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PERSPECTIVES ON KUPERBERG FLOWS

STEVEN HURDER AND ANA RECHTMAN

Dedicated to Professor Krystyna Kuperberg on the occasion of her 70th birthday

Abstract. The “Seifert Conjecture” stated, “Every non-singular
vector field on the 3-sphere S3 has a periodic orbit”. In a cele-
brated work, Krystyna Kuperberg gave a construction of a smooth
aperiodic vector field on a plug, which is then used to construct
counter-examples to the Seifert Conjecture for smooth flows on the
3-sphere, and on compact 3-manifolds in general. The dynamics of
the flows in these plugs have been extensively studied, with more
precise results known in special “generic” cases of the construc-
tion. Moreover, the dynamical properties of smooth perturbations
of Kuperberg’s construction have been considered. In this work,
we recall some of the results obtained to date for the Kuperberg
flows and their perturbations. Then the main point of this work is
to focus attention on how the known results for Kuperberg flows
depend on the assumptions imposed on the flows, and to discuss
some of the many interesting questions and problems that remain
open about their dynamical and ergodic properties.

1. Introduction

In his 1950 work [59], Seifert introduced an invariant for deformations
of non-singular flows with a closed orbit on a 3-manifold, which he used
to show that every sufficiently small deformation of the Hopf flow on the
3-sphere S3 must have a closed orbit. He also remarked in Section 5 of
this work:

It is unknown if every continuous (non-singular) vector
field on the three-dimensional sphere contains a closed
integral curve.
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This remark became the basis for what is known as the “Seifert Conjec-
ture”:

Every non-singular vector field on the 3-sphere S3 has a
periodic orbit.

The Séminaire Bourbaki article [22] by Ghys discusses the background
and obstacles to the construction of aperiodic flows in 3-dimensions. We
recall some of the key developments.

In his 1966 work [67], and see also [53], Wilson showed that every closed
3-manifoldM has a flow with only finitely many closed orbits. The Seifert
Conjecture was thus reduced to showing that given a flow on a 3-manifold
with only a finite number of periodic orbits, it can be modified to one with
no periodic orbits.

Wilson introduced the notion of a “plug” for a flow on M , which is
a neighborhood P ⊂ M diffeomorphic to a disk cross an interval, P ∼=
D2 × [−1, 1], where orbits enter one end of the plug, ∂−P = D2 × {−1},
and exit the other end, ∂+P = D2×{+1}. Wilson showed how to modify
the flow inside a plug so that it contains exactly two closed orbits. These
Wilson plugs are used to modify a given non-singular flow on a closed
3-manifold, to obtain one with only isolated periodic orbits.

In his 1974 work [58], Schweitzer gave a modification of the construc-
tion of the Wilson plug, replacing the periodic orbits in the plug with
invariant Denjoy-type minimal sets for the modified flow in the plug, to
obtain a C1-flow with no periodic orbits. He used this plug to show that
there exists a non-singular C1-vector field without periodic orbits on any
closed orientable 3-manifold M . In her 1988 work [26], Harrison gave a
modification of the construction of the Schweitzer plug, which yielded an
aperiodic plug with a C2-flow.

The Seifert Conjecture was settled for all degrees of smoothness by
Krystyna Kuperberg in 1994:

Theorem 1.1 (Kuperberg [39]). On every closed oriented 3-manifold M ,
there exists a C∞ non-vanishing vector field without periodic orbits.

Kuperberg introduced a construction of aperiodic 3-dimensional plugs
which was notable for its simplicity and beauty, and remains the only
general method to date to construct C∞-flows without periodic orbits.

Following Kuperberg’s original work, there was a sequence of three
works explaining in further detail the dynamical properties for the
Kuperberg flows:

• the Séminaire Bourbaki lecture [22] by Étienne Ghys;
• the notes by Shigenori Matsumoto [45];
• the joint paper [40] by Greg and Krystyna Kuperberg.
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Also, a brief overview of the construction was given in [42]. These works
showed that a Kuperberg flow:

• has zero topological entropy, which follows by an observation of
Ghys in [22] that an aperiodic flow on a 3-manifold has topological
entropy equal to zero, as a consequence of a result of Katok in
[36];

• has a unique minimal set Σ, whose topological structure is un-
known in general;

• has an open set of non-recurrent points that limit on its minimal
set Σ, a result of Matsumoto [45];

• preserves a 2-dimensional compact lamination M with boundary,
that is contained in the interior of the plug and contains the min-
imal set Σ.

The two minimal sets for the Wilson flow are each a closed circle, and
the two minimal sets for the Schweitzer plug are each homeomorphic to a
Denjoy minimal set in the 2-torus. In contrast, the topological type of the
unique minimal set Σ for a Kuperberg flow is extraordinarily complicated,
and requires further study.

Moreover, there are many choices made in the construction of the flows
in the Kuperberg plugs, any of which may strongly influence their global
dynamics. In his survey [22, page 302], Ghys wrote:

Par ailleurs, on peut construire beaucoup de pièges de
Kuperberg et il n’est pas clair qu’ils aient le même dy-
namique.

One of the goals of this paper is to bring into focus some of the dynam-
ical properties of Kuperberg flows which depend on imposing additional
hypotheses in their construction. For example, the monograph [29] intro-
duced the notion of a generic Kuperberg plug, as recalled in Section 4
below. It was shown in [29] that for a generic Kuperberg flow, the minimal
set Σ is equal to the lamination M. A detailed analysis of the dynamical
and topological structure of M was used to give a geometric proof that
the topological entropy of the generic Kuperberg flow is zero, and also to
show that M has unstable shape.

The statement by Seifert quoted above can be given alternate inter-
pretations as well. For example, one is to find conditions on a smooth
flow on a closed 3-manifold which guarantees the existence of a periodic
orbit. It has been shown by Hofer in [27], that the flow of a Reeb vector
field on S3 must have a periodic orbit. More generally, Taubes showed in
[63] that the flow of a Reeb vector field on a closed 3-manifold has peri-
odic orbits. This theorem was extended to geodesible volume preserving
flows (also known as Reeb vector field of stable hamiltonian structures)
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to manifolds that are not torus bundles over the circle by Hutchings and
Taubes [33, 34], and Rechtman [49], and for real analytic geodesible flows
by Rechtman [57]. The existence of a periodic orbit is also established
for real analytic solutions of the Euler equation by Etnyre and Ghrist
[17]. Frankel proved that quasi-geodesic flows on hyperbolic 3-manifolds
always have periodic orbits [19].

Another interpretation of Seifert’s work is to ask about the dynamical
properties of flows which are close to an aperiodic flow. For example, the
work [30] by the authors constructs smooth families of variations of the
Kuperberg flow which are not aperiodic, and have invariant horseshoes in
their dynamics. We also show that there are smooth families of variations
of the Kuperberg plug with simple dynamics and exactly two periodic
orbits, but the limit of the family is an aperiodic flow. In such a family, the
period of the periodic orbits blows up at the limit. Palis and Shub in [50]
asked whether this dynamical phenomenon can occur in families of smooth
flows on closed manifolds, and called a closed orbit whose length “blows
up” to infinity under deformation a “blue sky catastrophe”. The first
examples of a family of flows with this property was found by Medvedev in
[47]. The constructions in [30] show that deformations of Kuperberg flows
provide a new class of examples. The work of A. Shilnikov, L. Shilnikov
and D. Turaev in [60] gives a discussion of stronger formulations of the
blue sky catastrophe phenomenon.

Thus, Kuperberg flows are special in that they are aperiodic, have
many further special dynamical properties and lie at the “boundary of
chaos” in the C∞-topology on flows. These properties suggest topics for
further study, and this is the theme of this survey:

There are many interesting open problems concerning
Kuperberg flows!

We first describe the construction of the Kuperberg plugs. Section 2
gives the construction of the modified Wilson plugs, which provides the
foundation of the construction. Section 3 then gives the construction of
the Kuperberg plugs. These constructions are given in a succinct manner,
and the interested reader can consult the literature cited above for further
details and discussions.

Section 4 introduces the generic hypotheses for the Kuperberg con-
struction, as given in the works [29, 30]. We also introduce variations
of these generic hypotheses, whose implications for the dynamics of the
flows will be discussed in later sections.

It was observed in the works [22, 45] that any orbit not escaping the
plug in forward or backward time, limits to the invariant set defined as
the closure of the “special orbits” for the flow. One consequence is that
the Kuperberg flow has a unique minimal set in the plug, denoted by Σ,
as recalled in Theorem 5.1.
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A remarkable aspect of the construction of a Kuperberg flow is that
it preserves an embedded infinite surface with boundary, denoted by M0.
The boundary ofM contains the special orbits, and so its closureM = M0

is a type of lamination with boundary that contains the minimal set Σ.
The relation between the two sets Σ ⊂ M is an important theme in the
study of the dynamics of Kuperberg flows. Section 6 gives an outline of
the structure theory for the embedded surface M0 in the case of generic
flows, as developed in [29]. This structure theory, and the corresponding
properties of the level function defined on M0, are crucial for the proofs
in [29].

In Section 7, we develop conditions on a flow which are sufficient to
show that the inclusion of the minimal set Σ in the laminated space M is
an equality. This result is a type of “Denjoy Theorem” for laminations, and
its proof in [29] relies on the generic hypotheses for the flow in fundamental
ways. It is an interesting problem whether this is a special case of a
more general formulation of a Denjoy Theorem for laminations, which we
present here as it is independent of the development of Kuperberg flows.

Problem (Problem 7.9). Let L be a compact, connected 2-dimensional
lamination which is embedded in a compact 3-manifold M , and let X be a
smooth vector field tangent to the leaves of L. Suppose that the lamination
L is minimal, that is, every 2-dimensional leaf of L is dense in L. Also
assume that the flow of X has no periodic orbits. Show that every orbit
of X is dense in L.

Ghys observed in [22] that an aperiodic flow must have entropy equal
to zero, using a well-known result of Katok [36], and thus a Kuperberg
flow restricted to the lamination M must have zero entropy. The authors
showed in [29], that while the usual entropy of the flow vanishes, the “slow
entropy” as defined in [9, 37] of a generic Kuperberg flow is positive for
exponent α = 1/2. This calculation used two special properties of the
Kuperberg construction. One is that the embedded surface M0 ⊂ K has
subexponential but not polynomial growth rate, which follows from the
structure theory developed for M0 in the generic case. The second is
that the surface M0 is the union of two infinite surfaces, corresponding
to the two insertion maps used in the construction of the plug, and the
flow along these surfaces separates points when they encounter the upper
and lower insertions. It is an interesting problem to study the entropy-like
invariants for all Kuperberg flows, not just the generic flows. Analogously,
it is important to estimate the Hausdorff dimensions of the sets Σ and
M, and how they depend on the choices used in the construction of the
Kuperberg flow. These and related questions are addressed in Section 8.
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A standard problem in topological dynamical systems theory is to de-
scribe the topological type of the closed attractors for the system, and
for closed invariant transitive subsets more generally. Attractors often
have a very complicated topological description, and the theory of shape
for spaces [43, 44] is used to describe them. Describing the shape of a
dynamically defined invariant set of an arbitrary flow is typically quite
difficult, but also can be highly revealing about the dynamical properties
of the flow.

In Section 9, we discuss the shape properties of the unique minimal
set for Kuperberg flows. For a generic Kuperberg flow, the shape of the
minimal set Σ was shown in [29] to be not stable, as defined in Defini-
tion 9.3, but to satisfy a Mittag-Leffler Property on its homology groups,
as defined in Proposition 9.10. The proofs of these assertions require the
structure theory for the invariant set M, and a key idea is the construc-
tion of shape approximations to M using its level hierarchy, as developed
in the monograph [29].

The construction of shape approximations of the minimal set Σ sug-
gests a relationship between the entropy of the flow and its shape prop-
erties. The following problem can be stated for general flows, and the
motivation is given in Section 9 and Problem 9.8.

Problem. Assume that a flow of a closed 3-manifold M has an excep-
tional minimal set Σ whose shape is not stable. Is the slow entropy of the
flow positive?

Recall that a minimal set is said to be exceptional if it is not a sub-
manifold of the ambient manifold M . When M has low dimension, this
implies that the minimal set has “small” dimension, that is it has dimen-
sion 1 or 2. The assumption that the shape of Σ is not stable implies
that the topological type of its shape approximations keep changing as
they become increasingly fine, while the assumption that every orbit of
the flow in Σ is dense implies a type of recurrence for the topology of the
shape approximations. The problem is then asking if these assumptions
are sufficient to guarantee that the topological type of the approximations
exhibit a form of self-similarity in their topological type, which implies
that there are exponential separation of the points in the orbit of the flow,
at some possibly subexponential rate, as for Kuperberg flows.

Section 10 discusses a variety of questions about the flows which are
C∞-close to Kuperberg flows. The Derived from Kuperberg flows, or
DK–flows, were introduced in [30], and are obtained by varying the con-
struction of the usual Kuperberg flows, to obtain smooth families of
flows containing Kuperberg flows, so are of central interest from the
point of view of the properties of Kuperberg flows in the space of flows.
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The work [30] gave constructions of DK–flows which in fact have countably
many independent horseshoe subsystems, and thus have positive topolog-
ical entropy. Moreover, these examples can be constructed arbitrarily
close to the generic Kuperberg flows. It is notable that the horseshoes
generated by a variation of the Kuperberg construction are shown to ex-
ist using the shape approximations discussed in Section 9, providing more
reasons to explore the relation between shape and entropy for flows.

It seems a good moment to comment on a question related to volume
preserving flows on 3-manifolds. There are examples with a finite number
of periodic orbits and C1 examples without periodic orbits on any closed
3-manifold. These were constructed in [41] by Greg Kuperberg using
plugs. Is it possible to build a C∞ volume preserving aperiodic plug?
Can we a priori say something about its minimal and invariant sets?

The authors dedicate this work to Krystyna Kuperberg for her discov-
ery of the class of dynamical systems introduced in her celebrated works
on aperiodic flows. We are grateful for her comments and suggestions to
the authors that have inspired our continued fascination with “Kuperberg
flows”.

2. Modified Wilson plugs

In this section, we present the construction of the Wilson plugs which
are the foundation for the construction of the Kuperberg plugs, with com-
mentary on the choices made. First, we recall that a “plug” is a manifold
with boundary endowed with a flow, that enables the modification of a
given flow on a 3-manifold inside a flow-box. The idea is that after modifi-
cation by insertion of a plug, a periodic orbit for the given flow is “broken
open” – it enters the plug and never exits. Moreover, Kuperberg’s con-
struction does this modification without introducing additional periodic
orbits. The first step is to construct Kuperberg’s modified Wilson plug,
which is analogous to the modified Wilson plug used by Schweitzer in [58].

The notion of a “plug” to be inserted in a flow on a 3-manifold was
introduced by Wilson [67, 53]. A 3-dimensional plug is a manifold P
endowed with a vector field X satisfying the following conditions. The
3-manifold P is of the form D× [−2, 2], where D is a compact 2-manifold
with boundary ∂D. Set

∂vP = ∂D × [−2, 2] , ∂−h P = D × {−2} , ∂+h P = D × {2} .

Then the boundary of P has a decomposition

∂P = ∂vP ∪ ∂hP = ∂vP ∪ ∂−h P ∪ ∂
+
h P .

Let ∂
∂z be the vertical vector field on P , where z is the coordinate of the

interval [−2, 2].
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The vector field X must satisfy the conditions:
(P1) vertical at the boundary : X = ∂

∂z in a neighborhood of ∂P ; thus,
∂−h P and ∂+h P are the entry and exit regions of P for the flow of
X , respectively;

(P2) entry-exit condition: if a point (x,−2) is in the same trajectory
as (y, 2), then x = y. That is, an orbit that traverses P , exits just
in front of its entry point;

(P3) trapped orbit : there is at least one entry point whose entire for-
ward orbit is contained in P ; we will say that its orbit is trapped
by P ;

(P4) tame: there is an embedding i : P → R3 that preserves the vertical
direction.

Note that conditions (P2) and (P3) imply that if the forward orbit of a
point (x,−2) is trapped, then the backward orbit of (x, 2) is also trapped.

A semi-plug is a manifold P endowed with a vector field X as above,
satisfying conditions (P1), (P3) and (P4), but not necessarily (P2). The
concatenation of a semi-plug with an inverted copy of it, that is a copy
where the direction of the flow is inverted, is then a plug.

Note that condition (P4) implies that given any open ball B(~x, ε) ⊂ R3

with ε > 0, there exists a modified embedding i′ : P → B(~x, ε) which
preserves the vertical direction again. Thus, a plug can be used to change
a vector field Z on any 3-manifold M inside a flowbox, as follows. Let
ϕ : Ux → (−1, 1)3 be a coordinate chart which maps the vector field Z on
M to the vertical vector field ∂

∂z . Choose a modified embedding i′ : P →
B(~x, ε) ⊂ (−1, 1)3, and then replace the flow ∂

∂z in the interior of i′(P )
with the image of X . This results in a flow Z ′ on M .

The entry-exit condition implies that a periodic orbit of Z which meets
∂hP in a non-trapped point, will remain periodic after this modification.
An orbit of Z which meets ∂hP in a trapped point never exits the plug
P , hence after modification, limits to a closed invariant set contained in
P . A closed invariant set contains a minimal set for the flow, and thus, a
plug serves as a device to insert a minimal set into a flow.

In the work of Wilson [67], the basic plug has the shape of a solid
cylinder, whose base ∂−h P = D × {−2} is a planar disk D2. Schweitzer
introduced in [58] plugs for which the base is obtained from a 2-torus
minus an open disk, so ∂−h P ∼= T2 − D2, which has the homotopy type
of a wedge of two circles. As we shall see below, a key idea behind the
Kuperberg construction is to consider a base which is obtained from an
annulus by adding two connecting strips, so has the homotopy type of
three circles. The “modified Wilson Plug” is a flow on a cylinder minus
its core. The flow has two periodic orbits, and the dynamics of the flow
is not stable under perturbations. The instability of its dynamics is a key
property of these modified plugs.
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The first step in the construction is to define a flow on a rectangle as
follows. The rectangle is defined by

(1) R = [1, 3]× [−2, 2] = {(r, z) | 1 ≤ r ≤ 3 &− 2 ≤ z ≤ 2} .
For a constant 0 < g0 ≤ 1, choose a C∞-function g : R → [0, g0] which
satisfies the “vertical” symmetry condition g(r, z) = g(r,−z). Also, re-
quire that g(2,−1) = g(2, 1) = 0, that g(r, z) = g0 for (r, z) near the
boundary of R, and that g(r, z) > 0 otherwise.

Define the vector fieldWv = g · ∂∂z . Note thatWv has two singularities,
at (2,±1), and is otherwise everywhere vertical. The flow lines of this
vector field are illustrated in Figure 1. The value of g0 chosen influences
the quantitative nature of the flow, as small values of g0 result in a slower
vertical climb for the flow, but does not alter the qualitative nature of the
flow.

Figure 1. Vector field Wv

The next step is to suspend the flow of the vector field Wv to obtain a
flow on a a manifold with boundary:

(2) W = [1, 3]× S1 × [−2, 2] ∼= R× S1

with cylindrical coordinates x = (r, θ, z). That is, W is a solid cylinder
with an open core removed, obtained by rotating the rectangle R defined
in (1), considered as embedded in R3, around the z-axis.

This is done as follows, where we make more precise choices of the
suspension flow than given in [39], though these choices do not matter so
much. Choose a C∞-function f : R→ [−1, 1] satisfying the conditions:
(W1) f(r,−z) = −f(r, z) [anti-symmetry in z ]
(W2) f(r, z) = 0 for (r, z) near the boundary of R
(W3) f(r, z) ≥ 0 for −2 ≤ z ≤ 0.
(W4) f(r, z) ≤ 0 for 0 ≤ z ≤ 2.
(W5) f(r, z) = 1 for 5/4 ≤ r ≤ 11/4 and −7/4 ≤ z ≤ −1/4.
(W6) f(r, z) = −1 for 5/4 ≤ r ≤ 11/4 and 1/4 ≤ z ≤ 7/4.
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Condition (W1) implies that f(r, 0) = 0 for all 1 ≤ r ≤ 3. The other con-
ditions (W2), (W3), and (W4) are assumed in the works [22, 39, 45] while
(W5) and (W6) were imposed in [29] in order to facilitate the description
of the dynamics of the Kuperberg flows, but do not qualitatively change
the resulting dynamics.

Extend the functions f and g above to W by setting f(r, θ, z) = f(r, z)
and g(r, θ, z) = g(r, z), so that they are invariant under rotations around
the z-axis. The modified Wilson vector field on W is given by

(3) W = g(r, θ, z)
∂

∂z
+ f(r, θ, z)

∂

∂θ
.

Observe that the vector field W is vertical near the boundary of W and
horizontal in the periodic orbits. Also, W is tangent to the cylinders
{r = cst}.

Let Ψt denote the flow of W on W. The flow of Ψt restricted to the
cylinders {r = cst} is illustrated (in cylindrical coordinate slices) by the
lines in Figures 2 and 3. The flow of Ψt restricted to the cylinder {r = 2}
in Figure 2(C) is a called the Reeb flow, which Schweitzer remarks in [58]
was the inspiration for his introduction of this variation on the Wilson
plug.

(a) r ≈ 1, 3 (b) r ≈ 2 (c) r = 2

Figure 2. W-orbits on the cylinders {r = cst}

We will make reference to the following sets in W:

C ≡ {r = 2} [The Full Cylinder ]
R ≡ {(2, θ, z) | −1 ≤ z ≤ 1} [The Reeb Cylinder ]
A ≡ {z = 0} [The Center Annulus]
Oi ≡ {(2, θ, (−1)i)} [Periodic Orbits, i=1,2 ]

Note that O1 is the lower boundary circle of the Reeb cylinder R, and O2

is the upper boundary circle.
Let us also recall some of the basic properties of the modified Wilson

flow, which follow from the construction of the vector field W and the
conditions (W1) to (W4) on the suspension function f .
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Figure 3. W-orbits in the cylinder C = {r = 2} and in W

Let Rϕ : W → W be rotation by the angle ϕ. That is, Rϕ(r, θ, z) =
(r, θ + ϕ, z).

Proposition 2.1. Let Ψt be the flow on W defined above, then:

(1) Rϕ ◦Ψt = Ψt ◦Rϕ for all ϕ and t.
(2) The flow Ψt preserves the cylinders {r = cst} and in particular

preserves the cylinders R and C.
(3) Oi for i = 1, 2 are the periodic orbits for Ψt.
(4) For x = (2, θ,−2), the forward orbit Ψt(x) for t > 0 is trapped.
(5) For x = (2, θ, 2), the backward orbit Ψt(x) for t < 0 is trapped.
(6) For x = (r, θ, z) with r 6= 2, the orbit Ψt(x) terminates in the

top face ∂+hW for some t ≥ 0, and terminates in ∂−h W for some
t ≤ 0.

(7) The flow Ψt satisfies the entry-exit condition (P2) for plugs.

The properties of the flow Ψt on W given in Proposition 2.1 are funda-
mental for showing that the Kuperberg flows constructed in the next sec-
tion are aperiodic. On the other hand, the study of the further dynamical
properties of the Kuperberg flows reveals the importance of the behav-
ior of the flow Ψt in open neighborhoods of the periodic orbits O1 and
O2. This behavior depends strongly on the properties of the function g
in open neighborhoods of its vanishing points (2,±1), as will be discussed
in later sections. In particular, note that if the function g is modified in
arbitrarily small neighborhoods of the points (2,−1) and (2, 1), so that
g(r, z) > 0 on R, then the resulting flow on W will have no periodic orbits,
and no trapped orbits.
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3. The Kuperberg plugs

Kuperberg’s construction in [39] of aperiodic smooth flows on plugs
introduced a fundamental new idea, that of “geometric surgery” on the
modified Wilson plug W constructed in the previous section, to obtain
the Kuperberg Plug K as a quotient space, τ : W → K. The essence of
the novel strategy behind the aperiodic property of Φt is perhaps best
described by a quote from the paper by Matsumoto [45]:

We therefore must demolish the two closed orbits in the
Wilson Plug beforehand. But producing a new plug will
take us back to the starting line. The idea of Kuperberg
is to let closed orbits demolish themselves. We set up
a trap within enemy lines and watch them settle their
dispute while we take no active part.

There are many choices made in the implementation of this strategy,
where all such choices result in aperiodic flows. On the other hand, some
of the choices appear to impact the further dynamical properties of the
Kuperberg flows, as will be discussed later. We indicate in this section
these alternate choices, and later formulate some of the questions which
appear to be important for further study. Finally, at the end of this
section, we consider flows on plugs which violate the above strategy, where
the traps for the periodic orbits are purposely not aligned. This results
in what we call “Derived from Kuperberg” flows, or simply DK–flows for
short, which were introduced in the work [30].

The construction of a Kuperberg Plug K begins with the modified
Wilson Plug W with vector field W constructed in Section 2. The first
step is to re-embed the manifold W in R3 as a folded figure-eight, as shown
in Figure 4, preserving the vertical direction.

Figure 4. Embedding of Wilson Plug W as a folded
figure-eight



PERSPECTIVES ON KUPERBERG FLOWS 209

The next step is to construct two (partial) insertions of W in itself, so
that each periodic orbit of the Wilson flow is “broken open” by a trapped
orbit on the self-insertion.

The construction begins with the choice in the annulus [1, 3]×S1 of two
closed regions Li, for i = 1, 2, which are topological disks. Each region has
boundary defined by two arcs: for i = 1, 2, α′i is the boundary contained
in the interior of [1, 3]×S1 and αi in the outer boundary contained in the
circle {r = 3}, as depicted in Figure 5. In the work [29] the choices for
these arcs are given more precisely, though for our discussion here this is
not as important.

Figure 5. The disks L1 and L2

Consider the closed sets Di ≡ Li× [−2, 2] ⊂W, for i = 1, 2. Note that
each Di is homeomorphic to a closed 3-ball, that D1 ∩D2 = ∅, and each
Di intersects the cylinder C = {r = 2} in a rectangle. Label the top and
bottom faces of the closed sets Di by

(4) L±1 = L1 × {±2} , L±2 = L2 × {±2} .
The next step is to define insertion maps σi : Di → W, for i = 1, 2,

in such a way that the periodic orbits O1 and O2 for the W-flow inter-
sect σi(L−i ) in points corresponding to W-trapped points. Consider two
disjoint arcs β′i in the inner boundary circle {r = 1} of [1, 3]×S1, also de-
picted in Figure 5. Now choose a smooth family of orientation preserving
diffeomorphisms σi : L−i → W, i = 1, 2. Extend these maps to smooth
embeddings σi : Di →W, for i = 1, 2, as illustrated on the left-hand-side
of Figure 6. We require the following conditions for i = 1, 2:
(K1) σi(α′i×z) = β′i×z for all z ∈ [−2, 2], the interior arc α′i is mapped

to a boundary arc β′i.
(K2) Di = σi(Di) then D1 ∩ D2 = ∅;
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(K3) For every x ∈ Li, the image Ii,x ≡ σi(x × [−2, 2]) is an arc
contained in a trajectory of W.

(K4) σ1(L−1 ) ⊂ {z < 0} and σ2(L+
2 ) ⊂ {z > 0}.

(K5) Each slice σi(Li × {z}) is transverse to the vector field W, for all
−2 ≤ z ≤ 2.

(K6) Di intersects the periodic orbit Oi and not Oj , for i 6= j.

The “horizontal faces” of the embedded regions Di ⊂W are labeled by

(5) L±1 = σ1(L±1 ) , L±2 = σ2(L±2 ).

Then the above assumptions imply that faces L±1 of the lower insertion
region intersect the first periodic orbit O1 and are disjoint from the second
periodic orbit O2, while the faces L±2 of the upper region intersect the
second periodic orbit O2 and are disjoint from O1.

Figure 6. The image of L1 × [−2, 2] under σ1 and the
radius function
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The embeddings σi are also required to satisfy two further conditions,
which are the key to showing that the resulting Kuperberg flow Φt is
aperiodic:
(K7) For i = 1, 2, the disk Li contains a point (2, θi) such that the

image under σi of the vertical segment (2, θi)× [−2, 2] ⊂ Di ⊂W
is an arc {r = 2} ∩ {θ−i ≤ θ ≤ θ+i } ∩ {z = (−1)i} of the periodic
orbit Oi.

(K8) Radius Inequality: For all x′ = (r′, θ′, z′) ∈ Li × [−2, 2], let x =
(r, θ, z) = σi(r

′, θ′, z′) ∈ Di, then r < r′ unless x′ = (2, θi, z
′) and

then r = r′ = 2.
The Radius Inequality (K8) is one of the most fundamental concepts

of Kuperberg’s construction, and is illustrated by the graph on the right-
hand-side of in Figure 6.

Condition (K4) and the fact that the flow of the vector field W on W
preserves the radius coordinate on W, allow restating (K8) for points in
the faces L−i of the insertion regions Di. For x = (r, θ, z) = σi(r

′, θ′, z′) ∈
Di we have
(6)
r(σ−1

i (x)) ≥ r for x ∈ L−i , with r(σ−1
i (x)) = r if and only if x = σi(2, θi,−2) .

The illustration of the radius inequality in Figure 6 is an “idealized” case,
as it implicitly assumes that the relation between the values of r and r′
is “quadratic” in a neighborhood of the special points (2, θi), which is not
required in order that (K8) be satisfied.

Finally, define K to be the quotient manifold obtained from W by
identifying the sets Di with Di. That is, for each point x ∈ Di identify x
with σi(x) ∈ W, for i = 1, 2. The restricted W-flow on the inserted disk
Di = σi(Di) is not compatible with the image of the restrictedW-flow on
Di. Thus, to obtain a smooth vector field X from this construction, it is
necessary to modifyW on each insertion region Di. The idea is to replace
the vector field W in the interior of each region Di with the image vector
field, and smooth the resulting piecewise continuous flow [39, 22]. Then
the vector fieldW ′ on W′ descends to a smooth vector field on K denoted
by K, whose flow is denoted by Φt. The family of Kuperberg Plugs is the
resulting space K ⊂ R3, as illustrated in Figure 7.

The images in K of the cut-open periodic orbits from the Wilson flow
Ψt on W, generate two orbits for the Kuperberg flow Φt on K, which are
called the special orbits for Φt. These two special orbits play an absolutely
central role in the study of the dynamics of the flow Φt. We now state
Kuperberg’s main result:

Theorem 3.1. [39] The flow Φt on K satisfies the conditions on a plug,
and has no periodic orbits.
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Figure 7. The Kuperberg Plug Kε

The papers [22, 39] remark that a Kuperberg Plug can also be con-
structed for which the manifold K and its flow K are real analytic. An
explicit construction of such a flow is given in [40, Section 6]. There is the
added difficulty that the insertion of the plug in an analytic manifold must
also be analytic, which requires some subtlety. This is discussed in [40,
Section 6], and also in the second author’s Ph.D. Thesis [56, Section 1.1.1].

Finally, we introduce a modification to the above construction, for
which the periodic orbits of the Wilson flow are not necessarily broken
open by the trapped orbits of the inserted regions. Let ε be a fixed small
constant, positive or negative. Choose smooth embeddings σεi : Di →W,
for i = 1, 2, again as illustrated on the left-hand-side of Figure 6, which
satisfy the conditions (K1) to (K6). In place of the conditions (K7) and
(K8), we impose the modified conditions:
(K7ε) For i = 1, 2, the disk Li contains a point (2, θi) such that the

image under σεi of the vertical segment (2, θi)× [−2, 2] ⊂ Di ⊂W
is contained in {r = 2 + ε} ∩ {θ−i ≤ θ ≤ θ+i }, and for ε = 0 it is
contained in {r = 2} ∩ {θ−i ≤ θ ≤ θ

+
i } ∩ {z = (−1)i}.

(K8ε) Parametrized Radius Inequality: For all x′ = (r′, θ′,−2) ∈ L−i ,
let x = (r, θ, z) = σεi (r

′, θ′,−2) ∈ Lε−i , then r < r′ + ε unless
x′ = (2, θi,−2) and then r = 2 + ε.

Observe that for ε = 0, we recover the Radius Inequality (K8). Figure 8
represents the radius inequality for the three cases where ε < 0, ε = 0,
and ε > 0. Note that in the third illustration (c) for the case ε > 0, the
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insertion as illustrated has a vertical shift upwards. This is not required
by conditions (K7ε) and (K8ε), but it is used to prove Theorem 10.1 as
explained in [30].

(a) ε < 0 (b) ε = 0 (c) ε > 0

Figure 8. The modified radius inequality for the cases
ε < 0, ε = 0 and ε > 0

Again, define Kε to be the quotient manifold obtained from W by
identifying the sets Di with Dεi = σεi (Di). Replace the vector field W on
the interior of each region Dεi with the image vector field and smooth the
resulting piecewise continuous flow, so that we obtain a smooth vector
field on Kε denoted by Kε, whose flow is denoted by Φεt. We say that Φεt
is a Derived from Kuperberg flow, or a DK–flow.

The dynamics of a DK–flow is actually quite simple in the case when
ε < 0, as shown by the following result.

Theorem 3.2. [30] Let ε < 0 and Φεt be a DK–flow on Ke. Then it
satisfies the conditions on a plug, and moreover the flow in the plug Kε
has two periodic orbits that bound an embedded invariant cylinder, and
every other orbit belongs to the wandering set.

The proof of Theorem 3.2 in [30] uses the same technical tools as devel-
oped in the previous works [39, 40, 22, 45, 29] for the study of the dynamics
of Kuperberg flows. In contrast, the dynamics of a DK–flow when ε > 0
can be quite chaotic: the flow has positive topological entropy and has an
abundance of periodic orbits, as shown by the construction of examples
in [30].

4. Generic hypotheses

The construction of aperiodic Kuperberg flows involve multiple choices,
which do not change whether the resulting flows are aperiodic, but do
impact other dynamical properties of these flows. In this section, we
discuss these choices in more detail, and introduce the generic assumptions
that were imposed in the works [29, 30]. The implications of these choices
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will be discussed in subsequent sections. We first discuss the choices made
in constructing the modified Wilson plug, then consider the even wider
range of choices involved with the construction of the insertion maps. We
discuss first the case for the traditional Kuperberg flows, and afterwards
discuss the variations of the construction.

Recall that the modified Wilson vector field on W is given in (3) by

W = g(r, θ, z)
∂

∂z
+ f(r, θ, z)

∂

∂θ

where the function g(r, θ, z) = g(r, z) is the suspension of the function
g : R→ [0, g0] which is non-negative, vanishing only at the points (2,±1),
and symmetric about the line {z = 0}. The function f(r, θ, z) = f(r, z) is
assumed to satisfy the conditions (W1) to (W6), though conditions (W5)
and (W6) are imposed to simplify calculations, and do not impact the
aperiodic conclusion for the Kuperberg flows.

Figure 2 illustrates the dynamics of the flow of W restricted to the
cylinders {r = cst} in W, for various values of the radius. It is clear
from these pictures that the “interesting” part of the dynamics of this
flow occurs on the cylinders with radius near to 2, and near the periodic
orbits Oi for i = 1, 2.

The points (2,±1) ∈ R are the local minima for the function g, and
thus its matrix of first derivatives must also vanish at these points, and
the Hessian matrix of second derivatives must be positive semi-definite.
The generic property for such a function is that the Hessian matrix for g
at these points is positive definite. In the works [29, 30], a more precise
version of this was formulated:

Hypothesis 4.1. The function g satisfies the following conditions:

(7) g(r, z) = g0 for (r − 2)2 + (|z| − 1)2 ≥ ε20
where 0 < ε0 < 1/4 is sufficiently small. Moreover, we require that the
Hessian matrices of second partial derivatives for g at the vanishing points
(2,±1) are positive definite. In addition, we require that g(r, z) is mono-
tone increasing as a function of the distance

√
(r − 2)2 + (|z| − 1)2 from

the points (2,±1).

The conclusions of Proposition 2.1 do not require Hypothesis 4.1, and
so Theorem 3.1 does not require it. On the other hand, many of the
results in [29, 30] do require this generic hypothesis for their proofs, as
it allows making estimates on the “speed of ascent” for the orbits of the
Wilson flow near the periodic orbits.

Hypothesis 4.1 implies a local quadratic estimate on the function g near
the points (2,±1) which is given as estimate (94) in [29]. We formulate a
more general version of this local estimate for g.
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Hypothesis 4.2. Let n ≥ 2 be an even integer. We say that the vector
field W on W vanishes with order n if there exists constants λ2 ≥ λ1 > 0
and ε0 > 0 such that

(8)
λ1 ((r − 2)n + (|z| − 1)n) ≤ g(r, z) ≤ λ2 ((r − 2)n + (|z| − 1)n)

for ((r − 2)n + (|z| − 1)n) ≤ εn+2
0 .

Hypothesis 4.1 implies that Hypothesis 4.2 holds for n = 2. This yields
an estimate on the speed which the orbits of W in W for points with
z 6= ±1 approach the periodic orbits Oi in forward or backward time,
as discussed in detail in [29, Chapter 17]. When n > 2, this speed of
approach becomes slower and slower as n gets larger. We can also allow
for the case where g has all partial derivatives vanishing at the points
(2,±1), in which case we say that the function g vanishes to infinite order
at the critical points, and we say that the resulting vector field W on W
is infinitely flat at Oi for i = 1, 2. In that case, the speed of approach of
orbits of W in W become arbitrarily slow towards the periodic orbits.

The choices for the embeddings σi : Di →W, for i = 1, 2, as illustrated
on the left-hand-side of Figure 6, are more wide-ranging, and have a
fundamental influence on the dynamics of the resulting Kuperberg flows
on the quotient space K. We first impose a “normal form” condition on
the insertions, which does not have significant impact on the dynamics,
but allows a more straightforward formulation of the other properties of
the insertion maps.

Let (r, θ, z) = σi(x
′) ∈ Di for i = 1, 2, where x′ = (r′, θ′, z′) ∈ Di is a

point in the domain of σi. Let πz(r, θ, z) = (r, θ,−2) denote the projection
of W along the z-coordinate. We assume that σi restricted to the bottom
face, σi : L−i →W, has image transverse to the vertical fibers of πz. This
normal form can be achieved by an isotopy of a given embedding along
the flow lines of the vector fieldW, so does not change the orbit structure
of the resulting vector field on the plug K.

The above transversality assumption implies that πz ◦ σi : L−i →W is
a diffeomorphism into the face ∂−h W, with image denoted by Di ⊂ ∂−h W.
Then let ϑi = (πz ◦σi)−1 : Di → L−i denote the inverse map, so we have:
(9) ϑi(r, θ,−2) = (r(ϑi(r, θ,−2)), θ(ϑi(r, θ,−2)),−2) = (Ri,r(θ),Θi,r(θ),−2) .

We can then formalize in terms of the maps ϑi the assumptions on the
insertion maps σi that are intuitively implicit in Figure 6, and will be
assumed for all insertion maps considered.

Hypothesis 4.3 (Strong Radius Inequality). For i = 1, 2, assume that:
(1) σi : L−i →W is transverse to the fibers of πz;
(2) r = r(σi(r

′, θ′, z′)) < r′, except for (2, θi, z
′) and then

z(σi(2, θi, z
′)) = (−1)i;
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(3) Θi,r(θ) = θ(ϑi(r, θ,−2)) is an increasing function of θ for each
fixed r;

(4) Ri,r(θ) = r(ϑi(r, θ,−2)) has non-vanishing derivative for r = 2,
except for the case of θi defined by ϑi(2, θi,−2) = (2, θi,−2);

(5) For r sufficiently close to 2, we require that the θ derivative of
Ri,r(θ) vanish at a unique point denoted by θ(i, r).

Consequently, each surface L−i is transverse to the coordinate vector fields
∂/∂θ and ∂/∂z on W.

The illustration of the image of the curves r′ = 2 and r′ = 3 on
the right-hand-side of Figure 6 suggests that these curves have “para-
bolic shape”. We formulate this notion more precisely using the function
ϑi(r, θ,−2) defined by (9), and introduce the more general hypotheses
they may satisfy. Recall that ε0 > 0 was introduced in Hypothesis 4.1.

Hypothesis 4.4. Let n ≥ 2 be an even integer. For i = 1, 2, 2 ≤ r0 ≤
2 + ε0 and θi − ε0 ≤ θ ≤ θi + ε0, assume that

(10)
d
dθΘi,r0(θ) > 0 , dn

dθnRi,r0(θ) > 0 , d
dθRi,r0(θi) = 0 ,

d`

dθ`
Ri,r0(θi) = 0 for 1 ≤ ` < n .

where θi satisfies ϑi(2, θi,−2) = (2, θi,−2). Thus for 2 ≤ r0 ≤ 2 + ε0, the
graph of Ri,r0(θ) is convex upwards with vertex at θ = θi.

In the case where n = 2, Hypothesis 4.4 implies that all of the level
curves r′ = c, for 2 ≤ c ≤ 2 + ε0, have parabolic shape, as the illustration
in Figure 6 suggests. On the other hand, for n > 2 the level curves
r′ = c have higher order contact with the vertical lines of constant radius
in Figure 6, and in this case, many of the dynamical properties of the
resulting flow Φt on K are not well-understood.

We can now define what is called a generic Kuperberg flow in the work
[29].

Definition 4.5. A Kuperberg flow Φt is generic if the Wilson flow W
used in the construction of the vector field K satisfies Hypothesis 4.1, and
the insertion maps σi for i = 1, 2 used in the construction of K satisfies
Hypotheses 4.3, and Hypotheses 4.4 for n = 2. That is, the singularities
for the vanishing of the vertical component g · ∂/∂z of the vector field W
are of quadratic type, and the insertion maps used to construct K yield
quadratic radius functions near the special points.

Recall that the insertion maps for a Derived from Kuperberg flow as
introduced in Section 3 are denoted by σεi : Di → W, for i = 1, 2. It
is assumed that these maps satisfy the modified conditions (K7ε) and
(K8ε). The illustrations of the radius inequality in Figure 8 again suggest
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that the images of the curves r′ = c are of “quadratic type”, though the
vertex of the image curves need no longer be at a special point. We again
assume the insertion maps σεi : L−i → W are transverse to the fibers of
the projection map πz : W→ ∂−h W along the z′-coordinate. Then we can
define the inverse map ϑεi = (πz ◦σεi )−1 : Di → L−i and express the inverse
map x′ = ϑεi(x) in polar coordinates as:

(11) x′ = (r′, θ′,−2) = ϑεi(r, θ,−2) = (r(ϑεi(r, θ,−2)), θ(ϑεi(r, θ,−2)),−2)
= (Rεi,r(θ),Θ

ε
i,r(θ),−2) .

Then the level curves r′ = c pictured in Figure 8 are given by the maps
θ′ 7→ πz(σ

ε
i (c, θ

′,−2)) ∈ ∂−h W.
We note a straightforward consequence of the Parametrized Radius

Inequality (K8ε). Recall that θi is the radian coordinate specified in
(K8ε) such that for x′ = (2, θi,−2) ∈ L−i we have r(σεi (2, θi,−2)) = 2 + ε.

Lemma 4.6. [30, Lemma 6.1] For ε > 0 there exists 2 + ε < rε < 3 such
that r(σεi (rε, θi,−2)) = rε.

We then add an additional assumption on the insertion maps σεi for
i = 1, 2 which specifies the qualitative behavior of the radius function for
r ≥ rε.

Hypothesis 4.7. If rε is the smallest 2 + ε < rε < 3 such that
r(σεi (rε, θi,−2)) = rε. Assume that r(σεi (r, θi,−2)) < r for r > rε.

The conclusion of Hypothesis 4.7 is implied by the Radius Inequality
for the case ε = 0, but does not follow from the condition (K8ε) when
ε > 0. It is imposed to eliminate some of the possible pathologies in the
behavior of the orbits of the DK–flows.

We can now formulate the analog for DK–flows of the Hypothesis 4.3,
which imposes uniform conditions on the derivatives of the maps ϑεi . Re-
call that 0 < ε0 < 1/4 was specified in Hypothesis 4.1, and we assume
that 0 < ε < ε0.

Hypothesis 4.8 (Strong Radius Inequality). For i = 1, 2, assume that:
(1) σεi : L−i →W is transverse to the fibers of πz;
(2) r = r(σεi (r

′, θ′, z)) < r + ε, except for x′ = (2, θi, z) and then
r = 2 + ε;

(3) Θε
i,r(θ) is an increasing function of θ for each fixed r;

(4) For 2 − ε0 ≤ r ≤ 2 + ε0 and i = 1, 2, assume that Rεi,r(θ)
has non-vanishing derivative, except when θ = θi as defined by
ϑεi(2 + ε, θi,−2) = (2, θi,−2);

(5) For r sufficiently close to 2 + ε, we require that the θ derivative
of Rεi,r(θ) vanishes at a unique point denoted by θ(i, r).
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Note that Hypotheses 4.7 and 4.8 combined imply that rε is the unique
value of 2 + ε < rε < 3 for which r(σεi (rε, θi,−2)) = rε. We can then
formulate the analog of Hypothesis 4.4.
Hypothesis 4.9. Let n ≥ 2 be an even integer. For 2− ε0 ≤ r0 ≤ 2 + ε0
and θi − ε0 ≤ θ ≤ θi + ε0, assume that

(12)
d
dθΘε

i,r0
(θ) > 0 , dn

dθnR
ε
i,r0

(θ) > 0 , d
dθR

ε
i,r0

(θi) = 0 ,
d`

dθ`
Rεi,r0(θi) = 0 for 1 ≤ ` < n .

where θi satisfies ϑεi(2, θi,−2) = (2, θi,−2). Thus for 2−ε0 ≤ r0 ≤ 2+ε0,
the graph of Rεi,r0(θ) is convex upwards with vertex at θ = θi.

Finally, we have the definition of the generic DK–flows studied in [30].
Definition 4.10. A DK–flow Φεt is generic if the Wilson flow W used
in the construction of the vector field Kε satisfies Hypothesis 4.1, and the
insertion maps σεi for i = 1, 2 used in the construction of Kε satisfies
Hypotheses 4.8, and Hypotheses 4.9 for n = 2.

5. Wandering and minimal sets

We next discuss some of the basic topological dynamical properties of
the Kuperberg flows. Our main interest is in the asymptotic behavior
of their orbits, especially the non-wandering and wandering sets for the
flow. There is an additional subtlety in these considerations, in that many
orbits for the flow in a plug may escape from the plug, while other orbits
are trapped in either the forward or backward directions, or possibly both.
We also recall the results about the uniqueness of the minimal set. First
we recall some of the basic concepts for the flow in a plug.

Recall that Di = σi(Di) for i = 1, 2 are solid 3-disks embedded in W.
Introduce the sets:

(13) W′ ≡ W− {D1 ∪ D2} , Ŵ ≡ W− {D1 ∪ D2} .

The compact space Ŵ ⊂ W is the result of “drilling out” the interiors of
D1 and D2.

Let τ : W → K denote the quotient map. Note that the restriction
τ ′ : W′ → K is injective and onto, while for i = 1, 2, the map τ identifies
a point x ∈ Di with its image σi(x) ∈ Di. Let (τ ′)−1 : K → W′ denote
the inverse map, which followed by the inclusion W′ ⊂ W, yields the
(discontinuous) map τ−1 : K→W, where i = 1, 2, we have:

(14) τ−1(τ(x)) = x for x ∈ Di , and σi(τ
−1(τ(x))) = x for x ∈ Di .

Consider the embedded disks L±i ⊂W defined by (5), which appear as
the faces of the insertions in W. Their images in the quotient manifold K
are denoted by:

(15) E1 = τ(L−1 ) , S1 = τ(L+
1 ) , E2 = τ(L−2 ) , S2 = τ(L+

2 ) .
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Note that τ−1(Ei) = L−i , while τ
−1(Si) = L+

i .
The transition points of an orbit of Φt are those points where the

orbit intersects one of the sets Ei or Si for i = 1, 2, or is contained in a
boundary component ∂−h K or ∂+h K. The transition points are classified
as either primary or secondary, where x ∈ K is:

• a primary entry point if x ∈ ∂−h K;
• a primary exit point if x ∈ ∂+h K;
• a secondary entry point if x ∈ E1 ∪ E2;
• a secondary exit point x ∈ S1 ∪ S2.

If a Φt-orbit of a point x ∈ K contains no transition points, then the
restriction τ−1(Φt(x)) is a continuous function of t, and is contained in
the Ψt-orbit of x′ = τ−1(x) ∈W.

Recall that r : W → [1, 3] is the radius coordinate on W. Define the
(discontinuous) radius coordinate r : K → [1, 3], where for x ∈ K set
r(x) = r(τ−1(x)). Then for x ∈ K set ρx(t) ≡ r(Φt(x)), which is the
radius coordinate function along the K-orbit of x. Note that if Φt0(x)
is not an entry/exit point, then the function ρx(t) is locally constant at
t0. On the other hand, if t0 is a point of discontinuity for Φt(x), then
x0 = Φt0(x) must be a secondary entry or exit point.

These properties of the radius function along orbits of the flow Φt gives
a strategy for the study of the dynamics of the flow, and provides the key
technique in [39] used to prove that the flow is aperiodic. A key idea is to
index the points along the orbit of a point x ∈ K by the intersections with
the sets E1∪E2, for which the index increases by +1, or their intersection
with the sets S1 ∪ S2, for which the index decreases by −1. This yields
the integer-valued level function nx(t) which has nx(0) = 0.

Recall that Oi for i = 1, 2 denotes the periodic orbits for the Wilson
flow on W, so that each intersection Oi∩W′ consists of an open connected
arc with endpoints L±i ∩Oi. The special entry/exit points for the flow Φt
are the images, for i = 1, 2,

(16) p−i = τ(Oi ∩ L−i ) ∈ Ei , p+i = τ(Oi ∩ L+
i ) ∈ Si .

Note that by definitions and the Radius Inequality, we have r(p±i ) = 2 for
i = 1, 2.

We now recall the results for the minimal set of aperiodic Kuperberg
flows based on the combined results from the works [22, 39, 40, 45]. It was
observed by Kuperberg in [39] that for x ∈ K with r(x) = 2, then either
its forward orbit {Φt(x) | t ≥ 0} contains a special point in its closure,
or this is true for the backward orbit {Φt(x) | t ≤ 0}, or both conditions
hold. Also, for x ∈ K if the radius function ρx(t) ≥ c for some c > 2,
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then the orbit of x escapes in finite time in both forward and backward
directions. It follows from this that for x ∈ K with r(x) > 2 and whose
orbit is infinite in either forward or backward directions, then its orbit
closure must contain at least one of the special orbits.

It was observed in Matsumoto [45] that there is an open set of primary
entry points with radius less than 2 whose forward orbits are non-recurrent
and yet accumulate on the special orbits. Ghys showed in [22, Théorème,
page 301] that if x ∈ K does not escape from K in a finite time, either
forward or backward, then the orbit of the point accumulates on the
special orbits. These results combined imply that a Kuperberg flow has
a unique minimal set contained in the interior of K.

We state these results more succinctly as follows. Define the following
orbit closures in K:

(17) Σ1 ≡ {Φt(p−1 ) | −∞ < t <∞} , Σ2 ≡ {Φt(p−2 ) | −∞ < t <∞} .

Theorem 5.1. [29, Theorem 8.2] For the closed sets Σi for i = 1, 2 we
have:

(1) Σi is Φt-invariant;
(2) r(x) ≥ 2 for all x ∈ Σi;
(3) Σ1 = Σ2 and we set Σ = Σ1 = Σ2;
(4) Let Z ⊂ K be a closed invariant set for Φt contained in the inte-

rior of K, then Σ ⊂ Z;
(5) Σ is the unique minimal set for Φt.

The orbits of the Kuperberg flow are divided into those which are
finite, forward or backward trapped, or trapped in both directions and so
infinite. A point x ∈ K is forward wandering if there exists an open set
x ∈ U ⊂ K and TU > 0 so that for all t ≥ TU we have Φt(U) ∩ U = ∅.
Similarly, x is backward wandering if there exists an open set x ∈ U ⊂ K
and TU < 0 so that for all t ≤ TU we have Φt(U) ∩ U = ∅. A point x
with infinite orbit is wandering if it is forward and backward wandering.
Define the following subsets of K:

W0 ≡ {x ∈ K | x orbit is finite}
W+ ≡ {x ∈ K | x orbit is forward wandering}
W− ≡ {x ∈ K | x orbit is backward wandering}
W∞ ≡ {x ∈ K | x is forward and backward wandering}

Note that x ∈ W0 if and only if the orbit of x escapes through ∂+h K in
forward time, and escapes though ∂−h K in backward time. Define

(18) W = W0 ∪W+ ∪W− ∪W∞ ; Ω = K−W.
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The set Ω is called the non-wandering set for Φt, is closed and Φt-
invariant. A point x with forward trapped orbit is characterized by the
property: x ∈ Ω if for all ε > 0 and T > 0, there exists y and t > T such
that dK(x, y) < ε and dK(x,Φt(y)) < ε, where dK is a distance function
on K. There are obvious corresponding statements for points which are
backward trapped or infinite. Here are some of the properties of the
wandering and non-wandering sets for Kuperberg flows. The proofs can
be found in [29, Chapter 8].

Lemma 5.2. If x ∈ K is a primary entry or exit point, then x ∈W+ or
W−.

Lemma 5.3. For each x ∈ Ω, the Φt-orbit of x is infinite.

Proposition 5.4. Σ ⊂ Ω ⊂ {x ∈ K | r(x) ≥ 2}.

Finally, let us recall a result of Matsumoto:

Theorem 5.5. [45, Theorem 7.1(b)] The sets W± contain interior points.

This implies the following important consequence:

Corollary 5.6. The flow Φt cannot preserve any smooth invariant mea-
sure on K which assigns positive mass to any open neighborhood of a
special point.

6. Zippered laminations

We next introduce the Φt-invariant embedded surface M0 and its clo-
sure M, and discuss the relation between the minimal set Σ and the space
M. The existence of this compact connected subset M, which is invariant
for the Kuperberg flow Φt, is a remarkable consequence of the construc-
tion of Φt, and is the key to a deeper understanding of the properties
of the minimal set Σ of Φt. We then give an overview of the structure
theory for M0 which plays a fundamental role in analyzing the dynamical
properties of Kuperberg flows.

Recall that the Reeb cylinder R ⊂ W is bounded by the two periodic
orbits O1 and O2 for the Wilson flow Ψt on W. The cylinder R is itself
invariant under this flow, and for a point x ∈ W with r(x) close to 2,
the Ψt-orbit of x has increasingly long orbit segments which shadow the
periodic orbits.

Introduce the notched Reeb cylinder, R′ = R ∩ W′, which has two
closed “notches” removed from R where it intersects the closed insertions
Di ⊂ W for i = 1, 2. Figure 9 illustrates the cylinder R′ inside W. The
boundary segments γ′ and λ′ labeled in Figure 9 satisfy γ′ ⊂ L−1 and
λ′ ⊂ L−2 , while the boundary segments γ′ and λ

′
labeled in Figure 9
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satisfy γ′ ⊂ L+
1 and λ

′ ⊂ L+
2 . A basic observation is that these curves are

each transverse to the restriction of the Wilson flow to the cylinder R.

Figure 9. The notched cylinder R′ embedded in W

The map τ : R′ → K is an embedding, so the Φt-flow of τ(R′) ⊂ K is
an embedded surface,

(19) M0 ≡ {Φt(τ(R′)) | −∞ < t <∞} .

The special orbits in K contain the intersection τ(Oi ∩W′) for i =
1, 2, hence the “boundary” of M0 consists of the two special orbits in
K obtained by the Φt-flows of the arcs τ(Oi ∩ W′), so that M0 is an
“infinite bordism” between the two special orbits of the flow Φt. Thus,
the closure M = M0 is a flow invariant, compact connected subset of K,
which contains the closure of the special orbits, hence by Theorem 5.1,
the minimal set Σ ⊂M.

A fundamental problem is to give a description of the topology and
geometry of the space M. The question of when Σ = M is treated in
Section 7, while in this section we concentrate on the properties of M.

The key to understanding the structure of the space M is to analyze
the structure of M0 and its embedding in K. This analysis is based
on a simple observation, that the images τ(γ′), τ(λ′) ⊂ M are curves
transverse to the flow Φt and contained in the region {x ∈M | r(x) ≥ 2}.
Moreover, for a point x ∈ τ(γ′) with r(x) > 2, there is a finite tx > 0
such that Φtx(x) ∈ τ(γ′). That is, the flow across the notch in τ(R′)
with boundary curve τ(γ′) closes up by returning to the facing boundary
curve τ(γ′), unless r(x) = 2 and then x is the special point p−1 . A similar
remark holds for the notch in R′ with boundary curves λ′, λ

′
. It follows

from the proof of the above remarks that we can analyze the submanifold
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M0 using a recursive approach, decomposing the space into the flows in
K of the curves of successive intersections with the entry/exit surfaces Ei
and Si.

Proposition 6.1. [29, Proposition 10.1] There is a well-defined level
function

(20) n0 : M0 → N = {0, 1, 2, . . .} ,
where the preimage n−10 (0) = τ(R′), the preimage n−10 (1) in the union
of two infinite notched propellers which are asymptotic to τ(R′), and for
` > 1 the preimage n−10 (`) is an infinite union of finite notched propellers.

The precise description of propellers, both finite and infinite, is given
in [29, Chapters 11, 12], and the decomposition is made precise there. We
give a general sketch of the idea.

A propeller is an embedded surface in W that results from the Wilson
flow Ψt of a curve γ ⊂ ∂−h W in the bottom face of W. Such a surface has
the form of a “tongue” wrapping around the core cylinder C. Figure 10
illustrates a “typical” finite propeller Pγ as a compact “flattened” propeller
on the right, and its embedding in W on the left. Observe that in this
case, for any x ∈ γ, the radius of x is strictly bigger than 2.

Figure 10. Embedded and flattened finite propeller

An infinite propeller is the result of flowing a curve γ which has end-
point on the cylinder r = 2, hence the flow of the compact curve is not
closed, as its boundary curve is the orbit of an entry point with radius 2,
hence limits on the Reeb cylinder R. The embedding of an infinite pro-
peller is highly dependent on the shape of the curve γ near the cylinder
C, and on the dynamics of the Wilson flow near its periodic orbits.

Figure 11 gives a model for M0, though the distances along propellers
are not to scale, and there is a hidden simplification in that there may
be “bubbles” in the surfaces which are suppressed in the illustration.
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A bubble is a compact surface with boundary attached to the interior re-
gions of a propeller along its boundary, and are analyzed in Chapters 15
and 18 of [29]. Also, all the propellers represented in Figure 11 have
roughly the same width when embedded in K, which is the width of the
Reeb cylinder.

Figure 11. Flattened part of M0

We make some further comments on the properties of M0 as illustrated
in Figure 11. The upper horizontal band the figure represents the notched
Reeb cylinder. The flow of the special point p−1 is the curve along the
bottom edge of the image τ(R′). When the flow crosses the curve τ(γ) =
τ(R′)∩E1, it turns to the right and enters the infinite propeller at level 1,
and follows the left edge of this vertical strip downward, along the Wilson
flow of a point with r = 2 until it intersects the secondary entry surface
E1 again. It then turns to the right in the flow direction, and enters
a finite propeller at level 2. In the case pictured, it then flows upward
until it crosses the annulus A = {z = 0} ⊂ W, which corresponds to the
tip of the propeller. It then reverses direction and flows until it crosses
the secondary exit surface S1, and resumes flowing downward along the
infinite level 1 propeller. However, as this is following a Wilson orbit, the
z-values of this part of the orbit are increasing towards −1.
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This procedure continues repeatedly, though as the curve moves fur-
ther down the level 1 propeller, the z-values get closer to −1, and hence
the flow in the side level 2 propellers intersects the secondary entry region
E1 increasingly often, before flowing through the tip of the corresponding
level 2 propeller, and reversing its march through either a secondary exit
surface Si or another secondary entry face Ei. This process can be viewed
as a geometric model for the recursive description of the flow dynamics
as described using programming language in [40, Section 5]. A key point
is that the lengths of the side branches, while finite, increase in length
and branching complexity as the orbit moves downwards along the ver-
tical level 1 propeller. A similar scenario plays out when following the
upper infinite propeller, whose initial segment is all that is illustrated in
Figure 11.

The two infinite propellers which constitute n−10 (1) are well-understood,
but the finite propellers which constitute the sets n−10 (`) for ` > 1 (pic-
tured as the side branching surfaces in Figure 11) may defy a systematic
description without imposing some form of generic hypotheses on the con-
struction of the flow. On the other hand, for a generic Kuperberg flow as
in Definition 4.5, the work [29] gives a reasonably complete description of
the components of the level decomposition of M0. These results are used
to show:

Theorem 6.2. [29, Theorem 19.1] If Φt is a generic Kuperberg flow on
K, then the closure M in W of M0 is a zippered lamination.

The definition of a zippered lamination is technical, and given in [29,
Definition 19.3]. The notion can be summarized by the conditions that
M is a union of 2-dimensional submanifolds of M, and admits a finite
cover by special foliation charts which are maps of subsets of M to a
measurable product of a disk with boundary in R2 with a Cantor set. In
particular, this covering property enables the construction of the trans-
verse holonomy maps along the leaves of the lamination M. The structure
of the submanifold M0 is key to understanding the entropy invariants of
the flow, and also conjecturally the Hausdorff dimensions of its closed
invariant sets, as will be discussed further in Section 8.

7. Denjoy Theory for laminations

The fundamental problem in the study of the dynamics of a Kuperberg
flow is to understand the ergodic and topological structure of its unique
minimal set Σ. Surprisingly, the ergodic properties of a flow Φt is the least
well-understood aspect of its dynamics. Since there is a unique minimal
set, here is the basic question:
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Problem 7.1. Show that the restriction of a Kuperberg flow to its min-
imal set is uniquely ergodic. If not, characterize the invariant probability
measures for the flow.

We have that Φt is a zero entropy flow on a compact space of dimension
at most two, so the problem bears some resemblance to the problem of
showing that the horocycle flow for a 2-dimensional Riemann surface of
negative curvature is uniquely ergodic, which was proven by Furstenberg
[20]. However, the dynamics of the flow Φt seems to be much more ir-
regular than for a horocycle flow, as the orbits of Φt cluster around the
deleted Reeb cylinderR′ for long orbit segments, before wandering out far
away from R′ in the plug and then returning. In this sense, the problem
may bear more resemblance to the result of Dani and Smillie [13] that
the horocycle flow is uniquely ergodic for a Fuchsian group. In any case,
the question of whether the Kuperberg flows are uniquely ergodic is very
basic.

The remainder of this section will consider questions about the topo-
logical dynamics of the flow Φt restricted to the invariant space M. In
Section 9 of the paper [40], the authors assert:

Although most aperiodic self-inserted Wilson-type plugs
have 2-dimensional minimal sets, a carefully chosen self-
intersection may result in a 1-dimensional minimal set.

Since we always have Σ ⊂M, the above remark highlights the impor-
tance of the following problem:

Problem 7.2. Give conditions on a Kuperberg flow which imply that
Σ = M.

The equality Σ = M is a remarkable conclusion, as the flow of the
special orbits p±i ∈ K are dense in Σ and constitute the boundary of the
submanifold M0, so the equality Σ = M implies that the boundaries of
a path connected component of M are dense in the space itself! This
property seems highly improbable.

The result [22, Théorème, page 302] states that there exist Kuperberg
flows for which Σ = M, and hence the minimal set Σ is 2-dimensional. The
result [40, Theorem 17] gives an explicit analytic flow for which Σ = M.
The idea behind these examples is based on the observation that the orbit
{Φt(p−1 ) | −∞ < t < ∞} of a special point p−1 contains the boundary of
all the level 2 propellers represented in Figure 11, thus it contains the
tips of these propellers. As the level 2 propellers get longer, the tips have
smaller radius that tends to 2. The points corresponding to the tips are
contained in the annulus τ(A) = τ({z = 0}), and thus accumulate on the
Reeb cylinder τ(R′), and hence on all of M.
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The proof of the following result was inspired by the proof of [40,
Theorem 17], and uses these ideas to show:

Theorem 7.3. [29, Theorem 17.1] Let Φt be a generic Kuperberg flow on
K, then Σ = M.

The proof of Theorem 7.3 uses the generic hypotheses on both the
Wilson flow and the insertion maps, to obtain estimates on the density of
the orbit {Φt(p−1 ) | −∞ < t <∞} near to τ(R′). While the calculations
in [29] use the quadratic assumptions on the maps, it seems reasonable
to expect that the required estimates can be achieved for more general
cases.

Problem 7.4. Let Φt be a Kuperberg flow on K which satisfies Hypoth-
esis 4.2 for some even n ≥ 2, Hypothesis 4.4 for some possibly different
value of n ≥ 2, and otherwise satisfies the generic hypotheses. Show that
Σ = M.

The hypotheses of Problem 7.4 are essentially satisfied for a real ana-
lytic Kuperberg flow, so as a variation on Problem 7.4, we ask whether
all real-analytic flows have 2-dimensional minimal sets:

Problem 7.5. Show that Σ = M if Φt is a real analytic Kuperberg flow
on K.

We mention another problem concerning real analytic Kuperberg flows.

Problem 7.6. Find dynamical properties of Kuperberg flows which dis-
tinguish the real analytic flows from the smooth (possibly non-generic)
flows.

Next, consider the case where the inclusion Σ ⊂M of invariant sets is
proper. Then Σ is a closed 1-dimensional invariant set in a lamination,
which must have some remarkable properties as a subspace of M. It is
not known if such examples can exist for C1-flows, for example, so we
propose:

Problem 7.7. Construct a C1 Kuperberg flow for which the minimal set
Σ is 1-dimensional.

One approach might be to perturb a smooth Kuperberg flow in the C1-
topology to obtain a Denjoy-type minimal set contained in the lamination
M, which would be a “wild” version of a Schweitzer plug.

The notion of piecewise-linear (PL)-flows in a plug was developed in
Section 8 of [40], and these flows yield a class of dynamical systems on a
plug which are distinct from the class of smooth flows. The proof of Theo-
rem 19 of [40] shows that there are PL-flows on plugs with 1-dimensional
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minimal sets, though it should be noted that the examples these au-
thors give introduces a modification of the standard construction of the
Kuperberg plug as given in Section 3. They also describe an example of a
PL-flow for which the minimal set is 2-dimensional. These results suggest
that the following project should be very interesting:

Problem 7.8. Study the dynamical properties of PL-flows in a Kuperberg
plug. Find conditions on the constructions of such flows which ensure that
the minimal set Σ is 1-dimensional.

A good place to start would be to elaborate on the methods introduced
in Sections 8 and 9 of [40], and investigate the dynamics of the resulting
PL-flows.

Finally, the study of the relationship between Σ and M suggests con-
sidering a more general problem, whether there exists a type of “Denjoy
Theorem” for 2-dimensional laminations, or matchbox manifolds in the
terminology of [7].

Problem 7.9. Let L be a compact connected 2-dimensional lamination,
possibly with boundary, and let X be a smooth vector field tangent to the
leaves of L. If the boundaries of the leaves of L are non-empty, we also
assume that X is tangent to the boundary. Suppose that L is a minimal
lamination, and the flow of X has no periodic orbits, then show that every
orbit is dense.

The question is whether the equality Σ = M for Kuperberg flows might
follow from a more general “Denjoy Principle” which is independent of
the embedding of the space M ⊂ K. For example, can the proof of the
traditional Denjoy Theorem for C2-flows on the 2-torus T2 be adapted to
work for laminations? If so, what are the minimal hypotheses required to
obtain such a result?

8. Growth, slow entropy, and Hausdorff dimension

We next consider invariants of Kuperberg flows derived from the choice
of a Riemannian metric on K. These include the growth rate of area for
the embedded surface M0 ⊂ K, the slow entropy of the flow Φt on K,
and the Hausdorff dimensions of the closed invariant sets Σ and M. The
authors work [29] gives partial results on the entropy properties for generic
flows, and the work of Ingebretson [35] studies the Hausdorff dimension
of M, but almost nothing is known about these dynamical invariants for
the case of non-generic flows.

We first consider the geometric properties of the invariant setM. Recall
that M is defined as the closure of the connected infinite surface M0 with
boundary, where M0 is defined in (19) as the infinite flow of the notched
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Reeb cylinder R′. In general, one approach to studying the dynamics
of a smooth flow on a compact manifold M is to consider the action of
the flow on embedded surfaces in M . For example, Yomdim’s proof of
the Shub Entropy Conjecture [24, 61, 68] studies the growth rates of the
action of the flow on smooth simplices ∆k ⊂ M , where ∆k is a simplex
of dimension 0 < k < dim(M). For a Kuperberg flow, the essential case
is for simplices contained in the laminated space M. The study of the
geometric properties of M0 captures all of this information.

Choose a Riemannian metric on K, then the smooth embedded sub-
manifold M0 ⊂ K with boundary inherits a Riemannian metric. Let dM
denote the associated path-distance function on M0. Fix the basepoint
ω0 = (2, π, 0) ∈ τ(R′) and let Bω0(s) = {x ∈ M0 | dM(ω0, x) ≤ s} be
the closed ball of radius s about the basepoint ω0. Let Area(X) denote
the Riemannian area of a Borel subset X ⊂ M0. Then Gr(M0, s) =
Area(Bω0

(s)) is called the growth function of M0.
Given functions f1, f2 : [0,∞) → [0,∞), we say that f1 . f2 if there

exists constants A,B,C > 0 such that for all s ≥ 0, we have that
f2(s) ≤ A · f1(B · s) + C. Say that f1 ∼ f2 if both f1 . f2 and
f2 . f1 hold. This defines an equivalence relation on functions, which is
used to define their growth type.

The growth function Gr(M0, s) for M0 depends upon the choice of
Riemannian metric on K and basepoint ω0 ∈ M0, however the growth
type of Gr(M0, s) is independent of these choices.

We say that M0 has exponential growth type if Gr(M0, s) ∼ exp(s).
Note that exp(λ s) ∼ exp(s) for any λ > 0, so there is only one growth
class of “exponential type”. We say that M0 has nonexponential growth
type if Gr(M0, s) . exp(s) but exp(s) 6. Gr(M0, s). We also have the
subclass of nonexponential growth type, where M0 has quasi-polynomial
growth type if there exists d ≥ 0 such that Gr(M0, s) . sd. The growth
type of a leaf of a foliation or lamination is an entropy-type invariant of
its dynamics, as discussed in [28].

For an embedded propeller Pγ ⊂ K the area of the propeller increases
as it makes successive revolutions around the core cylinder, as illustrated
in Figure 10, and this increase is proportional, with uniform bounds above
and below, to the number of revolutions times the area of the Reeb cylin-
der R. Thus, the growth type of Gr(M0, s) is a measure of the number
of branches and their length in M0 within a given distance s from ω0

along the surface. It is thus a measure of the complexity of the recursive
procedure which is used to define the level decomposition of M0. We first
state the most general problem concerning M0.
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Problem 8.1. How does the growth type of Gr(M0, s) for a Kuperberg
flow depend on the geometry of the insertion maps, and the germ of the
Wilson vector field in a neighborhood of the periodic orbits?

Here is a more precise question about the growth function:

Problem 8.2. Show that the growth type of Gr(M0, s) for a Kuperberg
flow is always nonexponential.

This problem was answered in [29] in the case where the flow is generic.
Under the additional hypothesis on the insertion maps σi for i = 1, 2,
which is that they have “slow growth”, the following result is proved.

Theorem 8.3. [29, Theorem 22.1] Let Φt be a generic Kuperberg flow.
If the insertion maps σi for i = 1, 2 have “slow growth”, then the growth
type of M0 is nonexponential, and satisfies exp(

√
s) . Gr(M0, s). In

particular, M0 does not have quasi-polynomial growth type.

The definition of “slow growth” for the insertion maps is given in [29,
Definition 21.11], and will not be recalled here, as it requires some back-
ground preparations.

The previous theorem suggests two questions:

Problem 8.4. Show that the growth type of Gr(M0, s) for a generic
Kuperberg flow whose insertion maps have slow growth is precisely the
growth type of the function exp(

√
s).

It seems reasonable to expect this problem has a positive answer. It
would also be very interesting to know if the same growth estimate also
applies in the case where the flow is real analytic.

Problem 8.5. Let Φt be a Kuperberg flow on K which satisfies Hypoth-
esis 4.2 for some even n ≥ 2, Hypothesis 4.4 for some possibly different
value of n ≥ 2, and otherwise satisfies the generic hypotheses. Calculate
the growth type for Gr(M0, s).

One motivation for the study of the growth function Gr(M0, s) is its
relation to the topological entropy invariants for the flow Φt. We first
discuss the entropy invariants of the flow Φt, then explain how these
properties are related.

Entropy is defined using a variation of the Bowen formulation of topo-
logical entropy [5, 64] for a flow ϕt on a compact metric space (X, dX),
with the definition symmetric in the role of the time variable t. For ε > 0,
two points p, q ∈ X are said to be (ϕt, T, ε)-separated if

(21) dX(ϕt(p), ϕt(q)) > ε for some − T ≤ t ≤ T .
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A set E ⊂ X is (ϕt, T, ε)-separated if all pairs of distinct points in E
are (ϕt, T, ε)-separated. Let s(ϕt, T, ε) be the maximal cardinality of a
(ϕt, T, ε)-separated set in X. The growth type of the function s(ϕt, T, ε)
is called the ε-growth type of ϕt, and we can then study the behavior of
the growth type as ε→ 0.

The topological entropy of the flow ϕt is then defined by

(22) htop(ϕt) =
1

2
· lim
ε→0

{
lim sup
T→∞

1

T
log(s(ϕt, T, ε))

}
.

Moreover, for a compact space X, the entropy htop(ϕt) is independent of
the choice of metric dX .

A relative form of the topological entropy for a flow ϕt can be defined
for any subset Y ⊂ X, by requiring that the collection of distinct (ϕt, T, ε)-
separated points used in the definition (21) be contained in Y . The re-
stricted topological entropy htop(ϕt|Y ) is bounded above by htop(ϕt).

For a flow with zero entropy, de Carvalho [9], and Katok and Thouvenot
[37], introduced the notion of slow entropy as a measure of the complexity
of the flow. For 0 < α < 1, the slow entropy measures the subexponential
growth of the ε-separated points, and is given by:

Definition 8.6. For a flow ϕt on X, and α > 0, the α-slow entropy of
ϕt is given by

(23) hαtop(ϕt) =
1

2
· lim
ε→0

{
lim sup
T→∞

1

Tα
log(s(ϕt, T, ε))

}
.

In a later work, Dou, Huang and Park introduced in [14] the derived
notion of the entropy dimension of a dynamical system, using the notion
of slow entropy:

Definition 8.7. For a flow ϕt on X, the entropy dimension of ϕt is given
by

(24) Dimh(ϕt) = inf
α>0

{
hαtop(ϕt)

}
= 0 .

For a smooth flow on a compact manifoldM , we have 0 ≤ Dimh(ϕt) ≤
1. Observe that Dimh(ϕt) is not related to the dimension of the ambient
manifold M .

We now return to the consideration of entropy-type invariants for
Kuperberg flows. Katok proved in [36, Corollary 4.4] that for a C2-flow
ϕt on a compact 3-manifold, its topological entropy htop(ϕt) is bounded
above by the exponent of the rate of growth of its periodic orbits. In
particular, Katok’s result can be applied to an aperiodic flow obtained by
inserting a Kuperberg plug, as mentioned in the introduction in Section 1,
from which it follows that:
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Theorem 8.8. Let Φt be a Kuperberg flow, then the restricted entropy
htop(Φt|M) = 0.

The proof of [36, Corollary 4.4] used the Pesin Theory for C2-flows
[1, 54] to obtain a relationship between topological entropy of a flow,
its Lyapunov exponents, and the existence of invariant horseshoes in the
dynamics of the system. The dynamics of a horseshoe system always
includes a dense collection of periodic orbits, so if there are no periodic
orbits, then the topological entropy must be zero.

The dynamics of generic Kuperberg flows are explicitly analyzed in
[29], and a part of this analysis is to give a direct proof that the topolog-
ical entropy of the flow vanishes. One key aspect of this analysis is the
estimates on the growth function Gr(M0, s) discussed above. A second
key aspect is less obvious but fundamental. Let R0 be the 2-dimensional
rectangular section to the flow, and let M̂0 be the bi-infinite flow of the
full cylinder C by the flow Φt introduced in [29, Chapter 13]. Then the
intersection R0 ∩ M̂0 is an infinite family of nested closed curves. More-
over, the induced dynamics of the flow on R0 can be viewed as a type
of iterated function system with an infinite number of generating maps,
where each generating map moves one family of nested curves into another
family. This is explained in systematic way in the work of Ingebretson
[35]. The entropy of the flow restricted to M can then be calculated in
terms of this iterated function system, as shown in [32]. Using these ideas
in [29], the authors showed:

Theorem 8.9. [29, Theorem 1.7] Let Φt be a generic Kuperberg flow,
then htop(Φt|M) = 0.

We list several problems about the entropy of Kuperberg flows, which
can be considered as “work in progress”:

Problem 8.10. Let Φt be a generic Kuperberg flow. Show that
Dimh(Φt) = 1/2.

For the case of non-generic Kuperberg flows, we expect the following
results to be true:

Problem 8.11. Let Φt be a Kuperberg flow, and suppose that the growth
type of M0 is at least that of the function nα, for 0 < α < 1. Show that
Dimh(Φt) ≥ α.
Problem 8.12. Let Φt be a Kuperberg flow, and suppose that the Wilson
flow used in its construction is infinitely flat near its periodic orbits. Show
that Dimh(Φt) = 0.

The entropy invariants defined above can also be considered for the
for PL-versions of the Kuperberg construction, as in [40, Section 8].
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If we allow the Wilson flow to have a discontinuity in its defining function
g along the periodic orbits, then it is possible to construct Wilson flows
for which the special points ωi are hyperbolic attracting orbits. In this
case, we propose:

Problem 8.13. Let Φt be a PL Kuperberg flow, constructed from a
Wilson flow for which the periodic orbits are hyperbolic attracting when
restricted to the cylinder C. Show that htop(Φt|M) > 0.

In general, it seems likely that the dynamical and ergodic theory prop-
erties of PL-versions of the Kuperberg construction will have a much wider
range of possibilities, as suggested by the examples in the work [40].

Finally, we mention some natural questions about the Hausdorff di-
mension properties of Kuperberg flows.

Problem 8.14. Let Φt be a Kuperberg flow. Estimate the Hausdorff
dimension dimH(Σ) of its minimal set Σ and the Hausdorff dimension
dimH(M) of the invariant set M.

The best (and only) results to date are in the thesis work of Ingebretson
[35]. The difficulty with estimating the Hausdorff dimensions of the invari-
ant sets associated with a Kuperberg flow, is that the standard methods
of estimating Hausdorff dimensions of Σ and M do not seem to apply. On
the other hand, the sets Σ and M are both dynamically defined by the
action of a pseudogroup GK generated by its return map to a section R0

to the flow in the plug. Ingebretson has shown that for a generic flow, the
induced dynamics of the return map on R0 can be viewed as a variant of
an iterated function system with an infinite number of generating maps.
One can then define extensions of the Bowen-Ruelle-Sinai pressure func-
tion for this type of iterated function system, as in Mauldin and Urbański
[46] for example, to obtain estimates on the Hausdorff dimension for an
invariant Cantor set in R0, which yields the above estimate.

For a general Kuperberg flow, it is natural to first consider the problem
of estimating the Hausdorff dimension of the closed invariant lamination
M associated to the flow, as it shares many properties with the generic
case, such as the existence of the nested structure for the intersections with
a section R0. However, the structure of the set M ∩R0 as a generalized
iterated function system is no longer well-understood, and other estimates
that are required to define the Perron-Frobenius operator for the restricted
for to M are not known. In any case, the following problem seems like a
reasonable test case:

Problem 8.15. Let Φt be a real analytic Kuperberg flow. Estimate the
Hausdorff dimension dimH(M) of the invariant lamination M.

We conclude with a general question about the case of PL-flows:
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Problem 8.16. Given 1 < α < 3, is it possible to construct a PL Kuper-
berg flow such that HD(Σ) = α?

For a PL-flow, some aspects of the estimations of the pressure function
for the set Σ may be much simpler than for the generic case. On the other
hand, the structure of the set Σ is not well understood at all.

More generally, the PL-flows constructed using the standard Kuperberg
plug construction, or possibly some class of its deformations of the DK
type, represent a fascinating area of research. On one hand, the PL-
nature of the flow implies a type of discreteness, which should simplify
calculations. On the other hand, the deformations of these flows will
admit horseshoes, which limit to the aperiodic flow. So one expects a rich
class of dynamical systems to result from this construction.

9. Shape theory for the minimal set

Shape theory studies the topological properties of a topological space Z
using a form of Čech homotopy theory, and this is the natural framework
for the study of topological properties of the minimal set Σ of a Kuperberg
flow. For example, Krystyna Kuperberg posed the question whether Σ
has stable shape? Stable shape is discussed below, and is about the
nicest property one can expect for a minimal set that is not a compact
submanifold. There are other more delicate shape properties of these
spaces to consider. The known results about the shape properties of Σ
are all for the generic case.

We first give a brief introduction to the notions of shape theory, and
introduce stable shape and the movable property, then discuss the known
results and some problems.

The definition of shape for a topological space Z was introduced by
Borsuk [2, 4]. Later developments and results of shape theory are dis-
cussed in the texts [15, 43] and the historical essay [44]. See also the
works of Fox [18] and Morita [48].

Recall that a continuum is a compact, connected metrizable space. For
example, the subspaces Σ and M of K are compact and connected, so are
continua. We discuss below shape theory for continua.

Definition 9.1. Let Z ⊂ X be a continuum embedded in a metric space
X. A shape approximation of Z is a sequence U = {U` | ` = 1, 2, . . .}
satisfying the conditions:

(1) each U` is an open neighborhood of Z in X which is homotopy
equivalent to a compact polyhedron;

(2) U`+1 ⊂ U` for ` ≥ 1, and their closures satisfy
⋂
`≥1

U ` = Z.
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There is a notion of equivalence of shape approximations for continua
Z and Z′. In the case where these spaces are embedded in a manifold, the
notion of equivalence is discussed in [29, Chapter 23]. Otherwise, any of
the sources cited above give the more general definitions of equivalence of
shape approximations.
Definition 9.2. Let Z ⊂ X be a compact subset of a connected manifold
X. Then the shape of Z is defined to be the equivalence class of a shape
approximation of Z as above.

It is a basic fact of shape theory that two homotopy equivalent con-
tinua have the same shape. Complete details and alternate approaches
to defining the shape of a space are given in [15, 43]. An overview of
shape theory for continua embedded in Riemannian manifolds is given in
[6, Section 2].

For the purposes of defining the shape of the spaces Σ and M for
a Kuperberg flow, which are both embedded in K, their shape can be
defined using a shape approximation U defined by a descending chain
of open ε-neighborhoods in K of each set. For example, the open sets
U` = {x ∈ K | dK(x,Σ) < ε`} where we have 0 < ε`+1 < ε` for all ` ≥ 1,
and lim

`→∞
ε` = 0, give a shape approximation to Σ.

Now we define two basic properties of the shape of a space.
Definition 9.3. A continuum Z has stable shape if it is shape equivalent
to a finite polyhedron. That is, there exists a shape approximation U such
that each inclusion ι : U`+1 ↪→ U` induces a homotopy equivalence, and
U1 has the homotopy type of a finite polyhedron.

Some examples of spaces with stable shape are compact connected
manifolds, and more generally connected finite CW -complexes. A less
obvious example is the minimal set for a Denjoy flow on T2, whose shape
is equivalent to the wedge of two circles. In particular, the minimal set
of an aperiodic C1-flow on plugs as constructed by Schweitzer in [58] has
stable shape. In contrast, the minimal set for a generic Kuperberg flow
has very complicated shape, and in particular Theorem 1.5 in [29] shows:
Theorem 9.4. The minimal set Σ of a generic Kuperberg flow does not
have stable shape.

The proof of this result uses the detailed structure theory for the space
M0 developed in [29]. The shape approximations to M are obtained by
defining a sequence of open neighborhoods U` using the level decompo-
sition of the double propeller space M̂0 introduced above, to define a
sequence of “filled propellers”. As the level ` used to define the neigh-
borhood U` increases on infinity, the number of connected components of
the intersection with the rectangular section R0∩U` grows exponentially.
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The proof shows that these connected components contribute classes to
the first homology group of the approximating open set U`, and moreover
the behavior of these homology classes is unstable. One can thus hope for
a solution to the following:

Problem 9.5. Find an alternate, simpler proof of Theorem 9.4 to that
given in [29, Chapter 23], to show that the minimal set Σ of a generic
Kuperberg flow does not have stable shape.

One reward of obtaining an alternate approach would be to gain in-
sights towards a solution of the following:

Problem 9.6. Show that the minimal set Σ of a Kuperberg flow does not
have stable shape.

The idea of the proof would be to show that for other classes of
Kuperberg flows, the surface M̂0 is still well-defined, though an explicit
labeling system is not known. None-the-less, one expects that the number
of connected components of the intersection with the rectangular section
R0∩U` again tends to infinity, and each connected component contributes
an independent class to the first homology group of the approximating
open set U`, and moreover the behavior of these homology classes is un-
stable. An inspection of the proof in [29, Chapter 23] of Theorem 9.4
shows that the arguments required are quite involved, so an extension of
these methods to non-generic flows may be quite difficult.

The construction of the shape approximations U` using the filled double
propellers obtained from M̂0 is very sensitive to the dynamical properties
of the Kuperberg flow Φt near the Reeb cylinder R′, and these properties
depend in a very sensitive way on the regularity of the flow near to R′.
Thus, one expects there are topological invariants of the shape system for
the minimal set Σ which are dependent on the dynamical behavior of the
flow. For example, one set of such invariants are the growth rates of the
ranks of the homology groups H1(U`,Z) of the approximating neighbor-
hoods as ` tends to infinity. In general, we propose:

Problem 9.7. Find shape properties which distinguish the minimal set
for a generic Kuperberg flow, from the minimal set for a non-generic
Kuperberg flow.

One of the surprise observations from the proof of Theorem 9.4 in [29,
Chapter 23] is that the construction of the system of shape approximations
{U` | ` ≥ 1} uses the same properties of the flow that were used to show
that it has non-zero slow entropy. In fact, it is natural to speculate that
this is not a coincidence:
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Problem 9.8. Let Σ be the minimal set for a Kuperberg flow. Show that
the existence of unstable shape approximations to Σ implies that the slow
entropy hαtop(Φt) > 0 for some 0 < α < 1.

The idea for proving such a result is to observe that an unstable system
of shape approximations to Σ yields families of classes in their homology
groups H1(U`,Z) which are necessarily represented by closed loops whose
lengths tend to infinity. These closed loops are shadowed in an appropriate
sense by orbits of the flow Φt, and hence give rise to families of ε-separated
points. However, to obtain positive slow entropy for the flow, it must also
be shown that the numbers of these loops grow at some rate greater than
polynomial, but less than exponential. The hope is that the assumption
that Σ is a minimal set for the flow can be used to obtain such growth
estimates, due to the “quasi-self-similarity” that minimality implies for
Σ ∩R0.

A minimal set is said to be exceptional if it is not a submanifold of the
ambient manifold. The previous problem can be stated for any exceptional
minimal set: if the minimal set has unstable shape, must the slow entropy
of the flow positive for some α?

Finally, we discuss another, more delicate shape property that can be
investigated for a continuum.

Definition 9.9. A continuum Z ⊂ X is said to be movable in X if for
every neighborhood U of Z, there exists a neighborhood U0 ⊂ U of Z such
that, for every neighborhood W ⊂ U0 of Z, there is a continuous map
ϕ : U0 × [0, 1] → U satisfying the condition ϕ(x, 0) = x and ϕ(x, 1) ∈ W
for every point x ∈ U0.

The notion of a movable continuum was introduced by Borsuk [3] as
a generalization of spaces having the shape of an absolute neighborhood
retract (ANR’s). See [6, 15, 38, 43] for further discussions concerning
movability. It is a subtle problem to construct continuum which are in-
variant sets for dynamical systems and which are movable, but do not
have stable shape, such as given in [62]. Showing the movable property
for a space requires the construction of a homotopy retract ϕ with the
properties stated in the definition, whose existence can be difficult to
achieve in practice. There is an alternate condition on homology groups,
weaker than the movable condition.

Proposition 9.10. Let Z be a movable continuum with shape approxima-
tion U. Then the homology groups satisfy the Mittag-Leffler Condition:
For all ` ≥ 1, there exists p ≥ ` such that for any q ≥ p, the maps on
homology groups for m ≥ 1 induced by the inclusion maps satisfy

(25) Image {Hm(Up;Z)→ Hm(U`;Z)} = Image {Hm(Uq;Z)→ Hm(U`;Z)} .
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This result is a special case of a more general Mittag-Leffler condition,
as discussed in detail in [6]. For example, the above form of the Mittag-
Leffler condition can be used to show that the Vietoris solenoid formed
from the inverse limit of coverings of the circle is not movable.

We can now state an additional shape property for the minimal set of
a generic Kuperberg flow.

Theorem 9.11. [29, Theorem 1.6] Let Σ be the minimal set for a generic
Kuperberg flow. Then the Mittag-Leffler condition for homology groups is
satisfied. That is, given a shape approximation U = {U`} for Σ, then for
any ` ≥ 1 there exists p > ` such that for any q ≥ p

(26) Image{H1(Up;Z)→ H1(U`;Z)} = Image{H1(Uq;Z)→ H1(U`;Z)}.

The proof of Theorem 9.11 in [29, Chapter 23] is even more subtle than
the proof of Theorem 9.4, but it suggests the following should be true:

Problem 9.12. Show that the minimal set Σ for a generic Kuperberg
flow is movable.

The authors believe that this result is true, based on explicit construc-
tions of homotopies between the shape approximations constructed in [29,
Chapter 23]. However, these calculations were not included in this work,
as they demanded even more complicated and explicit constructions of
an infinite sequences of maps. Furthermore, it is a conjecture that these
constructions suffice to show that Σ is movable. It would be very pleas-
ant if there was a more direct solution to Problem 9.12 using methods
analogous to those in [16].

On the other hand, it would be very remarkable if the minimal set for
all Kuperberg flows should be movable, so perhaps the following can be
shown:

Problem 9.13. Construct an example of a Kuperberg flow such that the
minimal set Σ is not movable.

There are two approaches to this problem that might be reasonable.
The first is to construct a generic Kuperberg flow which is “extremely
regular”, possibly this means real analytic, but for which the constructions
of the shape approximations in [29, Chapter 23] can be worked with and
analyzed more easily. The second suggestion is that as part of the study
of the dynamics of PL-flows in a Kuperberg construction, it may again be
possible to precisely control the construction of the approximating open
neighborhoods U` for the minimal set, and so deduce that it has unstable
shape.
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10. Derived from Kuperberg flows

In this final section, we discuss the variant on the construction of the
Kuperberg flows which was introduced in the authors’ work [30], and
discussed at the end of Section 3. This new class of flows are called
“Derived from Kuperberg” flows, or DK–flows, as they are constructed
using the same method as for the standard Kuperberg flows, and are in
fact smooth variations of these flows. However, the resulting flows need
not be aperiodic, and it is their other dynamical properties that motivate
their study.

The DK–flows were constructed at the end of Section 3, and the generic
hypotheses on these flows was formulated in Definition 4.10. Then in [30,
Section 9.2] the admissibility condition was formulated for these flows.
Briefly, this condition is that there exist a constant C > 0, which depends
only on the generic Wilson flow used in the construction, so that if the
vertical offset in the z-coordinate of the vertex of an insertion map σεi is
δ > 0, then we assume that the horizontal offset ε satisfies 0 < ε < C ·

√
δ.

Then we have:

Theorem 10.1. [30, Theorem 9.5] For ε > 0, let Φεt be a generic DK–flow
on Kε which satisfies the admissibility condition. Then Φεt has an invari-
ant horseshoe dynamical system, and thus htop(Φεt) > 0. In fact, each
such DK–flow Φεt has countably many independent horseshoe subsystems.

The proof of this result in [30] requires the introduction of the pseu-
dogroup defined by the first return map of the flow Φεt to the rectangular
cross-section R0, as constructed in [29, Chapter 9] or [30, Section 7]. The
second reference gives just the bare minimum of details of the construction
of this pseudogroup as required to prove Theorem 10.1, while the first ref-
erence has a comprehensive discussion of the pseudogroups associated to
Kuperberg flows. Then the existence of a horseshoe dynamical subsystem
embedded in these flows is shown to exist using the shape approximations
{U`} introduced in [29, Chapter 23] and discussed in Section 9 above. The
pseudogroup action induced on the connected components of U` ∩R0 is
shown to produce horseshoe subsystems if the perturbed flow Φεt satisfies
the admissibility condition.

The conclusion of Theorem 10.1 is that a generic aperiodic Kuperberg
flow is a zero entropy flow which is the limit of a smooth deformation of
flows with positive entropy. The study of the generic properties of flows,
as discussed for example in the works [8, 21, 51, 52, 55], shows that the
aperiodic flows admit arbitrarily close flows with positive entropy, in the
C1-topology on flows, but the existence of smooth deformations is more
special.
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It is natural to ask whether the admissibility hypothesis in Theo-
rem 10.1 is necessary.

Problem 10.2. Show that the topological entropy htop(Φ
ε
t) > 0 for a

DK–flow Φεt on Kε with ε > 0.

A solution of this may just require a technical extension of the ideas
used in the proof of Theorem 10.1, though it is also possible that there
are novel dynamical problems which arise in the study of it.

There is another variation on the DK construction, using various al-
ternative surgery schemes. In Section 3 of [40], the authors introduce the
notion of “bridge immersions” of a plug. Then in Section 5 of that work,
they show that plugs with bridge immersions also yield 3-dimensional
aperiodic plugs. The use of bridge immersions of a plug allows for many
more variations of the constructions of DK-flows.

Problem 10.3. Study the dynamical properties of an aperiodic Kuperberg
flow obtained via a bridge immersion, and for flows obtained by smooth
variations of aperiodic flows from bridge immersions.

Essentially nothing is known about the structure of the minimal sets for
bridge immersed Kuperberg flows and their dynamical properties. Even
less is known for the DK flows obtained by smooth variations of the in-
sertion maps in bridge immersed flows.

Theorem 10.1 states that there exist smooth families of DK–flows with
positive entropy, which limit on a given generic Kuperberg flow. The dy-
namical properties of the horseshoes for the perturbed flow Φεt are still
unexplored. One fascinating question is the relation between the defor-
mation of these dynamical systems to an aperiodic flow, and whether the
limit flow is uniquely ergodic, as suggested in Problem 7.1.

Problem 10.4. Let {Φεt | 0 < ε ≤ ε0} be a family of generic DK–flows on
Kε which converge to a generic Kuperberg flow Φt in the C∞-topology of
flows. Study the limiting behavior of the periodic orbits for the invariant
horseshoes for the flows Φεt as ε → 0? Describe the invariant measures
on the minimal set Σ which arise as the limits of periodic orbits for Φεt.

The construction of the horseshoe dynamics for the generic DK–flows
in Theorem 10.1 are based on choosing appropriate compact branches of
the embedded surface M0 as discussed in [30]. These compact surfaces
approximately generate the orbits which define the horseshoe, and so
behave much like a template for the horseshoes created [65, 66].

Problem 10.5. Show that the horseshoes for a generic DK–flow with
positive entropy are carried by templates derived from the compact pieces
of M0.
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The dynamics of the DK–flows appears to be reminiscent of the anal-
ysis of the dynamics of Lorenz attractors, as discussed for example in
the survey by Ghys [23]. Moreover, the variation of the horseshoes for
a smooth family for generic DK–flows with positive entropy suggests a
comparison with the degeneration in the dynamics of the Lorenz attrac-
tors as studied by de Carvalho and Hall [10, 11, 12, 25]. The analogy
between the dynamics of a family of generic DK–flows and a family of
Lorenz attractors suggests that the topic is worth further investigation.

We conclude this discussion of the dynamics of the variations on the
construction of Kuperberg flows with a curious problem. The periodic
orbits for the modified Wilson plugs constructed in Section 2 can be de-
stroyed if the function g used in the definition of the Wilson flow in (3)
is perturbed so that it is non-vanishing. Then every orbit for the Wilson
flow escapes from the plug. One can then construct a Kuperberg plug,
as in Section 3, using such a Wilson plug that stops no orbits. However,
inserting the plug no longer breaks open the periodic orbits. The problem
is to describe the dynamical properties of a perturbed flow Φεt constructed
using a non-stopping Wilson flow.

Problem 10.6. Let Φεt be a generic DK–flow on Kε with ε > 0, and let
φt be the flow obtained from the construction of Φεt by taking a sufficiently
small smooth perturbation of the function g used in the construction of
the Wilson flow which removes its vanishing points. Show that the flow
φt has an invariant horseshoe dynamical system, and thus htop(φt) > 0.

If these perturbed flows do contain horseshoe dynamical systems, then
they have positive topological entropy. Thus, by taking a smooth defor-
mation of the functions g above, one obtains another family of positive
entropy flows which limit smoothly on the aperiodic Kuperberg flows.
This problem is discussed further in [31].
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