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ON SPACES WITH RANK k-DIAGONALS OR
ZEROSET DIAGONALS

WEI-FENG XUAN AND WEI-XUE SHI

Abstract. In this paper, we make some observations on spaces
with rank k-diagonals or zeroset diagonals. In particular, we prove
some cardinality inequalities on spaces with rank 2-diagonals or
rank 3-diagonals. Moreover, we prove that if a space X has a
zeroset diagonal and X2 is star σ-compact then X is submetrizable.

1. Introduction

All spaces are assumed to be topological T1-spaces. All notation and
terminology not explained in the paper is given in [6]. If A is a sub-
set of a space X and U is a family of subsets of X, then St(A,U) =∪
{U ∈ U : U ∩ A ̸= ∅}. We also put St0(A,U) = A and for a natural

number n, Stn+1(A,U) = St(Stn(A,U),U). If A = {x} for some x ∈ X,
then we write Stn(x,U) instead of Stn({x},U).

A diagonal sequence of rank k on a space X, where k ∈ ω, is a countable
family {Un : n ∈ ω} of open covering of X such that {x} =

∩
{Stk(x,Un) :

n ∈ ω} for each x ∈ X. A space X has a rank k-diagonal, where k ∈ ω,
if there is a diagonal sequence {Un : n ∈ ω} on X of rank k. A space X
has a strong rank k-diagonal, where k ∈ ω, if there is a diagonal sequence
{Un : n ∈ ω} on X such that {x} =

∩
{Stk(x,Un) : n ∈ ω} for each

x ∈ X. The rank of the diagonal of X is defined as the greatest natural
number k such that X has a rank k-diagonal, if such a number k exists.
Note that every rank 3-diagonal implies regular Gδ-diagonal and every
submetrizable space has a rank k-diagonal for each k ∈ ω. For more
details on rank k-diagonal, see [2].
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The following results on regular Gδ-diagonal or zeroset diagonal are
due to Buzyakova.

Theorem 1.1. ([4]) If a CCC space X has a regular Gδ-diagonal then
the cardinality of X is at most c.

Theorem 1.2. ([5]) If X has a zero-set diagonal and X2 has countable
extent then X is submetrizable.

In this paper, we make some observations on spaces with rank k-
diagonals or zeroset diagonals. In particular, in Section 2, we prove
some cardinality inequalities on spaces with rank 2-diagonals or rank 3-
diagonals. In Section 3, we mainly prove that if a space X has a zeroset
diagonal and X2 is star σ-compact then X is submetrizable. The results
in Section 2 can be compared to Theorem 1.1, and the main result in
Section 3 is an improvement of Theorem 1.2, because countable extent
implies star countability, which implies star σ-compactness.

We start with some easy consequences. It is known that, if a space X
has a rank 1-diagonal then it is T1 and if X has a rank 2-diagonal then it
is Hausdorff. Moreover, we have the following observation.

Proposition 1.3. If X has a strong rank 2-diagonal then it is Urysohn.

Proof. Let x and y be two distinct points of X. Since X has a strong
rank 2-diagonal, there exists a diagonal sequence {Un : n ∈ ω} on X such
that {x} =

∩
{St2(x,Un) : n ∈ ω}. It follows that there exists n0 ∈ ω

such that y /∈ St2(x,Un0). So, there is an open neighborhood U of y
such that U ∩ St2(x,Un0) = ∅. Let V = St(x,Un0). It is evident that
V = St(x,Un0) ⊂ St2(x,Un0) and hence U ∩ V = ∅. This proves X is
Urysohn. �

A space X has a development if there is a sequence of open covers
{Un : n ∈ ω} of X such that for every x ∈ X, the sequence {St(x,Un) :
n ∈ ω} is a base at x. We say that a space X is developable if it has a
development. A Moore space is a developable regular space.

Proposition 1.4. Let X be a developable space. Then for each k ∈ ω, the
following statements are equivalent: (i) X has a strong rank k-diagonal.
(ii) X has a rank (k + 1)-diagonal.

Proof. Implication (ii) ⇒ (i) is obvious, so that it suffices to prove that
(i) ⇒ (ii). Indeed, by (i) we can fix a development {Un : n ∈ ω} of X
satisfying that Un+1 refines Un and {x} =

∩
{Stk(x,Un) : n ∈ ω} for each

x ∈ X. Now let x, y be any two distinct points of X. We have to show
that y /∈

∩
{Stk+1(x,Un) : n ∈ ω}.
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Assume the contrary. Then St(y,Un) ∩ Stk(x,Un) ̸= ∅ for each n ∈ ω.
We can pick zn∈St(y,Un)∩Stk(x,Un). Since the family {St(y,Un) :n∈ω}
forms a base at y, the sequence {zn : n ∈ ω} converges to y. It is clear
that for each n ∈ ω, y ∈ {zm+n : m ∈ ω} ⊂ Stk(x,Un). This shows
y ∈

∩
{Stk(x,Un) : n ∈ ω}. A contradiction! �

2. Cardinality inequalities

In this section, we prove some cardinality inequalities on spaces with
rank 2-diagonals or rank 3-diagonals. The cardinality of a set X is denoted
by |X|, and [X]2 will denote the set of two-element subsets of X. We write
ω for the first infinite cardinal and c for the cardinality of the continuum.

We say that a space X is weakly Lindelöf if every open cover of X
has a countable subfamily whose union is dense in X. A space X has
countable chain condition (abbreviated as CCC) if any disjoint family of
open sets in X is countable, that is, the Souslin number (or cellularity)
of X is at most ω. It is known that every CCC space is weakly Lindelöf.
A space X is star countable if whenever U is an open cover of X, there is
a countable subset A of X such that St(A,U) = X.

We will use the following countable version of a set-theoretic theorem
due to Erdös and Radó.

Lemma 2.1. [7, Theorem 2.3] Let X be a set with |X| > c and suppose
[X]2 =

∪
{Pn : n ∈ ω}. Then there exists n0 < ω and a subset S of X

with |S| > ω such that [S]2 ⊂ Pn0 .

Lemma 2.2. Let {Un : n ∈ ω} be a diagonal sequence on X of rank k,
where k ≥ 1. If |X| > c, then there exists an uncountable closed discrete
subset S of X such that for any two distinct points x, y ∈ S there exists
n0 ∈ ω such that y /∈ Stk(x,Un0).

Proof. By our assumptions, there exists a sequence {Un : n ∈ ω} of open
covers of X such that {x} =

∩
{Stk(x,Un) : n ∈ ω} for every x ∈ X. We

may suppose Stk(x,Un+1) ⊂ Stk(x,Un) for any n ∈ ω. For each n ∈ ω let

Pn =
{
{x, y} ∈ [X]2 : x /∈ Stk(y,Un)}

}
.

Thus, [X]2 =
∪
{Pn : n ∈ ω}. Then by Lemma 2.1 there exists a subset

S of X with |S| > ω and [S]2 ⊂ Pn0 for some n0 ∈ ω. It is evident
that for any two distinct points x, y ∈ S, y /∈ Stk(x,Un0). Now we show
that S is closed and discrete. If not, let x ∈ X and suppose x were an
accumulation point of S. Since X is T1, each neighborhood U ∈ Un0

of x meets infinitely many members of S. Therefore there exist distinct
points y and z in S ∩ U . Thus y ∈ U ⊂ St(z,Un0) ⊂ Stk(z,Un0). It is a
contradiction. Thus S has no accumulation points in X; equivalently, S
is a closed and discrete subset of X. This completes the proof. �
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In Lemma 2.2, if the diagonal rank of X is at least 2, i.e., k ≥ 2, then S
has a disjoint open expansion {St(x,Un0) : x ∈ S}. Indeed, if there exist
x, y ∈ S such that St(x,Un0) ∩ St(y,Un0) ̸= ∅, then y ∈ St2(x,Un0) ⊂
Stk(x,Un0). This is impossible. With the aid of this fact, we obtain

Corollary 2.3. If X is a CCC space with a rank k-diagonal, where k ≥ 2,
then the cardinality of X is at most c.

Moreover, by a well known fact [1, Proposition 2] that if X has un-
countable closed discrete subset which has a disjoint open expansion then
X is not star countable, we can deduce a further corollary.

Corollary 2.4. If X is a star countable space with a rank k-diagonal,
where k ≥ 2, then the cardinality of X is at most c.

Theorem 2.5. If X is a weakly Lindelöf normal space and has a rank
2-diagonal, then the cardinality of X does not exceed c.

Proof. Assume the contrary. It follows from Lemma 2.2 that there exist
an uncountable closed and discrete subset S of X and an open cover Un0 of
X such that for any two distinct points x, y of S, y /∈ St2(x,Un0). Clearly,
S ⊂ St(S,Un0). Since X is normal, there exists an open subset U of X
such that S ⊂ U ⊂ U ⊂ St(S,Un0). Let U = {St(x,Un0) : x ∈ S}∪X \U .

It is obvious that U is an open cover of X and hence there exists a
countable subset A of S such that {St(x,Un0) : x ∈ A}∪X \U is dense in
X, since X is weakly Lindelöf. Pick any point x ∈ S\A. It is evident that
St(x,Un0) ∩ U ∩ (X \ U) = ∅. Moreover, St(x,Un0) ∩ U ∩ St(A,Un0) = ∅,
otherwise there must exist y ∈ A such that St(x,Un0)∩St(y,Un0) = ∅, by
symmetry, y ∈ St2(x,Un0), a contradiction. Therefore, the neighborhood
St(x,Un0) ∩ U of x witnesses that x /∈ St(A,Un0) ∪X \ U = X. This is a
contradiction and proves that |X| ≤ c. �

Theorem 2.6. If X is a weakly Lindelöf space and has a rank 3-diagonal,
then the cardinality of X does not exceed c.

Proof. Assume the contrary. It follows from Lemma 2.2 that there exist
an uncountable closed and discrete subset S of X and an open cover Un0

of X such that for any two distinct points x, y of S, y /∈ St3(x,Un0).
Clearly, St(S,Un0) ⊂ St2(S,Un0). In fact, pick any x ∈ St(S,Un0). It is
evident that St(x,Un0) ∩ St(S,Un0) ̸= ∅. By symmetry, x ∈ St2(S,Un0).

Let U =
{
St2(x,Un0) : x ∈ S

}
∪X \ St(S,Un0).

It is obvious that U is an open cover of X and hence there exists a
countable subset A of S such that {St2(x,Un0) : x ∈ A} ∪X \ St(S,Un0)
is dense in X, since X is weakly Lindelöf. Pick any point x ∈ S \
A. It is evident that St(x,Un0) ∩ (X \ St(S,Un0)) = ∅. Moreover,
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St(x,Un0) ∩ St2(A,Un0) = ∅, since otherwise there must exist y ∈ A
such that St(x,Un0) ∩ St2(y,Un0) = ∅, by symmetry, y ∈ St3(x,Un0), a
contradiction. Therefore, the neighborhood St(x,Un0) of x witnesses that
x /∈ St(A,Un0

) ∪X \ St(S,Un0
) = X. This is a contradiction and proves

that |X| ≤ c. �

If we drop the condition “weakly Lindelöf” in Theorem 2.5 or Theorem 
2.6, the conclusion is no longer true, as can be seen in the following 
example.

Example 2.7. Let D be a discrete space with |D| = 2c. Clearly, for any
k ∈ ω, it has a rank k-diagonal and it is not weakly Lindelöf.

3. Zeroset diagonals

For any spaces X and Y , the symbol Y X here denotes the set of all
continuous mappings of X to Y . A space X is star σ-compact if whenever
U is an open cover of X, there is a σ-compact subspace A ⊂ X such that
St(A,U) = X. Clearly, every star countable space is star σ-compact. But
a star σ-compact space need not be star countable, see [3, Example 2.5].

We say that a space X is submetrizable if there exists a continuous
injection of X into a metrizable space. A space X has a zeroset diagonal
if there is a continuous mapping f : X2 → [0, 1] with ∆X = f−1(0),
where ∆X = {(x, x) : x ∈ X}. In general, having a zeroset diagonal
doesn’t guarantee submetrizability [9]. In [8], Martin asks for what classes
of spaces the presence of a zeroset diagonal implies submetrizability. In
this section, we prove that if X has a zeroset diagonal and X2 is star
σ-compact then X is submetrizable.

Lemma 3.1. Let X2 be star σ-compact and C be a closed subset of X2.
If U is an open cover of C, then there exists a σ-compact subset A of X,
such that C ⊂ St(X ×A,U).

Proof. It is not difficult to see that U ∪ {X2 \C} is an open cover of X2.
By virtue of star σ-compactness, there exists a σ-compact subset K of
X2, such that St(K,U ∪ {X2 \ C}) = X2. Let A = p(K), where p is the
projection of X2 onto the second factor. Since any continuous image of
a compact set is compact, it follows that A is σ-compact. Therefore, we
have C ⊂ St(K,U) ⊂ St(X ×A,U). �

Lemma 3.2. Let f : X2 → [0, 1] be a continuous mapping and M be any
subset of X. Then the mapping fM from X to [0, 1]M with the compact-
open topology is continuous by defining (fM (x))(a) = f(x, a), where x ∈
X and a ∈ M .
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Proof. We can apply Theorem 3.4.1 of [6] to conclude that the compact-
open topology on [0, 1]M is proper, i.e., for every space Z and any contin-
uous mapping g : Z ×M → [0, 1], the mapping fM : Z → [0, 1]M defined
by (fM (z))(a) = g(z, a) is continuous, where z ∈ Z and a ∈ M . Let
Z = X and g = f |X×M . It is easy to check that fM is continuous. �

Theorem 3.3. If X has a zeroset diagonal and X2 is star σ-compact
then X is submetrizable.

Proof. By our hypothesis, there exists a continuous mapping f : X2 →
[0, 1] such that ∆X = f−1(0). Let Cn = f−1([ 1n , 1]) for each n ∈ N.
Obviously, Cn is closed in X2 and X2 \∆X =

∪
n∈N Cn. For each n ∈ N,

we define Un as following:

Un= {U×V : U×V ⊂ f−1((
1

2n
, 1]), V×V ⊂ f−1([0,

1

2n
));U, V are open in X}.

Note that Un is an open cover of Cn. We apply Lemma 3.1 to conclude
that there exists a σ-compact subset Kn =

∪
m∈N Mn,m, where Mn,m is

compact in X, such that Cn ⊂ St(X ×Kn,Un).
Define the mapping fMn,m : X → [0, 1]Mn,m by

(
fMn,m(x)

)
(a) =

f(x, a) for each m ∈ N, where x ∈ X and a ∈ Mn,m. By Lemma 3.2, it
is easy to see that fMn,m is continuous. Next, we define F = ∆fMn,m :

X →
∏

n,m∈N[0, 1]
Mn,m . Clearly, F is continuous and since every space

[0, 1]Mn,m with the compact-open topology is metrizable, it follows that
the space

∏
n,m∈N[0, 1]

Mn,m is metrizable.
To finish the proof, it is enough to check that F is an injection. Pick

any two distinct points x, y ∈ X. Since (x, y) ∈ X2 \ ∆X =
∪

n∈N Cn,
there exists some n ∈ N such that (x, y) ∈ Cn. Notice that Cn ⊂ St(X ×
Kn,Un), so there exist a ∈ Kn and U × V ∈ Un such that (x, y) ∈ U × V
and a ∈ V , and hence (x, a) ∈ U × V , (y, a) ∈ V × V . By virtue of
this fact and the definition of Un, we have f(x, a) ̸= f(y, a). Now let us
consider the mapping fMn,m , where m ∈ N which makes a ∈ Mn,m ⊂ Kn.
Since (fMn,m(x))(a) = f(x, a) ̸= f(y, a) = (fMn,m(y))(a), it follows that
fMn,m(x) ̸= fMn,m(y), and thus F (x) ̸= F (y). �
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