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QUANTALE-VALUED GENERALIZATIONS
OF APPROACH SPACES: L-APPROACH SYSTEMS

GUNTHER JÄGER

Abstract. We define and study quantale-valued approach sys-
tems. We show that the resulting category is topological and study
its relation to other categories of quantale-valued generalizations of
approach spaces, such as the categories of quantale-valued approach
spaces and of quantale-valued gauge spaces. We pay particular at-
tention to the probabilistic case.

1. Introduction

The category of approach spaces, introduced in [13], is a common su-
percategory of the categories of metric and topological spaces. The theory
of these spaces is far developed and has many applications as is demon-
strated in e.g. [14, 15]. In simple terms one may say, that the theory of
approach spaces is “metrical” in the sense that an approach space is of-
ten either defined by a point-set distance function or a suitable family of
metrics (a so-called gauge) or by families of “local distances” (so-called ap-
proach systems). Therefore, the reservations that apply to metric spaces
in terms of the precise knowledge of distances between elements apply also
to approach spaces, and probabilistic generalizations seem natural. In [7],
we introduced such a probabilistic generalization of approach spaces and
suggested to even consider a further quantale-valued generalization. This
was taken up in [10], who showed that such quantale-valued approach
spaces fit nicely into the framework of monoidal topology [5]. In both the
probabilistic case [7] and the quantale-valued case [10], the basic defini-
tion is in terms of a quantale-valued point-set distance function and also
equivalent forms in terms of quantale-valued (ultra-)filter convergence are
established.
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254 GUNTHER JÄGER

Classically, in many applications, the definition of an approach space
in terms of gauges or approach systems is natural. It is therefore of inter-
est to have similar definitions for the probabilistic case at our disposal.
As is argued in [10], it is more transparent to develop the theory right
from the start based on an arbitrary quantale and then recover special
instances by suitable choices of the quantale. We then obtain e.g. Lowen’s
classical theory by choosing as quantale the extended half line [0,∞] or-
dered opposite to the natural order and addition as quantale operation.
For the probabilistic case we choose as quantale the set ∆+ of distance
distribution functions with a sup-continuous triangle function as quantale
operation.

In [8] we defined and studied quantale-valued gauge spaces. We showed
that only under strong restrictions on the quantale, the extension to the
quantale-valued case of the "classical" embedding functor from the cate-
gory of approach spaces into the category of gauge spaces (cf. [14, 15]) is
an isomorphism. In particular, in the probabilistic case these restrictions
are in general not met. In this paper we address the problem of extend-
ing the definition of approach systems to the quantale-valued case. After
collecting necessary results and notations in the preliminary section 2 —
with a certain emphasis on the quantale of distance distribution functions,
where we produce results that we did not find anywhere in the literature
– we review in Section 3 the definitions of L-metric spaces, L-approach
spaces and L-gauge spaces and their relations, where L is a quantale. Sec-
tion 4 is then devoted to quantale-valued approach systems and we show
that the resulting category is topological. In Section 5 we investigate the
relations between the categories of quantale-valued gauge spaces and of
quantale-valued approach system spaces and we show that the former can
be reflectively embedded into the latter. We give two examples that show
that, even for a linear order or in the probablistic case, the two categories
may not be isomorphic under the natural embeddings. The final Section
6 then shows that the category of quantale-valued approach spaces can
be coreflectively embedded into the category quantale-valued approach
system spaces.

2. Preliminaries

Let (L,≤) be a complete lattice, where ⊤ ̸= ⊥ for the top element ⊤
and the bottom element ⊥. In any complete lattice L we can define the
well-below relation α�β if for all subsets D ⊆ L such that β ≤

∨
D there

is δ ∈ D such that α ≤ δ. Then α ≤ β whenever α� β, and α�
∨
j∈J βj

iff α � βi for some i ∈ J . A complete lattice is completely distributive if
and only if we have α =

∨
{β : β � α} for any α ∈ L, see e.g. Theorem

7.2.3 in [1]. Similarly, we can define the well-above relation β ≻ α if
for all subsets D ⊆ L such that

∧
D ≤ α there is δ ∈ D with δ ≤ β.
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Then β ≻ α implies β ≥ α, and α ≻
∧
j∈J βj iff α ≻ βj for some j ∈ J .

L is completely distributive iff α =
∧
{β ∈ L : β ≻ α} for any α ∈ L.

Clearly, in a complete lattice L we have α� β iff α ≻op β in the opposite
order. For more results on lattices we refer to [4].

The triple L = (L,≤, ∗), where (L,≤) is a complete lattice, is called a
quantale if (L, ∗) is a semigroup, and the semigroup operation ∗ distributes
over arbitrary joins, i.e. if for all αj , β ∈ L, (j ∈ J) we have( ∨

j∈J

αj

)
∗ β =

∨
j∈J

(αj ∗ β) and β ∗
( ∨
j∈J

αj

)
=
∨
j∈J

(β ∗ αj).

A quantale L = (L,≤, ∗) is called commutative if (L, ∗) is a commutative
semigroup and it is called integral if the top element of L acts as the unit,
i.e. if α ∗ ⊤ = ⊤ ∗ α = α for all α ∈ L.

Standing assumption in this paper: We consider in this paper
only commutative and integral quantales L = (L,≤, ∗) with completely
distributive lattices L.

In any such quantale we can define an implication →: L × L −→ L
by α → β =

∨
{γ ∈ L : α ∗ γ ≤ β} for α, β ∈ L. Then α ∗ β ≤ γ iff

α ≤ β → γ for all α, β, γ ∈ L. We say that the quantale L = (L,≤, ∗)
satisfies the strong De Morgan law if (

∧
j∈J αj) → β =

∨
j∈J(αj → β)

for all αj , β ∈ L, j ∈ J . A value quantale [3] is a quantale L with
an underlying completely distributive lattice (L,≤) such that α ∨ β � ⊤
whenever α, β�⊤. In a value quantale, if α�⊤, then there is β�⊤ such
that α� β ∗ β, see [3].

Example 2.1. (1) Left-continuous t-norms. A triangular norm
or t-norm is a binary operation ∗ on the unit interval [0, 1] which
is associative, commutative, non-decreasing in each argument and
which has 1 as the unit. The triple ([0, 1],≤, ∗) can be considered
as a quantale if the t-norm is left-continuous, i.e. if (

∨
j∈J αj)∗β =∨

j∈J (αj∗β) for all αj , β ∈ [0, 1], j ∈ J . The three most commonly
used (left-continuous) t-norms are:

• the minimum t-norm: α ∗ β = α ∧ β,
• the product t-norm: α ∗ β = α · β,
• the Lukasiewicz t-norm: α ∗ β = (α+ β − 1) ∨ 0.

Later, in some instances, we are also interested in right-continuous
t-norms. These are t-norms, which distribute over arbitrary meets,
i.e. that satisfy (

∧
j∈J αj) ∗ β =

∧
j∈J(αj ∗ β) for all αj , β ∈

[0, 1], j ∈ J . An example of a left-continuous t-norm that is not
right-continuous is the so-called nilpotent minimum, see e.g. [9].
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(2) Lawvere’s quantale. The interval [0,∞] with the opposite order
and addition as the quantale operation α ∗ β = α + β (extended
by α + ∞ = ∞ + a = ∞ for all α, β ∈ [0,∞]) is a quantale,
see e.g. [12, 3]. Lawvere’s quantale is a value quantale [3], the
quantale operation distributes over arbitrary meets and the strong
De Morgan law is valid.

(3) A frame is a quantale with ∗ = ∧.
(4) A complete MV-algebra is a commutative and integral quantale

L = (L,≤, ∗) which satisfies (α→ β) → β = α∨β for all α, β ∈ L,
[6]. In a complete MV-algebra the quantale operation distributes
over arbitrary meets and the strong De Morgan law is valid.

(5) The quantale of distance distribution functions. A function
φ : [0,∞] −→ [0, 1], which satisfies φ(x) = supz<x φ(z) for all x ∈
[0,∞] is called a distance distribution function [18]. We note that
a distance distribution function is non-decreasing and satisfies
φ(0) = 0. The set of all distance distribution functions is denoted
by ∆+. For example, for each 0 ≤ a ≤ ∞ the functions

εa(x) =

{
0 if 0 ≤ x ≤ a
1 if a < x ≤ ∞

are in ∆+. The set ∆+ is ordered pointwise; the bottom element
of ∆+ is ε∞ and the top element is ε0. The set ∆+ with this order
then becomes a completely distributive lattice [3]. We note that
joins and finite meets are computed pointwise but that

∧
i∈I φi

is in general not the pointwise infimum. However, we have the
following result.

Lemma 2.2. Let ψj ∈ ∆+ for j ∈ J . Then

(
∧
j∈J

ψj)(x) = sup
z<x

inf
j∈J

ψj(z),

with the pointwise infimum infj∈J ψj.

Proof. We first note that for a function ψ : [0,∞] −→ [0, 1] if we
define φ : [0,∞] −→ [0, 1] by φ(x) = supz<x ψ(z), then φ ∈ ∆+.
Clearly

∧
j∈J ψj ≤ infj∈J ψj and therefore by left-continuity of∧

j∈J ψj ∈ ∆+, we have∧
j∈J

ψj(x) = sup
z≤x

∧
j∈J

ψj(z) ≤ sup
z<x

inf
j∈J

ψj(z).

Furthermore, supz<x infj∈J ψj(z) ≤ infj∈J supz<x ψj(z) =
infj∈J ψj(x) ≤ ψj(x) for all j ∈ J and as the function φ(x) =
supz<x infj∈J ψj(z) is in ∆+, the claim follows. �
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A binary operation, ∗ : ∆+ × ∆+ −→ ∆+, which is commu-
tative, associative, non-decreasing in each place and that satisfies
the boundary condition φ∗ε0 = φ for all φ ∈ ∆+, is called a trian-
gle function [17, 18]. A triangle function is called sup-continuous
[18], if (

∨
i∈I φi) ∗ ψ =

∨
i∈I(φi ∗ ψ) for all φi, ψ ∈ ∆+, (i ∈ I),

i.e. if (∆+,≤, ∗) is a quantale. It is shown in [3] that (∆+,≤, ∗)
is a value quantale.

The following two examples for sup-continuous triangle func-
tions are induced by a left-continuous t-norm ∗ on [0, 1] and
are used later on. We define ~ : ∆+ × ∆+ −→ ∆+ and 2∗ :
∆+×∆+ −→ ∆+ by φ~ψ(x) =

∨
u φ(u)∗ψ(x−u) and φ2∗ψ(x) =

φ(x) ∗ ψ(x).
In the sequel, we discuss the properties of the distributivity of

these quantale operations over arbitrary meets and the strong De
Morgan law.

Proposition 2.3. Let the t-norm ∗ distribute over arbitrary meets
and let φ,ψj ∈ ∆+ (j ∈ J). Then (

∧
j∈J

ψj)2∗φ =
∧
j∈J

(ψj 2∗φ).

Proof. We always have (
∧
j∈J ψj)2∗φ ≤

∧
j∈J(ψj 2∗φ). For the

converse inequality, let x ∈ (0,∞). Then, using Lemma 2.2,∧
j∈J

(φj 2∗ψ)(x) = sup
z<x

inf
j∈J

(φj 2∗ψ(z)) = sup
z<x

inf
j∈J

(φj(z) ∗ ψ(z))

= sup
z<x

((( inf
j∈J

φj(z)) ∗ ψ(z))

≤ (sup
z<x

inf
j∈J

φj(z)) ∗ (sup
z<x

ψ(z))

= (
∧
j∈J

φj(x)) ∗ (ψ(x)) = (
∧
j∈J

φ)2∗ψ(x). �

For the triangle function ~ a similar result is not true, not even
for finite meets. This can be seen by choosing the product t-norm
and φ1(x) =

1
2ε0, φ2(x) = ε1 and ψ ∈ ∆+ defined by ψ(x) = x

for 0 ≤ x ≤ 1 and ψ(x) = 1 for x > 1. Then (φ1 ∧ φ2) ⊙ ψ ̸≥
(φ1 ⊙ ψ) ∧ (φ2 ⊙ ψ).

The following examples show, that in general (∆+,~) and
(∆+, 2∗ ) both do not satisfy the strong De Morgan law, even
if the t-norm ∗ satisfies it. First we show the following result.

Lemma 2.4. Let ∗ be a t-norm on [0, 1] and let φ,ψ ∈ ∆+.
If we denote the implication in ([0, 1],≤, ∗) by α

∗→ β and the
implication in (∆+,≤,~) by φ ~→ ψ, then for each x ∈ [0,∞] we
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have
φ

~→ ψ(x) = sup
z<x

inf
u
(φ(u)

∗→ ψ(z + u)).

Proof. For u ∈ [0,∞] we define ηu ∈ ∆+ by ηu(x) = φ(u)
∗→

ψ(x+ u) if x > 0 and ηu(0) = 0. Then

φ
~→ ψ =

∨
{η ∈ ∆+ : φ(u) ∗ η(y) ≤ ψ(y + u)∀y, u}

=
∨

{η ∈ ∆+ : η ≤ ηu∀u} =
∧
u

ηu.

From Lemma 2.2 then the claim follows. �

We consider now the product t-norm and, for n ∈ IN, φn =
1
nε0 ∨ ε∞ and ψ = ε1. Then for x ≤ 1 we have

φn
⊙→ ψ(x) ≤ sup

z<x
inf

u:z+u≤1

(
ε(z + u)

φn(u)
∧ 1

)
= 0.

However
∧
n∈IN φn = ε∞ and hence (

∧
n∈IN φn)

⊙→ ψ = ε0. The

same example can be used for �. Here we have φn
�→ ψ = ε1 for

all n ∈ IN and again (
∧
n∈IN φn)

�→ ψ = ε0.

Later, the following condition will be crucial.

Definition 2.5. [7] A quantale L = (L,≤, ∗) satisfies the condition (I) if

(I) we have β ̸≤ γ ∗ β whenever β ≻ ⊥, γ �⊤.

We showed in [7] that if the quantale L = (L,≤, ∗) satisfies the strong
cancellation law

(SCL) for all γ, α ∈ L, β ≻ ⊥ : γ ∗ β ≤ α ∗ β implies γ ≤ α

and if ⊤ �̸⊤ then the condition (I) is satisfied.

Example 2.6. (1) The two-point chain L = {0, 1} does not satisfy
the condition (I) as 1� 1.

(2) In L = ([0,∞],≥,+) the strong cancellation law is valid and hence
L satisfies the condition (I).

(3) For L = ([0, 1],≤, ·) with the product t-norm the strong cancella-
tion law is satisfied and hence L satisfies the condition (I). In fact,
for any strict t-norm ∗ on [0, 1] (see [9]), L = ([0, 1],≤, ∗) satisfies
the strong cancellation law and hence the condition (I).

(4) For a nilpotent t-norm ∗ on [0, 1] (see [9]), L = ([0, 1],≤, ∗) satisfies
the condition (I).

(5) A frame (L,≤,∧) does in general not satisfy (I).



QUANTALE-VALUED APPROACH SYSTEMS 259

(6) The 4-element Boolean algebra {⊥, α, β,⊤} with α ∧ β = ⊥ and
α ∨ β = ⊤ satisfies (I) but not the strong cancellation law.

(7) In an MV-algebra (L,≤, ∗) we have β ≤ α∗β iff β∧(α→ ⊥) = ⊥.
Hence an MV-algebra satisfies (I) if and only if β ∧ (α→ ⊥) ̸= ⊥
whenever α 6 ⊤ and β ̸≻ ⊥. In particular, if L has no zero-
divisors for ∧ and if ⊤ 6 ⊤ and ⊥ ̸≻ ⊥, then (L,≤, ∗) satisfies
(I). This applies e.g. to a linearly ordered MV-algebra.

(8) As a final example we consider the lattice ∆+. For 0 < δ < ∞
and 0 < γ ≤ 1 we define fδγ = γ · εδ ∈ ∆+. Then if φ� ε0 there
is ϵ < 1 such that φ ≤ fδϵ. As a consequence, we can show the
following result.

Lemma 2.7. Let ∗ be a t-norm in [0, 1] that satisfies the property
(I), i.e. for which 0 < β and ϵ < 1 implies ϵ ∗ β < β. Then both
(∆+,~) and (∆+, 2∗ ) satisfy the condition (I).

Proof. The case (∆+,~) was shown in [8]. We prove the case
for (∆+, 2∗ ). Let ψ ≻ ε∞ and φ � ε0. Then there is x ∈ [0,∞)
with ψ(x) > 0 and φ ≤ fδϵ. If we assume ψ ≤ φ2∗ψ, then
0 < ψ(x) ≤ φ(x) ∗ ψ(x) and hence φ(x) = ϵ and we obtain
ψ(x) ≤ ϵ ∗ ψ(x), a contradiction. �

The condition (I) is needed for the following result.

Proposition 2.8. Let L be a linearly ordered quantale that satisfies the
condition (I) and for which ∗ distributes over arbitrary meets. If

∧
j∈J δj ̸=

⊥ and if α�⊤, then there is j0 ∈ J such that α ∗ δj0 ≤
∧
j∈J δj.

Proof. We note that for a linearly ordered complete lattice, α > β implies
α ≻ β. Hence if

∧
j∈J δj ̸= ⊥, then

∧
j∈J δj ≻ ⊥. We assume now that

for all i ∈ J we have
∧
j∈J δj < δi ∗ α. Then

∧
j∈J δj ≤

∧
j∈J (δj ∗ α) =

(
∧
j∈J δj) ∗ α, a contradiction to condition (I). �
Quantales that satisfy the assumptions of Proposition 2.8 are e.g. the

unit interval L = [0, 1] with the product t-norm or Lawvere’s quantale.
That in general we cannot omit the assumptions of the proposition is
shown by the following two examples.

Example 2.9. Let L = [0, 1] ∪ {⊥ = −∞,⊤ = ∞} with the natural
order. Then L is linearly ordered. We consider the product as quantale
operation. As we have ⊤ � ⊤, the condition (I) is not satisfied. Let
δn = 1

n and α = 1 � ⊤. Then
∧
n∈IN δn = 0 ≻ ⊥ but for all n ∈ IN we

have 1
n ∗ 1 > 0. �

Example 2.10. We consider L = ∆+ and δn = ε1− 1
n

and α = f 1
2 ,

1
2
� ε0.

Then
∧∞
n=2 δn = ε1 ̸= ε∞. For the triangle function � induced by the
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product t-norm we have fδ,ϵ � fγ,η = fδ∨γ,ϵη. Then the condition (I) is
satisfied but α� δn = f1− 1

n ,
1
2
̸≤ ε1 for all n = 2, 3, 4, .... �

We assume some familiarity with category theory and refer to the
textbooks [2] and [16] for more details and notation. A construct is a
category C with a faithful functor U : C −→ SET, from C to the cate-
gory of sets. A functor F : C −→ D between the constructs C,D with
faithful functors U : C −→ SET and V : D −→ SET, respectively, is
called a concrete functor if U = V ◦ F . We always consider a con-
struct as a category whose objects are structured sets (X, ξ) and mor-
phisms are suitable mappings between the underlying sets. A construct
is called topological if it allows initial constructions, i.e. if for every source
(fi : X −→ (Xi, ξi))i∈I there is a unique structure ξ on X, such that a
mapping g : (Y, η) −→ (X, ξ) is a morphism if and only if for each i ∈ I
the composition fi ◦ g : (Y, η) −→ (Xi, ξi) is a morphism.

A pair of concrete functors G : C −→ D, F : D −→ C between the
constructs C,D, is a Galois correspondence if idD ≤ G◦F and F ◦G ≤ idC.
The functor F is the called a left-adjoint and G is called a right-adjoint.

3. L-approach spaces, L-gauge spaces and L-metric
spaces

In the sequel, let L = (L,≤, ∗) be a commutative and integral quantale,
where (L,≤) is completely distributive.

Definition 3.1. [8, 10, 11] A pair (X, δ) with a set X and an L-distance
δ : X × P (X) −→ L is called an L-approach space if, for all x ∈ X,
A,B ⊆ X, the following axioms are satisfied.
(LD1) δ(x, {x}) = ⊤;
(LD2) δ(x, ∅) = ⊥;
(LD3) δ(x,A) ∨ δ(x,B) = δ(x,A ∪B) for all A,B ⊆ X;
(LD4) δ(x,A) ≥ δ(x,A

α
) ∗ α for all α ∈ L, where A

α
= {x ∈ X :

δ(x,A) ≥ α}.
A mapping f : (X, δ) −→ (X ′, δ′) is called an L-approach morphism if
δ(x,A) ≤ δ′(f(x), f(A)) for all x ∈ X,A ⊆ X. The category with ob-
jects the L-approach spaces and morphisms the L-approach morphisms is
denoted by L-AP.

For Lawvere’s quantale L = ([0,∞],≥,+) we obtain Lowen’s approach
spaces [13, 14, 15]. For L = (∆+,≤, ∗) with a sup-continuous triangle
function ∗, an L-approach space is a probabilistic approach space [7]. In
[10, 11], L-approach spaces are called L-valued topological spaces. This
name is justified as for the case L = ({0, 1},≤,∧), an L-approach space
can be identified with a topological space (defined by its closure operator).
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However, we prefer not to use this name in this paper because the terms
L-topology and also L-valued topology are used for a different notion in
the field of fuzzy topology.

Definition 3.2. [3] An L-metric space is a pair (X, d) of a set X and a
mapping d : X ×X −→ L which is
(LM1) reflexive, i.e. d(x, x) = ⊤ for all x ∈ X, and
(LM2) transitive, i.e. d(x, y) ∗ d(y, z) ≤ d(x, z) for all x, y, z ∈ X.
A mapping between two L-metric spaces, f : (X, dX) −→ (Y, dY ) is called
an L-metric morphism if dX(x1, x2) ≤ dY (f(x1), f(x2)) for all x1, x2 ∈ X.
We denote the category of L-metric spaces with L-metric morphisms by
L-MET. We further denote the fibre over X in L-MET by L-MET(X).

L-metric spaces are called continuity spaces in [3]. In case L is the
two-point chain, an L-metric space is a preordered set. For Lawvere’s
quantale, L = ([0,∞],≥,+), an L-metric space is a quasimetric space. In
the probabilistic case, L = (∆+,≤, ∗), an L-metric space is a probabilistic
quasimetric space, see [3].

Definition 3.3. [8] Let H ⊆ L-MET(X) and d ∈ L-MET(X).
(1) d is called locally supported by H if for all x ∈ X, α � ⊤, ω ≻ ⊥

there is eα,ωx ∈ H such that eα,ωx (x, ·) ∗ α ≤ d(x, ·) ∨ ω;
(2) H is called locally saturated if for d ∈ L-MET(X) we have d ∈ H

whenever d is locally supported by H.

Definition 3.4. [8] A subset G ⊆ L-MET(X) is called an L-gauge if G is
a filter in L-MET(X) and G is locally saturated. The pair (X,G) is called
an L-gauge space. A mapping f : (X,G) −→ (X ′,G′) is called an L-gauge
morphism if d′ ◦ (f × f) ∈ G whenever d′ ∈ G′. The category of L-gauge
spaces with L-gauge morphisms is denoted by L-GS.

If L = ([0,∞],≥,+), then an L-gauge is a gauge in the original defini-
tion [13, 14, 15]. In case L = (∆+,≤, ∗) with a sup-continuous triangle
function ∗, we speak of a probabilistic gauge.

In [8] we defined two functors E : L-AP −→ L-GS and R : L-GS −→
L-AP by E((X, δ)) = (X,Gδ), E(f) = f , with

Gδ = {d ∈ L-MET(X) : ∀A ⊆ X,x ∈ X : δ(x,A) ≤
∨
a∈A

d(x, a)},

and R((X,G)) = (X, δG), R(f) = f , with

δG(x,A) =
∧
d∈G

∨
a∈A

d(x, a).
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Proposition 3.5. [8]
(1) The functor R : L-GS −→ L-AP is right adjoint to the functor E :

L-AP −→ L-GS, i.e. we have idL-AP ≤ R ◦ E and E ◦R ≤ idL-GS.
(2) If L satisfies the strong De Morgan law, then E is a full functor

and idL-AP = R ◦ E. Hence L-AP is bicoreflectively embedded in
L-GS.

(3) Let L be a linearly ordered value quantale that satisfies the con-
dition (I) and the strong De Morgan law. Then E is a concrete
isomorphism, i.e. the categories L-AP and L-GS are concretely
isomorphic.

We showed in [8] that in general we cannot omit the assumption of a
linearly ordered value quantale that satisfies the condition (I) in Propo-
sition 3.5 (3). In particular, the embedding functor E is not always an
isomorphism between the categories of probabilistic approach spaces and
probabilistic gauge spaces. This presents an interesting deviation from the
classical case, L = ([0,∞],≥,+), where approach spaces can equivalently
be described by either L-distances or by L-gauges, see [13, 14, 15].

4. The category of L-approach system spaces

Definition 4.1. Let A ⊆ LX and let φ ∈ LX .
(1) φ is supported by A if for all α�⊤, ω ≻ ⊥ there is φωα ∈ A such

that φωα ∗ α ≤ φ ∨ ω.
(2) A is saturated if φ ∈ A whenever φ is supported by A.
(3) For B ⊆ LX we call B̂ = {φ ∈ LX : φ is supported by B} the

saturation of B.

Definition 4.2. Let, for each x ∈ X, A(x) ⊆ LX . Then A = (A(x))x∈X
is called an L-approach system if for all x ∈ X

(A0) A(x) is a filter in LX ;
(A1) φ(x) = ⊤ whenever φ ∈ A(x);
(A2) A(x) is saturated;
(A3) For all φ ∈ A(x), α � ⊤, ω ≻ ⊥ there is a family (φz)z∈X ∈∏

z∈X A(z) such that φx(z)∗φz(y)∗α ≤ φ(y)∨ω for all y, z ∈ X.
The pair (X,A) is called an L-approach system space. A mapping between
two L-approach system spaces, f : (X,A) −→ (X ′,A′) is called an L-
approach system morphism if φ′ ◦ f ∈ A(x) whenever x ∈ X and φ′ ∈
A′(f(x)). The category of L-approach system spaces with L-approach
system morphisms is denoted by L-AS.

For Lawvere’s quantale L = ([0,∞],≥,+) we obtain Lowen’s approach
systems [13, 14, 15]. For L = (∆+,≤, ∗) with a sup-continuous triangle
function ∗, we speak of probabilistic approach systems.
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Often it is sufficient – and more convenient – to work with simpler
systems, where in particular (A2) is not demanded.

Definition 4.3. Let, for each x ∈ X, B(x) ⊆ LX . Then (B(x))x∈X is
called an L-approach basis if for all x ∈ X

(B0) B(x) is a filter basis in LX ;
(B1) φ(x) = ⊤ whenever φ ∈ B(x);
(B2) For all φ ∈ B(x), α � ⊤, ω ≻ ⊥ there is a family (φz)z∈X ∈∏

z∈X B(z) such that φx(z)∗φz(y)∗α ≤ φ(y)∨ω for all y, z ∈ X.

Definition 4.4. Let (A(x))x∈X be an L-approach system and (B(x))x∈X
be a collection of filter bases on LX . (B(x))x∈X is called a basis for the
L-approach system (A(x))x∈X if for all x ∈ X, B̂(x) = A(x).

Lemma 4.5. Let L be a value quantale.

(1) If (B(x))x∈X is an L-approach basis, then (B̂(x))x∈X is an L-
approach system with basis (B(x))x∈X .

(2) If (B(x))x∈X is a basis for an L-approach system, then (B(x))x∈X
is an L-approach basis.

Proof. We first prove (1). In order to show the condition (A0) for
(B̂(x))x∈X it suffices to show that for each x ∈ X, B̂(x) is an upper sys-
tem. Let φ ∈ B̂(x) and let ψ ≥ φ. Then φ is supported by B(x) and hence,
for α�⊤ and ω ≻ ⊥ there is φωα ∈ B(x) such that φωα ∗α ≤ φ∨ω ≤ ψ∨ω
and hence ψ is supported by B(x), i.e. ψ ∈ B̂(x).

For (A1), let φ ∈ B̂(x). Then for all α � ⊤ and all ω ≻ ⊥ there is
φωα ∈ B(x) such that φωα ∗ α ≤ φ ∨ ω. Then α = φωα(x) ∗ α ≤ φ(x) ∨ ω
and hence ⊤ =

∨
{α ∈ L : α � ⊤} ≤ φ(x) ∨ ω and therefore also

⊤ ≤
∧
ω≻⊥(φ(x) ∨ ω) = φ(x) ∨

∧
ω≻⊥ ω = φ(x) ∨ ⊥ = φ(x).

For (A2), let φ ∈ LX be supported by B̂(x). Then for α�⊤ and ω ≻ ⊥
there is φωα ∈ B̂(x) such that φωα ∗ α ≤ φ ∨ ω. As L is a value quantale,
there is β � ⊤ such that α � β ∗ β. Then φωβ is dominated by B(x), i.e.
there is ψωβ ∈ B(x) such that ψωβ ∗ β ≤ φωβ ∨ ω. We conclude

ψωβ ∗ α ≤ (ψωβ ∗ β) ∗ β ≤ (φωβ ∨ ω) ∗ β ≤ φ ∨ ω.
As α�⊤ and ω ≻ ⊥ are arbitrary this shows that φ is supported by B(x),
i.e. φ ∈ B̂(x).

For (A3), let φ ∈ B̂(x), let α�⊤ and let ω ≻ ⊥. We choose β�⊤ such
that α�β ∗β. Then there are φωβ ∈ B(x) such that φωβ ∗β ≤ φ∨ω. Hence
there are (φz)z∈X ∈

∏
z∈X B(z) such that φx(z) ∗ φz(y) ∗ β ≤ φωβ (y) ∨ ω

and consequently

φx(z) ∗ φz(y) ∗ α ≤ φx(z) ∗ φz(y) ∗ β ∗ β ≤ (φωβ (y) ∨ ω) ∗ β ≤ φ(y) ∨ ω.
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Finally, it is clear that (B(x))x∈X is a basis for the approach system
(B̂(x))x∈X .

We now prove (2). The properties (B0) and (B1) are easy and not
shown. For (B2), let φ ∈ B(x), α �⊤ and β ≻ ⊥. We can choose β �⊤
such that α� (β ∗β)∗ (β ∗β). Then there are (φz)z∈X ∈

∏
z∈X A(z) such

that φx(z) ∗ φz(y) ∗ β ≤ φ(y) ∨ ω. For each z ∈ X, φz is dominated by
B(z). Hence there is ψωzβ ∈ B(z) such that ψωzβ ∗ β ≤ φz ∨ ω. It follows
that ψωxβ(z) ∗ ψzβ(y) ∗ β ∗ β ≤ (φx(z) ∨ ω) ∗ (φz(y) ∨ ω) and we conclude

ψωxβ(z) ∗ ψωzβ(y) ∗ α ≤ (ψωxβ(z) ∗ ψωzβ(y) ∗ (β ∗ β) ∗ (β ∗ β)

≤ (φx(z) ∨ ω) ∗ β) ∗ (φz(y) ∨ ω) ∗ β)

≤ (φx(z) ∗ φz(y) ∗ β ∗ β) ∨ ω ≤ φ(y) ∨ ω.

�

Proposition 4.6. Let L be a value quantale and let (X,A), (X ′,A′) ∈
|L-AS| and let B′ be a basis for A′. A mapping f : (X,A) −→ (X ′,A′)
is an L-approach system morphism if and only if φ′ ◦ f ∈ A(x) whenever
x ∈ X and φ′ ∈ B′(f(x)).

Proof. We only show necessity. Let φ′ ∈ A′(f(x)). Then φ′ is supported
by B′(f(x)), i.e. for all α�⊤ and all ω ≻ ⊥ there is φωα ∈ B′(f(x)) such
that φωα ∗α ≤ φ′ ∨ω. Then φωα ◦ f ∈ A(x). Moreover, it is not difficult to
see that (φ′ ◦ f) ∨ ω ≥ (φωα ◦ f) ∗ α. This shows that φ′ ◦ f is supported
by A(x) and, A(x) being saturated, we conclude φ′ ◦ f ∈ A(x). �

Theorem 4.7. For a value quantale L, the construct L-AS is topological.

Proof. Let (fi : X −→ (Xi,Ai))i∈J be a source. We define, for x ∈ X,

B(x) = {
∧
j∈K

φj ◦ fj : K ⊆ J finite , φj ∈ Aj(fj(x))}.

Then B(x) is an L-approach basis. The properties (B0) and (B1) are easy
and not shown. For (B2), let

∧
j∈K φj ◦ fj ∈ B(x), α�⊤ and ω ≻ ⊥. For

each j ∈ K there is a family (ψjz)z∈Xj
∈
∏
z∈Xj

Aj(z) with

ψjfj(x)(z) ∗ ψ
j
z(y) ∗ α ≤ φj(y) ∨ ω.
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We denote, for t ∈ X, ηt =
∧
j∈K ψ

j
fj(t)

◦ fj . Then ηt ∈ B(t) and for any
t, s ∈ X we have

ηx(t) ∗ ηt(s) ∗ α ≤
∧
j∈K

([
ψjfj(x) ◦ fj(t)

]
∗
[
ψjfj(t) ◦ fj(s)

]
∗ α
)

=
∧
j∈K

(
ψjfj(x)(fj(t)) ∗ ψ

j
fj(t)

(fj(s)) ∗ α
)

≤
∧
j∈K

(φj ◦ fj(s) ∨ ω) =

∧
j∈K

φj ◦ fj(s)

 ∨ ω.

Hence (B2) is satisfied and A(x) = B̂(x) is an L-approach system on X.
Clearly, each fj : (X,A) −→ (Xj ,Aj) is an L-approach system mor-

phism. Consider now a further L-approach system space (Z, C) and a
mapping g : Z −→ X such that for each j ∈ J the composition fj ◦ g :
(Z, C) −→ (Xj ,Aj) is an L-approach system morphism. Let z ∈ Z and
let
∧
j∈K φ ◦ fj ∈ A(g(z)). Then∧

j∈K

φ ◦ fj

 ◦ g =
∧
j∈K

φ ◦ (fj ◦ g) ∈ C(z)

and hence g : (Z, C) −→ (X,A) is an L-approach system morphism. �

5. L-gauge spaces as L-approach system spaces

Proposition 5.1. Let G be an L-gauge on X and define, for x ∈ X,
BG(x) = {d(x, ·) : d ∈ G}. Then (BG(x))x∈X is an L-approach basis.

Proof. (B0) and (B1) are easy and not shown. For (B2), let φ = d(x, ·) ∈
BG(x) and let α � ⊤ and ω ≻ ⊥. As d is an L-metric, we know d(x, z) ∗
d(z, y) ≤ d(x, y). Hence with φz = d(z, ·) ∈ BG(x) for z ∈ X we have

φx(z) ∗ φz(y) ∗ α = d(x, z) ∗ d(z, y) ∗ α ≤ d(x, y) = φ(y) ≤ φ(y) ∨ ω.
�

We denote the L-approach system with basis BG by AG .

Proposition 5.2. Let L be a value quantale. Then F : L-GS −→ L-AS,
defined by F ((X,G)) = (X,AG) and F (f) = f , is an embedding functor.

Proof. Let f : (X,G) −→ (X ′,G′) be an L-gauge morphism and let x ∈ X

and let φ′ ∈ BG′
(f(x)). Then φ′ = d′(f(x), ·) with d′ ∈ G′. Noting that for

y ∈ X we have φ′ ◦ f(y) = φ′(f(y)) = d′(f(x), f(y)) = d′ ◦ (f × f)(x, y) =
d′ ◦ (f × f)(x, ·)(y) and as d′ ◦ (f × f) ∈ G by assumption, we see that
φ′ ◦ f ∈ BG(x). Hence f : (X,AG) −→ (X ′,AG′

) is an L-approach system
morphism. This shows that F is a functor.
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We next show that F is injective on objects. Let G ̸= G′. Without
loss of generality there is d ∈ G such that d /∈ G′. Then for all x ∈ X we
have that d(x, ·) ∈ AG(x). Assume that for all x ∈ X, d(x, ·) ∈ AG′

(x).
Then for each x ∈ X, α � ⊤ and ω ≻ ⊥ there is eα,ωx ∈ G′ such that
eα,ωx (x, ·) ∗α ≤ d(x, ·)∨ ω. Hence d is locally supported by G′, i.e. d ∈ G′,
a contradiction. Hence AG ̸= AG′

. As a concrete functor, F is faithful,
and hence it is an embedding. �

The functor F has a left adjoint. We define, for (X,A) ∈ |L-AS|,

GA = {d ∈ L-MET (X) : ∀x ∈ X, d(x, ·) ∈ A(x)}.

Proposition 5.3. (1) S : L-AS −→ L-GS defined by S((X,A)) =
(X,GA) and S(f) = f is a functor.

(2) If L is a value quantale, then S ◦ F = idL-GS and idL-AS ≤ F ◦ S,
i.e. S is left adjoint to F . Consequently, L-GS is a full bireflective
subcategory of L-AS.

Proof. (1) We first show that if (A(x))x∈X is an L-approach system on
X, then GA = {d ∈ L-MET (X) : ∀x ∈ X, d(x, ·) ∈ A(x)} is an L-gauge.
It follows easily from the fact that all A(x) are filters that GA is a filter
in L-MET(X). We show that GA is locally saturated. Let d ∈ L-MET(X)
be locally supported by GA. Then for all x ∈ X, α�⊤ and ω ≻ ⊥ there
is eωxα ∈ GA such that eωxα(x, ·) ∗ α ≤ d(x, ·) ∨ ω. By definition of GA,
eωxα(x, ·) ∈ A(x) for all x ∈ X and hence by saturation of A(x) we have
d(x, ·) ∈ A(x) for all x ∈ X. But this means d ∈ GA.

Next we show that if (X,A), (X ′,A′) ∈ |L-AS| and if f : (X,A) −→
(X ′,A′) is an L-approach system morphism, then f : (X,GA)−→(X ′,GA′

)

is an L-gauge morphism. Let d′ ∈ GA′
. Then for all x′ ∈ X ′ we have

d′(x′, ·) ∈ A′(x′). In particular d′(f(x), ·) ∈ A′(f(x)), for all x ∈ X.
As f is an L-approach system morphism, d′(f(x), ·) ◦ f ∈ A(x) for all
x ∈ X. Noting that for z ∈ X we have d′(f(x), ·)◦f(z) = d′(f(x), f(z)) =
d′ ◦ (f × f)(x, z) we have that, for all x ∈ X, d′ ◦ (f × f)(x, ·) ∈ A(x), i.e.
d′ ◦ (f × f) ∈ GA.

(2) Let L be a value quantale and let G be an L-gauge on X. We show
that G(AG) = G. Let first d ∈ G. Then d(x, ·) ∈ BG(x) ⊆ AG(x) for
all x ∈ X and hence d ∈ G(AG). Conversely, let d ∈ L-MET(X) with
d(x, ·) ∈ B̂G(x) for all x ∈ X. Then, for all x ∈ X, d(x, ·) is supported
by BG(x). Hence, for α � ⊤ and ω ≻ ⊥ there is eωα(x, ·) ∈ BG(x) such
that eωα(x, ·) ∗ α ≤ d(x, ·) ∨ ω. By definition all eωα ∈ G, i.e. d is locally
supported by G and hence d ∈ G. It follows from this, that F is a full
functor.
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Let now A be an L-approach system on X. We show that A(GA)(x) ⊆
A(x) for all x ∈ X. Let φ ∈ ̂B(GA)(x) and let α � ⊤ and ω ≻ ⊥. Then
there is dωα ∈ GA such that dωα(x, ·) ∗α ≤ φ∨ω. As dωα(x, ·) ∈ A(x) we see
that φ is supported by A(x) and hence φ ∈ A(x). �
Corollary 5.4. Let L be a value quantale. The category L-GS is topolog-
ical with initial structures constructed as in L-AS.

The fact that L-GS is topological was already shown in [8].
Under certain assumptions, the categories L-GS and L-AS are even

isomorphic. We need the following results.

Lemma 5.5. Let B = (B(x))x∈X be an L-approach basis on X and de-
note, for each x ∈ X, A(x) = B̂(x). Let further Z ⊆ X and ω ≻ ⊥. Then
dωZ : X ×X −→ L defined by

dωZ(x, y) =

 ∧
ψ∈B(y)

∨
z∈Z

(ψ(z) ∨ ω)

→

 ∧
φ∈B(x)

∨
z∈Z

(φ(z) ∨ ω)


is an L-metric.

Furthermore, if L is a linearly ordered value quantale that satisfies the
condition (I) and for which ∗ distributes over arbitrary meets, then dωZ ∈
GA.

Proof. Clearly dωZ(x, x) = ⊤ for all x ∈ X. The transitivity follows as, in
any quantale, for all α, β, γ ∈ L we have (α → β) ∗ (γ → α) ≤ γ → β.
Let now L be a linearly ordered value quantale and satisfy the condition
(I) and let the quantale operation distribute over arbitrary meets. We fix
α�⊤ and x ∈ X and note that

∧
φ∈B(x)

∨
z∈Z(φ(z)∨ω) ≥ ω ≻ ⊥. There

is β �⊤ such that α� β ∗ β. We choose φ0 ∈ B(x) such that∨
z∈Z

(φ0(z) ∨ ω) ∗ β ≤
∧

φ∈B(x)

∨
z∈Z

(φ(z) ∨ ω),

and we choose (ψu)u∈X ∈
∏
u∈X B(u) such that ψx(y) ∗ ψy(z) ∗ β ≤

φ0(z) ∨ ω. Then

dωZ(x, y) ≥
∨
z∈Z

(ψy(z) ∨ ω) →
∨
z∈Z

(φ0(z) ∨ ω) ∨ ω

≥ (

(∨
z∈Z

ψy(z)

)
∨ ω) → (

(∨
z∈Z

ψx(y) ∗ ψy(z) ∗ β ∗ β

)
∨ ω)

≥

(∨
z∈Z

ψy(z)

)
→

(
ψx(y) ∗ β ∗ β ∗

∨
z∈Z

ψy(z)

)
≥ ψx(y) ∗ β ∗ β ≥ ψx(y) ∗ α.
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Hence dωZ(x, ·) is supported by B(x), i.e. dωZ(x, ·) ∈ B(x) and we have
dωZ ∈ GA. �

For the second part of the lemma, we cannot omit the assumptions.
We give the following examples for this.
Example 5.6. Let L = [0, 1]∪ {−∞,∞} with the natural order and the
minimum as quantale operation. Then L = (L,≤,∧) is a linearly ordered
value quantale that does not satisfy the condition (I). Let X = (0, 1).

For x ∈ X and 0 < α < 1 we define φα,x(y) =

{
⊤ if y = x
α if y ̸= x

and

B(x) = {φα,x : 0 < α < 1}. We show that (B(x))x∈X is an L-approach
basis. We first note that φα,x ∧ φβ,x = φα∧β,x and hence B(x) is a filter
basis, i.e. we have (B0). Clearly φα,x(x) = ⊤ and (B1) is true. Finally,
we have φα,x(z) ∧ φα,z(y) = ⊤ iff x = y = z and then also φα,x(y) = ⊤.
Hence also condition (B2) is satisfied. We denote A(x) = B̂(x).

We consider now, for a fixed point x0 ∈ X the subset Z = X\{x0}. We
then have

∧
φ∈B(x0)

∨
z ̸=x0

φ(z) =
∧
α∈(0,1) α = 0 and for y ̸= x0 we have∧

ψ∈B(y)

∨
z ̸=x0

ψ(z) ≥
∧
ψ∈B(y) ψ(y) = ⊤. Hence d⊥Z (x0, y) = ⊤ → 0 = 0

if y ̸= x0 and d⊥Z (x0, y) = ⊤ if y = x0. Therefore, for all 0 < α < 1 we
have φα,x0 ∧ ⊤ ̸≤ d⊥Z (x0, ·) ∨ ⊥ and d⊥Z (x0, ·) is not supported by B(x0).
Consequently also d⊥Z (x0, ·) /∈ A(x0) and d⊥Z /∈ GA. �
Example 5.7. Let L = (∆+,≤,�) with the triangle function � induced
by the product t-norm. Let S be a set and, for 0 < α < 1 and p ∈ S,
we define the mapping Φpα : S −→ ∆+ by Φpα(q) = ε1−α if p ̸= q and
Φpα(p) = ε0. We note that Φpα ∧ Φpβ = Φpα∧β . Hence B(p) = {Φpα :
0 < α < 1} is a filter basis. Also we have Φpα(p) = ε0 and hence (B1)
is satisfied. Noting that εα � εβ = εα∨β , we see that (B2) is satisfied as
follows. Let Φpα ∈ B(p). We choose Φqα ∈ B(q) for all q ∈ S and then
have Φpα(q) � Φqα(r) ≤ Φpα(r). The only interesting case is here that
p ̸= q and q ̸= r and p ̸= r. But then we have ε1−α�ε1−α = ε1−α. Hence
(B(p))p∈S is an L-approach basis.

We fix now p0 ∈ S and Z = S \ {p0} and ω = g1,1/4 ≻ ϵ∞ with
g1,1/4 = 1

4ε0 ∨ ε1. Then
∧

Φ∈B(p0)

∨
q ̸=p0

Φ(q) ∨ ω =
∧

α∈(0,1)

ε1−α ∨ ω = ε1 ∨ ω

and for p ̸= p0 we have
∧

Ψ∈B(p)

∨
q ̸=p0

Ψ(q) ∨ ω = ε0 ∨ ω = ε0. Hence

for q = p0 we have dωZ(p0, q) = ε0 and for q ̸= p0 we have dωZ(p0, q) =
ε0 → (ε1 ∨ ω) = ε1 ∨ ω. If we choose φ = f1/2,1/2 � ε0, then for all
0 < α < 1 we have, for q ̸= p0, Φp0α(q) � φ(x) = ε1−α(x) · f1/2,1/2(x)
= 1

2ε(1−α)∨1/2(x) ̸≤ g1,1/4(x) = ε1 ∨ g1,1/4(x) for some 0 < x < 1. Hence
dωZ(p0, ·) is not supported by B(p0), i.e. dωZ(p0, ·) /∈ A(p0), and therefore
dωZ /∈ GA. �
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Proposition 5.8. Let L be a linearly ordered value quantale that satisfies
the condition (I) and let the quantale operation distribute over arbitrary
meets and let the strong De Morgan law hold. Let (X,A) ∈ |L-AS|. Then∧

φ∈A(x)

∨
a∈A

φ(a) =
∧
d∈GA

∨
a∈A

d(x, a).

Proof. For d ∈ GA we have d(x, ·) ∈ A(x) and hence
∧
φ∈A(x)

∨
a∈A φ(a) ≤∧

d∈GA
∨
a∈A d(x, a). For the converse, we use Lemma 5.5. We have∧

d∈GA

∨
a∈A

d(x, a)

≤
∧
ω≻⊥

∨
a∈A

 ∧
ψ∈A(a)

∧
z∈A

(ψ(z) ∨ ω)

→

 ∧
φ∈A(x)

∨
z∈A

(φ(z) ∨ ω)


≤

∧
ω≻⊥

∧
a∈A

∧
ψ∈A(a)

∧
z∈A

(ψ(z) ∨ ω)

→

 ∧
φ∈A(x)

∨
z∈A

(φ(z) ∨ ω)



≤
∧
ω≻⊥


∧
a∈A

∧
ψ∈A(a)

(ψ(a) ∨ ω)


︸ ︷︷ ︸

=⊤

→

 ∧
φ∈A(x)

∨
z∈A

(φ(z) ∨ ω)




=
∧
ω≻⊥

∧
φ∈A(x)

∨
z∈A

(φ(z) ∨ ω) =
∧
ω≻⊥

∧
φ∈A(x)

((
∨
z∈A

φ(z)) ∨ ω)

=
∧
ω≻⊥

((
∧

φ∈A(x)

∨
z∈A

φ(z)) ∨ ω)

= (
∧

φ∈A(x)

∨
z∈A

φ(z)) ∨
∧
ω≻⊥

ω =
∧

φ∈A(x)

∨
z∈A

φ(z).

�

Theorem 5.9. Let L be a linearly ordered value quantale that satisfies
the condition (I) and let the quantale operation distribute over arbitrary
meets and let the strong De Morgan law hold. Then idL-AS = F ◦ S, i.e.
the categories L-AS and L-GS are isomorphic.

Proof. We show that A = A(GA). We have seen above that for all x ∈ X

we have A(GA)(x) ⊆ A(x). Assume now that ψ ∈ A(x) but ψ /∈ A(GA)(x).
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Then ψ is not dominated by B(GA)(x) and hence there is α�⊤ and ω ≻ ⊥
such that for d ∈ GA we have d(x, ·) ∗ α ̸≤ ψ ∨ ω. For d ∈ GA we define
D(d) = {y ∈ X : ψ(y) ∨ ω < d(x, y) ∗ α}. Then, for all d, e ∈ GA,
D(d) ̸= ∅ and D(d ∧ e) = D(d) ∩ D(e). Hence ∧

d∈GA

∧
e∈GA

∨
y∈D(d)

e(x, y)

 ∨ ω

 ∗ α

≥

 ∧
d∈GA

∧
e∈GA

∨
y∈D(d∧e)

(d ∧ e)(x, y)

 ∗ α

=

 ∧
d∈GA

∨
y∈D(d)

d(x, y)

 ∗ α ≥
∧
d∈GA

∨
y∈D(d)

(d(x, y) ∗ α)

≥
∧
d∈GA

∨
y∈D(d)

(ψ(y) ∨ ω) =

 ∧
d∈GA

∨
y∈D(d)

ψ(y)

 ∨ ω

≥

 ∧
d∈GA

∧
φ∈A(x)

∨
y∈D(d)

φ(y)

 ∨ ω

5.8
≥

 ∧
d∈GA

∧
e∈GA

∨
y∈D(d)

e(x, y)

 ∨ ω.

This is a contradiction to condition (I). �

The assumptions of the theorem are satisfied by a linearly ordered MV-
algebra L with ⊥ ̸≻ ⊥ and ⊤ 6 ⊤ and also by L = ([0,∞],≥,+). This
latter case is treated in Lowen’s theory of approach spaces [13, 14, 15]. In
general we cannot omit the assumptions in Theorem 5.9. This is shown
by the following two examples.

Example 5.10. Let L = ({0, 1},≤,∧) andX = [0, 1]. Then the condition
(I) is not satisfied. We define for each x ∈ X and n = 1, 2, 3, ... the
function φn,x : X −→ {0, 1} by φn,x(y) = 1 if |x−y| ≤ 1

n and φn,x(y) = 0

if |x−y| > 1
n . Define, for each x ∈ X, B(x) = {φn,x : n = 1, 2, 3, ...}. We

show that (B(x))x∈X is an L-approach basis. As φn,x∧φm,x = φn∨m,x we
see that condition (B0) is satisfied. Also (B1) is true. For (B2), let φn,x ∈
B(x). We choose for all y ∈ X, φ2n,y ∈ B(y). If φ2n,x(y) ∧ φ2n,y(z) = 1,
then |x − z| ≤ |x − y| + |y − z| ≤ 1

2n + 1
2n = 1

n and hence φn,x(z) = 1.
This shows φ2n,x(y) ∧ φ2n,y(z) ≤ φn,x(z) for all y, z ∈ X and (B2) is
satisfied. We denote A(x) = B̂(x). We now show that d ∈ GA implies
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that d ≡ 1. If d ∈ GA, then for each x ∈ X we have d(x, ·) ∈ A(x). Hence
for all x ∈ X there is nx ∈ {1, 2, 3, ...} such that φnx,x ≤ d(x, ·), i.e. for
all x ∈ X we have d(x, y) = 1 whenever |x − y| ≤ 1

nx
. The set of open

intervals U = {Ix = (x − 1
nx
, x + 1

nx
) : 0 ≤ x ≤ 1} is an open cover of

X. Let now x, z ∈ X and x ̸= z. As the interval [x, z] is compact and
connected, we can choose a finite subset U0 = {Ix1 , Ix2 , ..., Ixn} ⊆ U with
the properties x ∈ Ix1

, z ∈ Ixn
and Ixk

∩ Ixk+1
̸= ∅ for k = 1, 2, ..., n− 1.

Let yk ∈ Ixk
∩Ixk+1

for k = 1, 2, ..., n−1. Then by the triangle inequality,
we obtain

1 = d(x, x1) ∧ d(x1, y1) ∧ d(y1, x2) ∧ · · · ∧ d(xn, z) ≤ d(x, z).

Hence for all x, z ∈ X we have d(x, z) = 1. If now φ ∈ A(GA)(x), then
there is d ∈ GA such that 1 ≡ d(x, ·) ≤ φ and hence φn,x /∈ A(GA)(x) for
n > 2. This shows that A(x) * A(GA)(x). �
Example 5.11 (Probabilistic case). Let L = (∆+,≤,∧) with the
pointwise minimum as triangle function. Let S = [0, 1] and define, for
p ∈ S and n = 1, 2, 3, ... the mappings Φpn : S −→ ∆+ by Φpn(q) = ε0 if
|p−q| < 1

n and Φpn(q) = ε∞ if |p−q| ≥ 1
n . It is then not difficult to show

that Φpn ∧ Φpm = Φp(m∨n) and hence B(p) = {Φnp : n = 1, 2, 3, ...} is a
filter basis. Moreover Φp,2n(q)∧Φq,2n(r) ≤ Φpn(r) and hence (B(p))p∈S is
an L-approach basis. We denote A(p) = B̂(p) for all p ∈ S. Let now D ∈
GA. We note that f 1

k ,1−
1
k
= (1− 1

k )ε 1
k
∨ε∞�ε0 and gk, 1k = 1

kε0∨εk ≻ ε∞
for all k ∈ IN. Then for all p ∈ S and all k ∈ IN there is n = n(p, k) ∈ IN
such that

Φpn ∧ f 1
k ,1−1 1

k
≤ D(p, ·) ∨ gk, 1k .

Hence, for |p−q| ≤ 1
n and x > 1

k we have 1− 1
k ≤ D(p, q)(x), i.e. f 1

k ,1−
1
k
≤

D(p, q). Like in the previous example, we will show that D(p, q) = ε0. We
fix k ∈ IN and consider the set of intervals U = {Ip = (p− 1

n(p,k) , p+
1

n(p,k) ) :

p ∈ S}. For p, q ∈ S then there are finitely many Ip1 , ..., Ipm with the
properties p ∈ Ip1 , q ∈ Ipm and Ipk ∩ Ipk+1

̸= ∅ for k = 1, 2, ...,m − 1.
Again, by the triangle inequality, then

f 1
k ,1−

1
k
≤ D(p, p1) ∧D(p1, q1) ∧ ... ∧D(pm, q) ≤ D(p, q),

where qk ∈ Ipk ∩ Ipk+1
for k = 1, 2, ...,m − 1. This is true for all k ∈ IN

and hence D(p, q)(x) = 1 for x > 0. Assume now that φpn ∈ A(GA)(p)
for n ≥ 2. Then for all k ∈ IN there is D = Dk ∈ GA such that

f 1
k ,1−

1
k
= D(p, ·) ∧ f 1

k ,1−
1
k
≤ Φpn ∨ gk, 1k .

For |p − q| ≥ 1
n then f 1

k ,1−
1
k
≤ gk, 1k , a contradiction. Hence also here

A(p) * A(GA)(p).
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Remark 5.12. We are at present unable to provide an example for
A(GA) ̸= A in the probabilistic case for a triangle function other than
the largest triangle function. In particular, we do not have an example
using a triangle function of the form ~ for a t-norm ∗ that satisfies the
condition (I). We have to leave this as an open problem.

6. L-approach spaces versus L-approach system spaces

In order to embed L-AP into L-AS, we consider the composition G =
F ◦E of the functors E and F from Sections 3 and 5, i.e. we consider the
following commutative diagram.

L-AP E−→ L-GS
G=F◦E↘ ↓F

L-AS

Proposition 6.1. Let L be a value quantale. Then for (X, δ) ∈ |L-AP|
we have G((X, δ)) = (X,Aδ), where for x ∈ X we define

Aδ(x) = {φ ∈ LX : δ(x,A) ≤
∨
a∈A

φ(a) ∀A ⊆ X}.

Proof. We show that Aδ(x) = A(Gδ)(x) with the L-gauge Gδ = {d ∈
L-MET(X) : δ(x,A) ≤

∨
a∈A d(x, a)∀x ∈ X,A ⊆ X}, see [8]. Let first

φ ∈ A(Gδ)(x). Then φ is supported by B(Gδ)(x), i.e. for all α � ⊤ and
all ω ≻ ⊥ there is dαω(x, ·) ∈ B(Gδ)(x) such that dαω(x, ·) ∗ α ≤ φ ∨ ω.
Then δ(x,A) ∗ α ≤

∨
a∈A d

αω(x, a) ∗ α ≤
∨
a∈A φ(a) ∨ ω for all α � ⊤

and all ω ≻ ⊥. Taking the join over all α � ⊤ and the meet over all
ω ≻ ⊥ we obtain δ(x,A) ≤

∨
a∈A φ(a) and hence φ ∈ Aδ(x). Conversely,

let φ ∈ Aδ(x) and assume φ /∈ A(Gδ)(x). Then φ is not supported by
B(Gδ), i.e. for all d(x, ·) ∈ B(Gδ)(x) we have d(x, ·) ̸≤ φ. Hence there is
a ∈ X such that d(x, a) ̸≤ φ(a) and with A = {a} we obtain δ(x, {a}) ≤
d(x, a) ̸≤ φ(a) =

∨
b∈{a} φ(b), a contradiction to φ ∈ Aδ(x). �

The functor G has a right adjoint, T .

Proposition 6.2. (1) T : L-AS −→ L-AP defined by T ((X,A)) =
(X, δA), T (f) = f with

δA(x,A) =
∧

φ∈A(x)

∨
a∈A

φ(a),

is a functor.
(2) If L is a value quantale, then idL-AP ≤ T ◦G and G ◦ T ≤ idL-AS,

i.e. T is right adjoint for G.
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(3) If L is a value quantale that satisfies the strong De Morgan law,
then idL-AP = T◦G. Hence L-AP is a full bicoreflective subcategory
of L-AS.

Proof. (1) Let (X,A) ∈ |L-AS|. We show that (X, δA) ∈ |L-AP|. (LD1)
and (LD2) are easy and not shown. For (LD3) the inequality
δA(x,A ∪B) ≥ δA(x,A) ∨ δA(x,B) is clear. For the converse inequality,
let δA(x,A) ∨ δA(x,B) ≺ α. Then there are φA, φB ∈ A(a) such that∨
a∈A φA(a) ≤ α and

∨
b∈B φB(b) ≤ α. Then φA ∧ φB ∈ A(x) and as

A(x) is saturated there is, for β � ⊤ and ω ≻ ⊥, φωβ ∈ A(x) such that
φωβ ∗ β ≤ (φA ∧ φB) ∨ ω. We conclude

δA(x,A ∪B) ∗ β = (
∧

φ∈A(x)

∨
a∈A∪B

φ(a)) ∗ β

≤
∧

φ∈A(x)

∨
a∈A∪B

φ(a) ∗ β ≤
∨

a∈A∪B
φωβ (a) ∗ β

= (
∨
a∈A

φωβ (a) ∨
∨
b∈B

φωβ (b)) ∗ β = (
∨
a∈A

φωβ (a) ∗ β) ∨ (
∨
b∈B

φωβ (b) ∗ β)

≤ (
∨
a∈A

φA(a) ∨ ω) ∨ (
∨
b∈B

φB(b) ∨ ω) ≤ α ∨ ω.

Taking the join over all α � ⊤ and the meet over all ω ≻ ⊥ we obtain
δA(x,A ∪ B) ≤ α, from which, using the complete distributivity of L,
δA(x,A ∪B) ≤ δA(x,A) ∨ δA(x,B) follows.

We now prove (LD4). First we note that if δ�α, then δ�α = α ∗⊤ =
(
∨
β�α β) ∗ (

∨
γ�⊤ γ) =

∨
β�α,γ�⊤(β ∗ γ) and hence there is β � α and

γ � ⊤ such that δ � β ∗ γ. Let now φ ∈ A(x), α ∈ L, δ � α and ω ≻ ⊥.
As we have just noted, then there are β � α, γ � ⊤ such that δ � β ∗ γ.
There is a family (φz)z∈X

∏
z∈X A(z) such that

φx(z) ∗ φz(y) ∗ γ ≤ φ(y) ∨ ω ∀z, y ∈ X.

For b ∈ A
α

we have
∧
ψ∈A(b)

∨
a∈A ψ(a) ≥ α� β and for φb ∈ A(b) there

is aφβ ∈ A such that φb(a
φ
β )� β. Hence φ(aφβ ) ∨ ω ≥ φx(b) ∗ φb(aφβ ) ∗ γ ≥

φx(b) ∗ β ∗ γ and we conclude∨
a∈A

φ(a) ∨ ω ≥
∨
b∈Aα

φx(b) ∗ β ∗ γ ≥ δA(x,A
α
) ∗ δ.

As ω ≻ ⊥ was arbitrary, we conclude
∨
a∈A φ(a) ≥ δA(x,A

α
) ∗ δ. This

is true for all δ � α and therefore also
∨
a∈A φ(a) ≥

∨
δ�α δ

A(x,A
α
) ∗

δ = δA(x,A
α
) ∗ α. As φ ∈ A(x) was arbitrary, we conclude δA(x,A) =∧

φ∈A(x)

∨
a∈A φ(a) ≥ δA(x,A

α
) ∗ α.
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Let now f : (X,A) −→ (X ′,A′) be an L-approach system morphism.
We show that f : (X, δA) −→ (X ′, δA

′
) is an L-approach morphism. For

ψ ∈ A′(f(x)) we have ψ ◦ f ∈ A(x). Hence

δA(x,A) =
∧

φ∈A(x)

∨
a∈A

φ(a) ≤
∧

ψ◦f∈A(x)

∨
a∈A

ψ(f(a))

≤
∧

ψ∈A′(f(x))

∨
b∈f(A)

ψ(b) = δA
′
(f(x), f(A)).

(2) Let first (X, δ) ∈ |L-AP|. Then

δ(A
δ)(x,A) =

∧
φ:δ(x,B)≤

∨
b∈B φ(b)∀B⊆X

∨
a∈A

φ(a) ≥ δ(x,A).

Hence idL-AP ≤ T ◦G. Let now (X,A) ∈ |L-AS| and let φ ∈ A(x). Then
δA(x,A) =

∧
ψ∈A(x)

∨
a∈A ψ(a) ≤

∨
a∈A φ(a) and hence φ ∈ A(δA)(x).

This shows the other inequality.
(3) Under the assumptions on L, both E,F are full, and so is the

composition G = F ◦ E and hence we even have idL-AP = T ◦G. �

Corollary 6.3. Let L be a value quantale that satisfies the strong
De Morgan law. The category L-AP is topological and we can construct
initial structures by applying the coreflector T to the initial structures
obtained in L-AS.

The fact that L-AP is topological was, under weaker requirements on
the quantale, already shown in [10, 11].

We note that δA(x,A) ≤
∧
d∈GA

∨
a∈A d(x, a) = δ(G

A)(x,A) for all
x ∈ X,A ⊆ X. Theorem 5.9 tells us further, that if L is a linearly ordered
value quantale for which the quantale operation distributes over arbitrary
meets and the strong De Morgan law holds, then δA = δ(G

A). In this case,
as Proposition 3.5 and Theorem 5.9 show, the categories L-AP, L-GS and
L-AS are isomorphic.

7. Conclusions

In this paper, we generalized one of the definitions of an approach
space in terms of approach systems to the quantale-valued case. We ob-
tained a topological category of quantale-valued approach system spaces.
The functors, that show in the case L = [0,∞] that approach systems,
gauges and approach distances are equivalent concepts, provide only in a
very restricted case, that L is a linearly ordered value quantale that sat-
isfies a weak cancellation condition (I) and for which the quantale opera-
tion distributes over arbitrary meets and satisfies the strong De Morgan
law, an isomorphism between the categories of quantale-valued approach
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spaces, quantale-valued gauge spaces and quantale-valued approach sys-
tem spaces. In particular in the probabilistic case, the embedding functors
are in general not isomorphisms, and one cannot simply “translate” the
theory of approach spaces to probabilistic approach spaces.
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