that ˙̄ψ(t) is constant and let ˙̄ψ(t) ≡ γ. Then we have ψ̄(t) = γt+const,
and the equality ψ̄(t + 1) = ψ̄(t) ± 1 implies γ = ±1. Therefore ψ is an
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isometry and the map β is given by β(z) ≡ cγ, a constant function. This
proves the lemma. �
Lemma 3.13. Let ψ : T → T be an isometry and let γ = degψ ∈ {±1}.
Assume that C1-functions F and f ∈ C1(T) satisfy

F ′(x) = βf ′(ψ(x)), x ∈ T.
Then we have, for an arbitrarily fixed a ∈ T,

F (x) = βγf(ψ(x)) + (F (a)− βγψ(a)), x ∈ T.

Proof. For F̄ = F ◦ π, we have, by dψ̄
dt ≡ γ

d

dt
F̄ (t) = βγ

d

dt
(f̄ ◦ ψ̄)(t).

Then the conlusion follows. �
We are ready to prove Theorem 3.1.

Proof. (of Theorem 3.1) Let T : C1(T) → C1(T) be a ∥ · ∥<D>-isometry.
If p1(D) = T, then as mentioned eariler, we already have a proof via
Lemma 3.11. If it is not the case, T satisfies the condition (∗). By
Proposition 3.4, we have a constant κ ∈ T, a continuous map β : T → T,
and homeomorphisms φ : I → I and ψ : T → T such that

Tf(x) = κf(φ(x)), x ∈ I,(3.25)
(Tf)′(y) = β(x)f ′(ψ(y)), y ∈ T(3.26)

for each f ∈ C1(T). Observe

(3.27) (T (id))′(z) = iβ(z)ψ(z), (T (id))′(z) = −iβ(z)ψ(z).
Noticing |ψ(z)| = 1, we have

β(z)2 = (T (id))′(z)(T (id))′(z).

Thus β is a branch of the square-root function
{
(T (id))′(z)(T (id))′(z)

}1/2
.

By the hypothesis (∗) we see that the function (T (id))′ ·(T (id))′ is of class
C2. Since β(z) ̸= 0 for each z ∈ T, we see that β is a C2-map. From the
first equality of (3.27) we see that ψ is a C2-map as well.

Lemma 3.12 applies to conclude that β is a constant function and ψ is
an isometry. Let γ = degψ ∈ {±1}. Fix a point a ∈ I. By Lemma 3.13,
for each f ∈ C1(T), Tf is written as

(3.28) Tf(x) = βγf(ψ(x)) + {Tf(a)− βγ(f(ψ(a)))} , x ∈ I.

Case 1. I = {a}. By (3.25) we have Tf(a) = κf(a). Substituting
Tf(a) by κf(a) in (3.28) and re-defining β := βκ, we obtain the required
formula.



192 KAZUHIRO KAWAMURA

Case 2. I ̸= {a}. By (3.25) we have Tf(a) = κφ(a). By Lemma 3.11
we see φ = ψ|I and β = κγ. Then κf(φ(a)) − βγ(f(ψ(a))) = 0 for each
f ∈ C1(T). Using this in (3.28) we obtain the conclusion. �

3.3. Proof of Theorem 3.2. Theorem 3.2 is proved just in the same
way that Theorem 2.1 (2) is derived from the Main Theorem in [5] (cf.
[4, Example 3.7]).

Proof. (of Theorem 3.2) First we identify C with the 2-dimensional real
vector space R2 consisting of column vectors. The multiplication of a
complex number of modulus 1 on C corresponds to the left action of a
2 × 2 matrix ∈ SO(2), the special orthogonal group, on R2. Below O(2)
denotes the orthogonal group.

Using the above identification, we identify the space C1(T) with
C1(T,R2), the space of R2-valued C1-functions on T with the C1-topology.
The same formula as that of (1.2) is used to define the derivative of f .
Let C(T,R2) be the space of all continous R2-valued functions on T with
the sup norm and let D : C1(T,R2) → C(T,R2) be the operator defined
Df = f ′, f ∈ C1(T,R2).

Now let T : C1(T) → C1(T) be a surjective C-linear ∥ · ∥[p]-isometry.
By the above identification, T is regarded as a SO(2)-equivariant R-linear
∥ · ∥[p]-isometry T̂ : C1(T,R2) → C1(T,R2). As in the proof of Theorem
2.1 (2) we may apply the Main Theorem of [5] to find homeomorphisms
φ,ψ : T → T and continuous maps U, V : T → O(2) such that

T̂ f(z) = U(z)f(φ(z)),(3.29)

(T̂ f)′(z) = V (z)f ′(ψ(z)),(3.30)

for each f ∈ C1(T,R2) and for each z ∈ T. By the hypothesis (const),
T preserves the constant R2-valued functions and we see from this that
U is a constant map taking a constant matrix U∗ ∈ O(2) as its value. By
the SO(2) equivariance of T̂ with (3.29) we see U∗ commutes with every
element of SO(2) and hence it is in SO(2). Similarly we have from (3.30),
V (z) ∈ SO(2). Transforming (3.29) and (3.30) to the original isometry
T , we obtain a constant κ ∈ T and a continuous map β : T → T such that

Tf(z) = κf(φ(z)), z ∈ T,(3.31)
(Tf)′(z) = β(z)f ′(ψ(z)), z ∈ T(3.32)

for each f ∈ C1(T). Now exacly the same proof as that of Lemma 3.11
works to completes the proof. �

Remark 3.14. We may apply the above argument to prove Theorem 3.1
when D∩{(z, z) | z ∈ T} has no interior points. This restriction is caused
by the applicability of the Main Theorem of [5].
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4. Perturbations of isometry groups of C1(T)

As a counterpart to Theorem 2.6, we make use of Theorem 3.1 to study
perturbations of isometry groups associated with norms on C1(T). The
space of all compact connected subsets D of T×T such that p2(D) = T is
denoted by D(T). As in Section 2, the space is endowed with the Hausdorff
metric. The group Isom(T) of all isometries of T is assumed to have the
compact-open topology. As in Section 2, an operator T ∈ GL(C1(T)) of
the form Tf(z) = βf(φ(z)) for a scalar β ∈ T and a map φ : T → T is
denoted by

Tf = β · (f ◦ φ), f ∈ C1(T).
Also for a point c ∈ T, let

WCIsom = {T ∈ GL(C1(T)) | Tf = β · (f ◦ ψ) ∀f ∈ C1(T),
for some β ∈ T, ψ ∈ Isom(T)}

WCIsom,c = {T ∈ WCIsom | Tf = β · (f ◦ ψ) ∀f ∈ C1(T),
for some β ∈ T, ψ ∈ Isom(T) with ψ(c) = c}.

We start with the following observation.

Lemma 4.1. Let (Tt)0≤t≤1 be a collection of operators in WCIsom of the
form

Ttf = βt · (f ◦ ψt), f ∈ C1(T).
Then limt→0 Tt = T0 if and only if limt→0 βt = β0 and limt→0 ψt = ψ0.

Proof. Recall that, ifφ1, φ2 : T → T are sufficiently close, then the degrees
of φ1 and φ2 coincide. It follows from this that, if lim→0 βt = β0 and
limt→0 ψt = ψ0, then we have limt→0 Ttf = T0f and limt→0(Ttf)

′ =
(T0f)

′ for each f ∈ C1(T). That is, limt→0 Tt = T0.
Conversely if limt→0 Tt = T0, then applying the convergence

limt→0 Ttf = T0f and limt→0(Ttf)
′ = (T0f)

′ to f1 = 1 and f2 = id
respectively, we have limt→0 βt = β0 and limt→0(iβtψt) = iβ0ψ0. From
these two, we obtain limt→0 ψt = ψ0. �

The following is the main result of this section which is a counterpart
to Theorem 2.6 for the space C1(T). For a compact connected subset
D ∈ D(T), Theorem 3.1 states that each C-linear ∥ · ∥<D>-isometry T :
C1(T) → C1(T) must be of the form

(4.1) Tf(z) =

{
βf(φ(z)) + {κf(c)− βf(φ(c))}, if p1(D) = {c}
βf(φ(z)), if p1(D) is not a singleton

where β, κ ∈ T and φ ∈ Isom(T).

Theorem 4.2. Let d : [−1, 1] → D(T) be a continuous map and let
I(t) = p1(d(t)). Assume that
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(a) for each t ∈ [−1, 0], I(t) = {at}, a singleton.
(b) for each t ∈ (0, 1), I(t) is not a singleton, I(t) ̸= I and I(1) = T.

Under the notation of (4.1), we have the following.
(1) For each τ ∈ [−1, 0) we have limt→τ (βt, κt, φt) = (βτ , κτ , φτ ).
(2) For each τ ∈ (0, 1] we have limt→τ (βt, φt) = (βτ , φτ ).
(3) β0 = κ0, φ0(a0) = a0 and limt→0(βt, φt, at) = (κ0, φ0, a0). In

particular T0 ∈ WCIsom.
(4) Let J(t) = T \ I(t) and let {m} = limt→1 J(t) be the limit with

respect to the Hausdorff metric. Then ψ1(m) = m and thus we
have ψ1 = id or ψ1(z) = m2z̄, z ∈ T.

Proof. The statement (2) is a consequence of Lemma 4.1. We prove (1),
(3) and (4) below.

(1) We have

lim
t→τ

∥Ttf − Tτf∥∞ = 0,(4.2)

lim
t→τ

∥(Ttf)′ − (Tτf)
′∥∞ = 0,(4.3)

for each f ∈ C1(T). Applying (4.2) to f = 1, we obtain limt→τ κt = κτ .
Notice that (Ttf)

′(z) = βtγtf
′(φt(z)), where γt = degφt. Hence (4.3)

reduces to

(4.4) lim
t→τ

βtγt · (f ′ ◦ φt) = βτγτ · (f ′ ◦ φτ ), f ∈ C1(T).

Applying (4.4) to g1 = id by noticing g′1(z) = iz, we obtain the equality
limt→τ βtγt · φt = βτγτ · φτ . Note that deg(βtγt · φt) = deg(φt) = γt and
the same applies to deg(βτ · φτ ). Hence we have

(4.5) γt = γτ

for t sufficiently close to τ . Thus we see

(4.6) lim
t→τ

βt · φt = βτ · φτ .

Apply (4.4) to g2(z) = z2 by noticing g′2(z) = 2iz2. By (4.5) we have

(4.7) lim
t→τ

βt · (φt)2 = βτ · (φτ )2.

Using (4.7) with (4.6) we obtain limt→τ φt = φτ . Then again by (4.6) we
conclude limt→τ βt = βτ . This proves (1).

(3) We have

lim
t↓0

∥Ttf − T0f∥∞ = 0,(4.8)

lim
t↓0

∥(Ttf)′ − (T0f)
′∥∞ = 0,(4.9)
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for each f ∈ C1(T). Applying (4.8) to f = 1 we have limt↓0 βt = κ0.
Applying (4.8) to f = id and evaluating at a0, we have limt↓0 βt ·φt(a0) =
κ0a0. Combining these two we have

(4.10) lim
t↓0

φt(a0) = a0.

Let γt = degφt. As in (1) we have limt↓0 βtγt · (f ′ ◦φt) = β0γ0 · (f ′ ◦φ0).
Using this to g1 and g2 of (1) we have

(4.11) lim
t↓0

βtγt · (φt) = β0γ0 · (φ0), lim
t↓0

βtγt · (φt)2 = β0γ0 · (φ0)
2.

From the first equality, we conclude limt↓0 γt = γ0. As in (1) we conclude
from (4.11)

(4.12) lim
t↓0

φt = φ0, lim
t↓0

βt = β0.

Thus we have κ0 = limt↓0 βt = β0. Also we have from (4.10) and (4.12)
that a0 = limt↓0 φt(a0) = φ0(a0).

(4). For each t ∈ [0, 1) we have ψt(Jt) = Jt. Then by (2) we have
ψ1(m) = limt→1 ψt(J(t)) = m. The last statement is a direct consequence
on a general fact on isometries on T.

This completes the proof. �
Corollary 4.3. Let d : [−1, 1] → D(T) be a continuous map satisfying
the conditions (a),(b) of Theorem 4.2 and let ∥ · ∥t = ∥ · ∥<d(t)>. Let
{m} = limt→1 T \ I(t) be the limit with respect to the Hausdorff metric.

(1)(1-1) WCIsom ⊂ U(∥ · ∥t) for each t ∈ [−1, 1].
(1-2) For each t ∈ [0, 1], we have the equality WCIsom = U(∥ · ∥t).

(2) If (Tt)0≤t≤1 is a continuous collection of isometries, then T0 ∈
WCIsom and T1 ∈ WCIsom,m.

(3) For each T ∈ U(∥ · ∥−1), there exists a continuous collection
(Tt)−1≤t≤1 of isometries associated with d such that T−1 = T .

Proof. It remains to verify (3). Let a = a−1 and take T ∈ U(∥ · ∥−1)
which is of the form

Tf(z) = βf(φ(z)) + (κf(a)− βf(φ(a)))

for some β, κ ∈ T and φ ∈ Iso(T). We can find continuous maps [0, 1] →
T; t 7→ βt and [0, 1] → Isom(T); t 7→ φt such that

(1) β−1 = β, β0 = κ
(2) φ−1 = φ,φ0(a0) = a0.

Then Ttf(z) = βtf(φt(z)) + (κf(a)− βtf(φt(a))) defines a continuous
collection of isometries (Tt)−1≤t≤0 associated with d|[−1, 0] such that
T−1 = T and T0 ∈ WCIsom. Then by defining Tt ≡ T0, 0 ≤ t ≤ 1,
we obtain a continuous collection (Tt)−1≤t≤1 of isometries associated
with d. �
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The situation on the interpolation between the norms ∥ · ∥Σ and ∥ · ∥M
is exactly the same as that for the interval. The map

c : [1,∞] → N (T), c(p) = ∥ · ∥[p], p ∈ [1,∞],

defines a continuous interpolation between these norms. Theorem 3.1 and
Theorem 3.2 yield the equality U(∥·∥[p])const = U(∥·∥Σ) ∼= T×T×Z2. Thus
each T ∈ U(∥ · ∥Σ) defines the trivial continuous collection of isometries
associated with c. The full isometry group U(∥ · ∥M ) and its behavior on
the perturbation above is not known to the author.

Acknowledgment. The author expresses his sincere appreciation to the
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