http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

On spaces with rank k-diagonals or zeroset diagonals

by

WEI-FENG XUAN AND WEI-XUE SHI

Electronically published on November 23, 2017

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON SPACES WITH RANK *k*-DIAGONALS OR ZEROSET DIAGONALS

WEI-FENG XUAN AND WEI-XUE SHI

ABSTRACT. In this paper, we make some observations on spaces with rank k-diagonals or zeroset diagonals. In particular, we prove some cardinality inequalities on spaces with rank 2-diagonals or rank 3-diagonals. Moreover, we prove that if a space X has a zeroset diagonal and X^2 is star σ -compact then X is submetrizable.

1. INTRODUCTION

All spaces are assumed to be topological T_1 -spaces. All notation and terminology not explained in the paper is given in [6]. If A is a subset of a space X and \mathcal{U} is a family of subsets of X, then $\operatorname{St}(A, \mathcal{U}) = \bigcup \{ \mathcal{U} \in \mathcal{U} : \mathcal{U} \cap A \neq \emptyset \}$. We also put $\operatorname{St}^0(A, \mathcal{U}) = A$ and for a natural number n, $\operatorname{St}^{n+1}(A, \mathcal{U}) = \operatorname{St}(\operatorname{St}^n(A, \mathcal{U}), \mathcal{U})$. If $A = \{x\}$ for some $x \in X$, then we write $\operatorname{St}^n(x, \mathcal{U})$ instead of $\operatorname{St}^n(\{x\}, \mathcal{U})$.

A diagonal sequence of rank k on a space X, where $k \in \omega$, is a countable family $\{\mathcal{U}_n : n \in \omega\}$ of open covering of X such that $\{x\} = \bigcap \{\operatorname{St}^k(x, \mathcal{U}_n) : n \in \omega\}$ for each $x \in X$. A space X has a rank k-diagonal, where $k \in \omega$, if there is a diagonal sequence $\{\mathcal{U}_n : n \in \omega\}$ on X of rank k. A space X has a strong rank k-diagonal, where $k \in \omega$, if there is a diagonal sequence $\{\mathcal{U}_n : n \in \omega\}$ on X such that $\{x\} = \bigcap \{\overline{\operatorname{St}^k(x, \mathcal{U}_n)} : n \in \omega\}$ for each $x \in X$. The rank of the diagonal of X is defined as the greatest natural number k such that X has a rank k-diagonal, if such a number k exists. Note that every rank 3-diagonal implies regular G_{δ} -diagonal and every submetrizable space has a rank k-diagonal for each $k \in \omega$. For more details on rank k-diagonal, see [2].

²⁰¹⁰ Mathematics Subject Classification. Primary 54D20; Secondary 54E35. Key words and phrases. Rank 2-diagonal, Rank 3-diagonal, Weakly Lindelöf, Normal, Cardinality, Zeroset diagonal, Star σ -compact.

The paper is supported by NSFC project 11626131 and 11271178. ©2017 Topology Proceedings.

²⁴⁵

The following results on regular G_{δ} -diagonal or zeroset diagonal are due to Buzyakova.

Theorem 1.1. ([4]) If a CCC space X has a regular G_{δ} -diagonal then the cardinality of X is at most \mathfrak{c} .

Theorem 1.2. ([5]) If X has a zero-set diagonal and X^2 has countable extent then X is submetrizable.

In this paper, we make some observations on spaces with rank kdiagonals or zeroset diagonals. In particular, in Section 2, we prove some cardinality inequalities on spaces with rank 2-diagonals or rank 3diagonals. In Section 3, we mainly prove that if a space X has a zeroset diagonal and X^2 is star σ -compact then X is submetrizable. The results in Section 2 can be compared to Theorem 1.1, and the main result in Section 3 is an improvement of Theorem 1.2, because countable extent implies star countability, which implies star σ -compactness.

We start with some easy consequences. It is known that, if a space X has a rank 1-diagonal then it is T_1 and if X has a rank 2-diagonal then it is Hausdorff. Moreover, we have the following observation.

Proposition 1.3. If X has a strong rank 2-diagonal then it is Urysohn.

Proof. Let x and y be two distinct points of X. Since X has a strong rank 2-diagonal, there exists a diagonal sequence $\{\mathcal{U}_n : n \in \omega\}$ on X such that $\{x\} = \bigcap\{\overline{\operatorname{St}^2(x,\mathcal{U}_n)} : n \in \omega\}$. It follows that there exists $n_0 \in \omega$ such that $y \notin \overline{\operatorname{St}^2(x,\mathcal{U}_{n_0})}$. So, there is an open neighborhood U of y such that $\overline{U} \cap \operatorname{St}^2(x,\mathcal{U}_{n_0}) = \emptyset$. Let $V = \operatorname{St}(x,\mathcal{U}_{n_0})$. It is evident that $\overline{V} = \overline{\operatorname{St}(x,\mathcal{U}_{n_0})} \subset \operatorname{St}^2(x,\mathcal{U}_{n_0})$ and hence $\overline{U} \cap \overline{V} = \emptyset$. This proves X is Urysohn. \Box

A space X has a development if there is a sequence of open covers $\{\mathcal{U}_n : n \in \omega\}$ of X such that for every $x \in X$, the sequence $\{\operatorname{St}(x, \mathcal{U}_n) : n \in \omega\}$ is a base at x. We say that a space X is developable if it has a development. A Moore space is a developable regular space.

Proposition 1.4. Let X be a developable space. Then for each $k \in \omega$, the following statements are equivalent: (i) X has a strong rank k-diagonal. (ii) X has a rank (k + 1)-diagonal.

Proof. Implication (ii) \Rightarrow (i) is obvious, so that it suffices to prove that (i) \Rightarrow (ii). Indeed, by (i) we can fix a development $\{\mathcal{U}_n : n \in \omega\}$ of X satisfying that \mathcal{U}_{n+1} refines \mathcal{U}_n and $\{x\} = \bigcap\{\overline{\operatorname{St}^k}(x,\mathcal{U}_n) : n \in \omega\}$ for each $x \in X$. Now let x, y be any two distinct points of X. We have to show that $y \notin \bigcap\{\operatorname{St}^{k+1}(x,\mathcal{U}_n) : n \in \omega\}$.

246

Assume the contrary. Then $\operatorname{St}(y,\mathcal{U}_n) \cap \operatorname{St}^k(x,\mathcal{U}_n) \neq \emptyset$ for each $n \in \omega$. We can pick $z_n \in \operatorname{St}(y,\mathcal{U}_n) \cap \operatorname{St}^k(x,\mathcal{U}_n)$. Since the family $\{\operatorname{St}(y,\mathcal{U}_n): n \in \omega\}$ forms a base at y, the sequence $\{z_n : n \in \omega\}$ converges to y. It is clear that for each $n \in \omega$, $y \in \{z_{m+n}: m \in \omega\} \subset \operatorname{St}^k(x,\mathcal{U}_n)$. This shows $y \in \bigcap\{\operatorname{St}^k(x,\mathcal{U}_n): n \in \omega\}$. A contradiction! \Box

2. CARDINALITY INEQUALITIES

In this section, we prove some cardinality inequalities on spaces with rank 2-diagonals or rank 3-diagonals. The cardinality of a set X is denoted by |X|, and $[X]^2$ will denote the set of two-element subsets of X. We write ω for the first infinite cardinal and \mathfrak{c} for the cardinality of the continuum.

We say that a space X is weakly Lindelöf if every open cover of X has a countable subfamily whose union is dense in X. A space X has countable chain condition (abbreviated as CCC) if any disjoint family of open sets in X is countable, that is, the Souslin number (or cellularity) of X is at most ω . It is known that every CCC space is weakly Lindelöf. A space X is star countable if whenever \mathcal{U} is an open cover of X, there is a countable subset A of X such that $St(A, \mathcal{U}) = X$.

We will use the following countable version of a set-theoretic theorem due to Erdös and Radó.

Lemma 2.1. [7, Theorem 2.3] Let X be a set with $|X| > \mathfrak{c}$ and suppose $[X]^2 = \bigcup \{P_n : n \in \omega\}$. Then there exists $n_0 < \omega$ and a subset S of X with $|S| > \omega$ such that $[S]^2 \subset P_{n_0}$.

Lemma 2.2. Let $\{\mathcal{U}_n : n \in \omega\}$ be a diagonal sequence on X of rank k, where $k \geq 1$. If $|X| > \mathfrak{c}$, then there exists an uncountable closed discrete subset S of X such that for any two distinct points $x, y \in S$ there exists $n_0 \in \omega$ such that $y \notin \operatorname{St}^k(x, \mathcal{U}_{n_0})$.

Proof. By our assumptions, there exists a sequence $\{\mathcal{U}_n : n \in \omega\}$ of open covers of X such that $\{x\} = \bigcap \{\operatorname{St}^k(x, \mathcal{U}_n) : n \in \omega\}$ for every $x \in X$. We may suppose $\operatorname{St}^k(x, \mathcal{U}_{n+1}) \subset \operatorname{St}^k(x, \mathcal{U}_n)$ for any $n \in \omega$. For each $n \in \omega$ let

$$P_n = \left\{ \{x, y\} \in [X]^2 : x \notin \operatorname{St}^{\mathsf{k}}(y, \mathcal{U}_n) \right\}$$

Thus, $[X]^2 = \bigcup \{P_n : n \in \omega\}$. Then by Lemma 2.1 there exists a subset S of X with $|S| > \omega$ and $[S]^2 \subset P_{n_0}$ for some $n_0 \in \omega$. It is evident that for any two distinct points $x, y \in S, y \notin \operatorname{St}^k(x, \mathcal{U}_{n_0})$. Now we show that S is closed and discrete. If not, let $x \in X$ and suppose x were an accumulation point of S. Since X is T_1 , each neighborhood $U \in \mathcal{U}_{n_0}$ of x meets infinitely many members of S. Therefore there exist distinct points y and z in $S \cap U$. Thus $y \in U \subset \operatorname{St}(z, \mathcal{U}_{n_0}) \subset \operatorname{St}^k(z, \mathcal{U}_{n_0})$. It is a contradiction. Thus S has no accumulation points in X; equivalently, S is a closed and discrete subset of X. This completes the proof.

In Lemma 2.2, if the diagonal rank of X is at least 2, i.e., $k \geq 2$, then S has a disjoint open expansion $\{\operatorname{St}(x, \mathcal{U}_{n_0}) : x \in S\}$. Indeed, if there exist $x, y \in S$ such that $\operatorname{St}(x, \mathcal{U}_{n_0}) \cap \operatorname{St}(y, \mathcal{U}_{n_0}) \neq \emptyset$, then $y \in \operatorname{St}^2(x, \mathcal{U}_{n_0}) \subset$ $\operatorname{St}^k(x, \mathcal{U}_{n_0})$. This is impossible. With the aid of this fact, we obtain

Corollary 2.3. If X is a CCC space with a rank k-diagonal, where $k \ge 2$, then the cardinality of X is at most \mathfrak{c} .

Moreover, by a well known fact [1, Proposition 2] that if X has uncountable closed discrete subset which has a disjoint open expansion then X is not star countable, we can deduce a further corollary.

Corollary 2.4. If X is a star countable space with a rank k-diagonal, where $k \geq 2$, then the cardinality of X is at most \mathfrak{c} .

Theorem 2.5. If X is a weakly Lindelöf normal space and has a rank 2-diagonal, then the cardinality of X does not exceed \mathfrak{c} .

Proof. Assume the contrary. It follows from Lemma 2.2 that there exist an uncountable closed and discrete subset S of X and an open cover \mathcal{U}_{n_0} of X such that for any two distinct points x, y of $S, y \notin \mathrm{St}^2(x, \mathcal{U}_{n_0})$. Clearly, $S \subset \mathrm{St}(S, \mathcal{U}_{n_0})$. Since X is normal, there exists an open subset U of Xsuch that $S \subset U \subset \overline{U} \subset \mathrm{St}(S, \mathcal{U}_{n_0})$. Let $\mathcal{U} = \{\mathrm{St}(x, \mathcal{U}_{n_0}) : x \in S\} \cup X \setminus \overline{U}$.

It is obvious that \mathcal{U} is an open cover of X and hence there exists a countable subset A of S such that $\{\operatorname{St}(x,\mathcal{U}_{n_0}): x \in A\} \cup X \setminus \overline{U}$ is dense in X, since X is weakly Lindelöf. Pick any point $x \in S \setminus A$. It is evident that $\operatorname{St}(x,\mathcal{U}_{n_0}) \cap U \cap (X \setminus \overline{U}) = \emptyset$. Moreover, $\operatorname{St}(x,\mathcal{U}_{n_0}) \cap U \cap \operatorname{St}(A,\mathcal{U}_{n_0}) = \emptyset$, otherwise there must exist $y \in A$ such that $\operatorname{St}(x,\mathcal{U}_{n_0}) \cap \operatorname{St}(y,\mathcal{U}_{n_0}) = \emptyset$, by symmetry, $y \in \operatorname{St}^2(x,\mathcal{U}_{n_0})$, a contradiction. Therefore, the neighborhood $\operatorname{St}(x,\mathcal{U}_{n_0}) \cap U$ of x witnesses that $x \notin \operatorname{St}(A,\mathcal{U}_{n_0}) \cup X \setminus \overline{U} = X$. This is a contradiction and proves that $|X| \leq \mathfrak{c}$.

Theorem 2.6. If X is a weakly Lindelöf space and has a rank 3-diagonal, then the cardinality of X does not exceed c.

Proof. Assume the contrary. It follows from Lemma 2.2 that there exist an uncountable closed and discrete subset S of X and an open cover \mathcal{U}_{n_0} of X such that for any two distinct points x, y of $S, y \notin \mathrm{St}^3(x, \mathcal{U}_{n_0})$. Clearly, $\overline{\mathrm{St}(S, \mathcal{U}_{n_0})} \subset \mathrm{St}^2(S, \mathcal{U}_{n_0})$. In fact, pick any $x \in \overline{\mathrm{St}(S, \mathcal{U}_{n_0})}$. It is evident that $\mathrm{St}(x, \mathcal{U}_{n_0}) \cap \mathrm{St}(S, \mathcal{U}_{n_0}) \neq \emptyset$. By symmetry, $x \in \mathrm{St}^2(S, \mathcal{U}_{n_0})$. Let $\mathcal{U} = \{\mathrm{St}^2(x, \mathcal{U}_{n_0}) : x \in S\} \cup X \setminus \overline{\mathrm{St}(S, \mathcal{U}_{n_0})}.$

It is obvious that \mathcal{U} is an open cover of X and hence there exists a countable subset A of S such that $\{\operatorname{St}^2(x,\mathcal{U}_{n_0}): x \in A\} \cup X \setminus \overline{\operatorname{St}(S,\mathcal{U}_{n_0})}$ is dense in X, since X is weakly Lindelöf. Pick any point $x \in S \setminus A$. It is evident that $\operatorname{St}(x,\mathcal{U}_{n_0}) \cap (X \setminus \overline{\operatorname{St}(S,\mathcal{U}_{n_0})}) = \emptyset$. Moreover,

248

 $\operatorname{St}(x,\mathcal{U}_{n_0})\cap\operatorname{St}^2(A,\mathcal{U}_{n_0})=\emptyset$, since otherwise there must exist $y \in A$ such that $\operatorname{St}(x,\mathcal{U}_{n_0})\cap\operatorname{St}^2(y,\mathcal{U}_{n_0})=\emptyset$, by symmetry, $y \in \operatorname{St}^3(x,\mathcal{U}_{n_0})$, a contradiction. Therefore, the neighborhood $\operatorname{St}(x,\mathcal{U}_{n_0})$ of x witnesses that $x \notin \operatorname{St}(A,\mathcal{U}_{n_0}) \cup X \setminus \operatorname{St}(S,\mathcal{U}_{n_0}) = X$. This is a contradiction and proves that $|X| \leq \mathfrak{c}$.

If we drop the condition "weakly Lindelöf" in Theorem 2.5 or Theorem 2.6, the conclusion is no longer true, as can be seen in the following example.

Example 2.7. Let *D* be a discrete space with $|D| = 2^{\mathfrak{c}}$. Clearly, for any $k \in \omega$, it has a rank k-diagonal and it is not weakly Lindelöf.

3. Zeroset diagonals

For any spaces X and Y, the symbol Y^X here denotes the set of all continuous mappings of X to Y. A space X is star σ -compact if whenever \mathcal{U} is an open cover of X, there is a σ -compact subspace $A \subset X$ such that $\operatorname{St}(A, \mathcal{U}) = X$. Clearly, every star countable space is star σ -compact. But a star σ -compact space need not be star countable, see [3, Example 2.5].

We say that a space X is submetrizable if there exists a continuous injection of X into a metrizable space. A space X has a zeroset diagonal if there is a continuous mapping $f : X^2 \to [0,1]$ with $\Delta_X = f^{-1}(0)$, where $\Delta_X = \{(x,x) : x \in X\}$. In general, having a zeroset diagonal doesn't guarantee submetrizability [9]. In [8], Martin asks for what classes of spaces the presence of a zeroset diagonal implies submetrizability. In this section, we prove that if X has a zeroset diagonal and X^2 is star σ -compact then X is submetrizable.

Lemma 3.1. Let X^2 be star σ -compact and C be a closed subset of X^2 . If \mathcal{U} is an open cover of C, then there exists a σ -compact subset A of X, such that $C \subset St(X \times A, \mathcal{U})$.

Proof. It is not difficult to see that $\mathcal{U} \cup \{X^2 \setminus C\}$ is an open cover of X^2 . By virtue of star σ -compactness, there exists a σ -compact subset K of X^2 , such that $\operatorname{St}(K, \mathcal{U} \cup \{X^2 \setminus C\}) = X^2$. Let A = p(K), where p is the projection of X^2 onto the second factor. Since any continuous image of a compact set is compact, it follows that A is σ -compact. Therefore, we have $C \subset \operatorname{St}(K, \mathcal{U}) \subset \operatorname{St}(X \times A, \mathcal{U})$.

Lemma 3.2. Let $f: X^2 \to [0,1]$ be a continuous mapping and M be any subset of X. Then the mapping f_M from X to $[0,1]^M$ with the compact-open topology is continuous by defining $(f_M(x))(a) = f(x,a)$, where $x \in X$ and $a \in M$.

Proof. We can apply Theorem 3.4.1 of [6] to conclude that the compactopen topology on $[0, 1]^M$ is proper, i.e., for every space Z and any continuous mapping $g: Z \times M \to [0, 1]$, the mapping $f_M: Z \to [0, 1]^M$ defined by $(f_M(z))(a) = g(z, a)$ is continuous, where $z \in Z$ and $a \in M$. Let Z = X and $g = f|_{X \times M}$. It is easy to check that f_M is continuous. \Box

Theorem 3.3. If X has a zeroset diagonal and X^2 is star σ -compact then X is submetrizable.

Proof. By our hypothesis, there exists a continuous mapping $f : X^2 \to [0,1]$ such that $\Delta_X = f^{-1}(0)$. Let $C_n = f^{-1}(\lfloor \frac{1}{n}, 1 \rfloor)$ for each $n \in \mathbb{N}$. Obviously, C_n is closed in X^2 and $X^2 \setminus \Delta_X = \bigcup_{n \in \mathbb{N}} C_n$. For each $n \in \mathbb{N}$, we define \mathcal{U}_n as following:

$$\mathcal{U}_n = \{ U \times V : U \times V \subset f^{-1}((\frac{1}{2n}, 1]), V \times V \subset f^{-1}([0, \frac{1}{2n})); U, V \text{ are open in } X \}.$$

Note that \mathcal{U}_n is an open cover of C_n . We apply Lemma 3.1 to conclude that there exists a σ -compact subset $K_n = \bigcup_{m \in \mathbb{N}} M_{n,m}$, where $M_{n,m}$ is compact in X, such that $C_n \subset \operatorname{St}(X \times K_n, \mathcal{U}_n)$.

Define the mapping $f_{M_{n,m}}: X \to [0,1]^{M_{n,m}}$ by $(f_{M_{n,m}}(x))(a) = f(x,a)$ for each $m \in \mathbb{N}$, where $x \in X$ and $a \in M_{n,m}$. By Lemma 3.2, it is easy to see that $f_{M_{n,m}}$ is continuous. Next, we define $F = \Delta f_{M_{n,m}}: X \to \prod_{n,m\in\mathbb{N}} [0,1]^{M_{n,m}}$. Clearly, F is continuous and since every space $[0,1]^{M_{n,m}}$ with the compact-open topology is metrizable, it follows that the space $\prod_{n,m\in\mathbb{N}} [0,1]^{M_{n,m}}$ is metrizable.

To finish the proof, it is enough to check that F is an injection. Pick any two distinct points $x, y \in X$. Since $(x, y) \in X^2 \setminus \Delta_X = \bigcup_{n \in \mathbb{N}} C_n$, there exists some $n \in \mathbb{N}$ such that $(x, y) \in C_n$. Notice that $C_n \subset \operatorname{St}(X \times K_n, \mathcal{U}_n)$, so there exist $a \in K_n$ and $U \times V \in \mathcal{U}_n$ such that $(x, y) \in U \times V$ and $a \in V$, and hence $(x, a) \in U \times V$, $(y, a) \in V \times V$. By virtue of this fact and the definition of \mathcal{U}_n , we have $f(x, a) \neq f(y, a)$. Now let us consider the mapping $f_{M_{n,m}}$, where $m \in \mathbb{N}$ which makes $a \in M_{n,m} \subset K_n$. Since $(f_{M_{n,m}}(x))(a) = f(x, a) \neq f(y, a) = (f_{M_{n,m}}(y))(a)$, it follows that $f_{M_{n,m}}(x) \neq f_{M_{n,m}}(y)$, and thus $F(x) \neq F(y)$.

References

- L. P. Aiken, Star-covering properties: Generalized Ψ-spaces, countability conditions, reflection. Topology and its Applications, 158(13) (2011), 1732-1737.
- [2] A. V. Arhangel'skii, R. Z. Buzyakova, The rank of the diagonal and submetrizability, Comment. Math. Univ. Carolin 47(4) (2006), 585-597.
- [3] O. T. Alas, L. R. Junqueira, R. G. Wilson, Countability and star covering properties, Topology and its Applications, 158(4) (2011), 620-626.
- [4] R. Z. Buzyakova, Cardinalities of ccc-spaces with regular G_{δ} -diagonals, Topology and its Applications **153(11)** (2006), 1696-1698.

250

- [5] _____, Observations on spaces with zeroset or regular G_{δ} -diagonals, Comment. Math. Univ. Carolin. **46(3)** (2005), 469-473.
- [6] R. Engelking. General topology. 1989.
- [7] R. Hodel, Cardinal functions I, in: Handbook of set-theoretic topology, K. Kunen and J. Vaughan, eds., North-Holland, Amsterdam, 1984: 1-61.
- [8] H. W. Martin, Contractibility of topological spaces onto metric spaces, Pacific J. Math 61(1) (1975), 209-217.
- [9] M. L. Wage, W. G. Fleissner, G. M. Reed, Normality versus countable paracompactness in perfect spaces, Bulletin of the American Mathematical Society 82(4) (1976), 635-639.

(Xuan) College of Science, Nanjing Audit University, Nanjing, China, 210093

E-mail address: wfxuan@nau.edu.cn

(Shi) Department of Mathematics, Nanjing University, Nanjing, China, 210093

E-mail address: wxshi@nju.edu.cn