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I-FAVORABLE SPACES: REVISITED

VESKO VALOV

Abstract. The aim of this paper is to extend the external char-
acterization of I-favorable spaces obtained in [13]. This allows us
to obtain a characterization of compact I-favorable spaces in terms
of quasi κ-metrics. We also provide proofs of some author’s results
announced in [14].

1. Introduction

The aim of this paper is to extend the external characterization of
I-favorable spaces obtained in [13]. We also provide proofs of some au-
thor’s results announced in [14]. All topological spaces are Tychonoff and
the single-valued maps are continuous.

P. Daniels, K. Kunen and H. Zhou [2] introduced the so called open-
open game: Two players take countably many turns, a round consists of
player I choosing a non-empty open set U ⊂ X and II choosing a non-
empty open set V ⊂ U . Player I wins if the union of II’s open sets is
dense in X, otherwise II wins. A space X is called I-favorable if player
I has a winning strategy. This means, see [6], there exists a function
σ :

∪
n≥0 T n

X → TX such that the union
∪

n≥0 Un is dense in X for each
game(

σ(∅), U0, σ(U0), U1, σ(U0, U1), U2, ..., Un, σ(U0, U1, .., Un), Un+1, , ,
)
,

where all Uk and σ(∅) are non-empty open sets in X, U0 ⊂ σ(∅) and
Uk+1 ⊂ σ(U0, U1, .., Uk) for every k ≥ 0 (here TX is the topology of X).
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Recently A. Kucharski and S. Plewik (see [6], [7]) investigated the
connection of I-favorable spaces and skeletal maps. In particular, they
proved in [7] that the class of compact I-favorable spaces and the skeletal
maps are adequate in the sense of E. Shchepin [9]. Recall that a map
f : X → Y is skeletal if Intf(U) ̸= ∅) for every open U ⊂ X. On the
other hand, the author announced [14, Theorem 3.1] a characterization
of the spaces X such that there is an inverse system S = {Xα, p

β
α, A}

of separable metric spaces Xα and skeletal surjective bounding maps pβα
satisfying the following conditions: (1) the index set A is σ-complete
(every countable chain in A has a supremum in A); (2) for every countable
chain {αn}n≥1 ⊂ A with β = sup{αn}n≥1 the space Xβ is a (dense) subset
of lim
←
{Xαn , p

αn+1
αn
}; (3) X is embedded in lim

←
S and pα(X) = Xα for each

α, where pα : lim
←

S → Xα is the α-th limit projection. An inverse system
satisfying (1) and (2) is called almost σ-continuous. If condition (3) is
satisfied, we say that X is the almost limit of S, notation X = a− lim

←
S.

Spaces X such that X = a− lim
←

S, where S is almost σ-continuous inverse
system with skeletal bounding maps and second countable spaces, are
called skeletally generated [13].

The following theorem is our first main result:

Theorem 1.1. For a space X the following conditions are equivalent:

(1) X is I-favorable;
(2) Every embedding of X in another space Y is π-regular;
(3) X is skeletally generated.

Here, we say that a subspace X ⊂ Y is π-regularly embedded in Y
[14] if there exists a function e : TX → TY such that for every U, V ∈ TX
we have: (i) e(U) ∩ e(V ) = ∅ provided U ∩ V = ∅; (ii) e(U) ∩ X is a
dense subset of U . If, e(U)∩X = U , we say that X is regularly embedded
in Y . An external characterization of κ-metrizable compacta, similar to
condition (2), was established in [11].

Corollary 1.2. Every I-favorable subset of an extremally disconnected
space is also extremally disconnected.

Corollary 1.3. Every open subset of an I-favorable space is I-favorable.

A version of Theorem 1.1 was established in [13], but we used slightly
different notions. First, we considered I-favorable spaces with respect to
the family of co-zero sets. Also, in the definition of skeletally generated
spaces we required the system S to be factorizable (i.e. for each continuous
function f on X there exists α ∈ A and a continuous function h on Xα
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with f = h ◦ pα). Moreover, in item (2) X was supposed to be C∗-
embedded in Y . Corollary 1.2 was also established in [13] under the
assumption of C∗-embedability.

Recall that a κ-metric [9] on a space X is a non-negative function
ρ(x,C) of two variables, a point x ∈ X and a canonically closed set
C ⊂ X, satisfying the following axioms:

K1) ρ(x,C) = 0 iff x ∈ C;
K2) If C ⊂ C ′, then ρ(x,C ′) ≤ ρ(x,C) for every x ∈ X;
K3) ρ(x,C) is continuous function of x for every C;
K4) ρ(x,

∪
Cα) = infα ρ(x,Cα) for every increasing transfinite family

{Cα} of canonically closed sets in X.
We say that a function ρ(x,C) is an quasi κ-metric on X if it satisfies the
axioms K2)−K4) and the following one:

K1∗) For any C there is a dense open subset V of X \ C such that
ρ(x,C) = 0 iff x ∈ X \ V .

Our second result provides a characterization of compact I-favorable
spaces, which is similar to Shchepin’s characterization ([9], [10]) of openly
generated compacta as compact spaces admitting a κ-metric.

Theorem 1.4. A compact space X is I-favorable iff X is quasi κ-metriz-
able.

Corollary 1.5. Every I-favorable space is quasi κ-metrizable.

The paper is organized as follows: Section 2 contains the proof of
Theorem 1.1 and Corollaries 1.2-1.3. The proofs of Theorem 1.4 and
Corollary 1.5 are contained in section 3. In section 4 we provide the proof
of some results concerning almost continuous inverse systems with nearly
open bounding maps, which were announced in [14].

2. Proof of Theorem 1.1

If follows from the definition of I-favorability that a given space is I-
favorable if and only if there are a π-base B and a function σ :

∪
n≥0 Bn →

B such that the union
∪

n≥0 Un is dense in X for any sequence(
σ(∅), U0, σ(U0), U1, σ(U0, U1), U2, ..., Un, σ(U0, U1, .., Un), Un+1, , ,

)
,

where Uk and σ(∅) belong to B, U0 ⊂ σ(∅) and Uk+1 ⊂ σ(U0, U1, .., Uk)
for every k ≥ 0. Such a function will be also called a winning strategy.
Recall that B is a π-base for X if every open set in X contains an element
from B.

Proposition 2.1. [3] Let B and P be two π-bases for X. Then there is
a winning strategy σ :

∪
n≥0 Bn → B if and only if there is a winning

strategy µ :
∪

n≥0 Pn → P.
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Proof. Suppose σ :
∪

n≥0 Bn → B is a winning strategy. We define a
winning strategy µ :

∪
n≥0 Pn → P by induction. We choose any open

non-empty set µ(∅) ∈ P such that µ(∅) ⊂ σ(∅). If V0 ∈ P is the answer
of player II in the game played on P (i.e., V0 ⊂ µ(∅)), then we choose
U0 ∈ B with U0 ⊂ V0 (U0 can be considered as the answer of player II
in the game played on B). Assume we already defined V0, .., Vn ∈ P and
U0, .., Un ∈ B such that Uk+1 ⊂ Vk+1 ⊂ µ(V0, .., Vk) ⊂ σ(U0, .., Uk) for all
k ≤ n − 1. Then, we choose µ(V0, .., Vn) ∈ P such that µ(V0, .., Vn) ⊂
σ(U0, .., Un). If Vn+1 ∈ P is the choice of player II in the game played on
P such that Vn+1 ⊂ µ(V0, .., Vn), we choose Un+1 ∈ B with Un+1 ⊂ Vn+1.
This complete the induction. Since σ is a winning strategy and Uk ⊂ Vk

for each k, the union
∪

n≥0 Vn is dense in X. So, µ is also a winning
strategy. �

In [13] we considered I-favorable spaces X with respect to the co-zero
sets meaning that there is a winning strategy σ :

∪
n≥0 Σ

n → Σ, where Σ
is the family of all co-zero subsets of X. Proposition 2.1 shows that this
is equivalent to X being I-favorable. So, all results from [13] are valid for
I-favorable spaces.

According to [2, Corollary 1.4], if Y is a dense subset of X, then X
is I-favorable if and only Y is I-favorable. So, every compactification of
a space X is I-favorable provided X is I-favorable. And conversely, if a
compactification of X is I-favorable, then so is X. Because of that, very
often when dealing with I-favorable spaces, we can suppose that they are
compact.

Let us introduce a few more notations. Suppose X ⊂ IA is a compact
space and B ⊂ A, where I = [0, 1]. Let πB : IA → IB be the natural
projection and pB be a restriction map πB |X. Let also XB = pB(X). If
U ⊂ X we write B ∈ k(U) to denote that p−1B

(
pB(U)

)
= U . A base A

for the topology of X ⊂ IA consisting of open sets is called special if for
every finite B ⊂ A the family {pB(U) : U ∈ A, B ∈ k(U)} is a base for
pB(X) and for each U ∈ A there is a finite set B ⊂ A with B ∈ k(U).

Proposition 2.2. Let X be a compact I-favorable space and w(X) =
τ is uncountable. Then there exists a continuous inverse system S =
{Xδ, p

δ
γ , γ < δ < λ}, where λ = cf(τ), of compact I-favorable spaces Xδ

and skeletal bonding maps pδγ such that w(Xδ) < τ for each δ < λ and
X = lim←−S.

Proof. We embed X in a Tychonoff cube IA with |A| = τ and fix a special
open base A = {Uα : α ∈ A} for X of cardinality τ which consists of open
sets such that for each α there exists a finite set Hα ⊂ A with Hα ∈ k(Uα).
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Let σ :
∪

n≥0An → A be a winning strategy. We represent A as the union
of an increasing transfinite family {Aδ : δ < λ} with |Aδ| < τ , and let
Aδ = {Uα : α ∈ Aδ} for each δ < λ.

For any finite set C ⊂ A let γC be a fixed countable base for XC .
Observe that for every U ∈ A there exists a finite set B(U) ⊂ A such
that B(U) ∈ k(U) and pB(U)(U) is open in XB(U). We are going to
construct by transfinite induction increasing families {Bδ : δ < λ} and
{Bδ : δ < λ} ⊂ A satisfying the following conditions for every δ < λ:

(1) Aδ ⊂ Bδ ⊂ A, Aδ ⊂ Bδ, |Bδ| = |Bδ| < τ ;
(2) Bδ ∈ k(U) for all U ∈ Bδ;
(3) p−1C (γC) ⊂ Bδ for each finite C ⊂ Bδ;
(4) σ(U1, .., Un) ∈ Bδ for every finite family {U1, .., Un} ⊂ Bδ;
(5) Bδ =

∪
γ<δ Bγ and Bδ =

∪
γ<δ Bγ for all limit cardinals δ.

Suppose all Bγ and Bγ , γ < δ, have already been constructed for some
δ < λ. If δ is a limit cardinal, we put Bδ =

∪
γ<δ Bγ and Bδ =

∪
γ<δ Bγ .

If δ = γ+1, we construct by induction a sequence {C(m)}m≥0 of subsets
of A, and a sequence {Vm}m≥0 of subfamilies of A such that:

• C0 = Bγ and V0 = Bγ ;
• C(m+ 1) = C(m)

∪
{B(U) : U ∈ Vm};

• V2m+1 = V2m
∪
{σ(U1, .., Us) : U1, .., Us ∈ V2m, s ≥ 1};

• V2m+2 = V2m+1

∪
{p−1C (γC) : C ⊂ C(2m+ 1) is finite}.

Now, we define Bδ =
∪

m≥0 C(m) and Bδ =
∪

m≥0 Vm. It is easily seen
that Bδ and Bδ satisfy conditions (1)-(5).

For every δ < λ let Xδ = XBδ
and pδ = pBδ

. Moreover, if γ < δ,
we have Bγ ⊂ Bδ, and let pδγ = pBδ

Bγ
. Since A =

∪
δ<λ Bδ, we obtain

a continuous inverse system S = {Xδ, p
δ
γ , γ < δ < λ} whose limit is X.

Observe also that each Xδ is of weight < τ because pδ(Bδ) is a base for
Xδ (see condition (3)).

Claim 1. All bonding maps pδγ are skeletal.
It suffices to show that all pδ are skeletal. And this is really true

because each family Bδ is stable with respect to σ, see (4). Hence, by
[6, Lemma 9], for every open set V ⊂ X there exists W ∈ Bδ such that
whenever U ⊂ W and U ∈ Bδ we have V ∩ U ̸= ∅. The last statement
yields that pδ is skeletal. Indeed, let V ⊂ X be open, and W ∈ Bδ be
as above. Then pδ(W ) is open in Xδ because of condition (2). We claim
that pδ(W ) ⊂ pδ(V ). Indeed, otherwise pδ(W )\pδ(V ) would be a non-
empty open subset of Xδ. So, pδ(U) ⊂ pδ(W )\pδ(V ) for some U ∈ Bδ
(recall that pδ(Bδ) is a base for Xδ). Since, by (2), p−1δ (pδ(U)) = U

and p−1δ (pδ(W )) = W , we obtain U ⊂ W and U ∩ V = ∅ which is a
contradiction.
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Finally, since the class of I-favorable spaces is closed with respect to
skeletal images [5, Lemma 1], all Xδ are I-favorable. �

An inverse system S = {Xα, p
β
α, α < β < τ}, where τ is a given

cardinal, is said to be almost continuous provided for every limit cardinal
γ the space Xγ is the almost limit of the inverse system Sγ = {Xα, p

β
α, α <

β < γ}. If X = a − lim←−S of an almost continuous inverse system S and
H ⊂ X, the set

q(H) = {α : Int
((
(pα+1

α )−1(pα(H))
)
\pα+1(H)

)
̸= ∅}

is called a rank of H.

Lemma 2.3. [13, Lemma 3.1] Let X = a − lim←−S and U ⊂ X be open,
where S = {Xα, p

β
α, α < β < τ} is almost continuous inverse system with

skeletal bonding maps. Then we have:
(1) α ̸∈ q(U) if and only if (pα+1

α )−1
(
Intpα(U)

)
⊂ pα+1(U);

(2) q(U) ∩ [α, τ) = ∅ provided U = p−1α (V ) for some open V ⊂ Xα.

Lemma 2.4. Let S = {Xα, p
β
α, 1 ≤ α < β < τ} be an almost continuous

inverse system with skeletal bonding maps and X = a − lim←−S. The the
following hold for any open U ⊂ X:

(1) If (pα1 )
−1

(
Intp1(U)

)
⊂ Intpα(U) for all α < τ , then p−1

1

(
Intp1(U)

)
⊂

U ;
(2) If λ < τ and q(U) ∩ [λ, τ) = ∅, then p−1

λ

(
Intpλ(U)

)
⊂ IntU .

Proof. The first item was proved in [13, Lemma 3.2] under the assumption
that X = lim←−S, but the same arguments work in our situation. Item (2) is
equivalent to the inclusion (pλ)

−1(Intpλ(U)
)
⊂ U . Let A be the set of all

α ∈ (λ, τ) with (pαλ)
−1(Intpλ(U)

)
\ pα(U) ̸= ∅. Suppose A is non-empty

and let γ = minA. Observe that γ is a limit cardinal. Indeed, otherwise
γ = β + 1 with β ≥ λ, so (pβλ)

−1(Intpλ(U)
)
⊂ Intpβ(U). Since β ̸∈ q(U),

according to Lemma 2.3(1), we have (pγβ)
−1(Intpβ(U)

)
⊂ pγ(U). Hence,

(pγλ)
−1(Intpλ(U)

)
⊂ pγ(U), a contradiction.

Since S is almost continuous and γ is a limit cardinal, we have Xγ =
a − lim←−Sγ , where Sγ is the inverse system {Xα, p

β
α, λ ≤ α < β < γ}.

Because pγ is skeletal, Uγ = Intpγ(U) ̸= ∅. So, we can apply item (1) to
Xγ , the inverse system Sγ and the open set Uγ ⊂ Xγ , to conclude that
(pγλ)

−1(Intpλ(U)
)
⊂ pγ(U). So, we obtain again a contradiction, which

shows that (pαλ)
−1(Intpλ(U)

)
⊂ pα(U) for all α ∈ [λ, τ). Finally, because

the system S̃λ = {Xα, p
β
α, λ ≤ α < β < τ} is almost continuous and

X = a− lim←−S̃λ, by item (1) we have p−1λ

(
Intpλ(U)

)
⊂ IntU . �
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The next lemma was established in [13] for continuous inverse systems.
We present here a simplified proof concerning almost continuous systems.

Lemma 2.5. [13, Lemma 3.3] Let S = {Xα, p
β
α, α < β < τ} be an almost

continuous inverse system with skeletal bonding maps and X = a− lim←−S.
Assume U, V ⊂ X are open with q(U) and q(V ) finite and U ∩ V = ∅. If
q(U)∩ q(V )∩ [γ, τ) = ∅ for some γ < τ , then Intpγ(U) and Intpγ(V ) are
disjoint.

Proof. Suppose Intpγ(U) ∩ Intpγ(V ) ̸= ∅. We are going to show by
transfinite induction that Intpβ(U)∩ Intpβ(V ) ̸= ∅ for all β ≥ γ. Assume
this is done for all β ∈ (γ, α) with α < τ . If α is not a limit cardinal,
then α − 1 belongs to at most one of the sets q(U) and q(V ). Suppose
α − 1 ̸∈ q(V ). Hence, (pαα−1)

−1(Intpα−1(V )
)
⊂ Intpα(V ) (see Lemma

2.3(1)). Due to our assumption, Intpα−1(U)∩Intpα−1(V ) ̸= ∅. Moreover,
pαα−1

(
pα(U)

)
is dense in pα−1(U). Hence, Intpα−1(V ) meets pαα−1

(
pα(U)

)
.

This yields Intpα(V ) ∩ pα(U) ̸= ∅. Finally, since pα(U) is the closure of
its interior, Intpα(V ) ∩ Intpα(U) ̸= ∅.

Suppose α > γ is a limit cardinal. Since q(U) ∪ q(V ) is a finite set,
there exists λ ∈ (γ, α) such that β ̸∈ q(U) ∪ q(V ) for all β ∈ [λ, α). Now,
we consider the almost continuous inverse system Sα = {Xδ, p

β
δ , λ ≤ δ <

β < α} with Xα = a − lim←−Sα. Let Uα = Intpα(U) and Vα = Intpα(V )

and denote by qα(Uα) and qα(Vα) the ranks of Uα and Vα with respect
to the system Sα. Then, according to Lemma 2.3(1), β ∈ [λ, α) does not
belong to qα(Uα) if and only if (pβ+1

β )−1
(
Intpαβ(Uα) ⊂ pαβ+1(Uα). Since

pαβ(Uα) = pβ(U) and pαβ+1(Uα) = pβ+1(U), we obtain that β ̸∈ qα(Uα) is
equivalent to β ̸∈ q(U). Similarly, β ̸∈ qα(Vα) iff β ̸∈ q(V ). Consequently,
β ̸∈ qα(Uα)∪ qα(Vα) for all β ∈ [λ, α). Then, according to Lemma 2.4(2),
(pαλ)

−1(Intpλ(U) ⊂ Intpα(U) and (pαλ)
−1(Intpλ(V ) ⊂ Intpα(V ). Because

Intpλ(U)∩ Intpλ(V ) ̸= ∅, we finally have Intpα(U)∩ Intpα(V ) ̸= ∅. This
completes the transfinite induction.

Therefore, Intpβ(U) ∩ Intpβ(V ) ̸= ∅ for all β ∈ [γ, τ). To finish the
proof of this lemma, take λ(0) ∈ (γ, τ) such that

(
q(U)∪q(V )

)
∩[λ(0), τ) =

∅. Then, according to Lemma 2.4(2) we have the following inclusions:

• p−1λ(0)

(
Intpλ(0)(U)

)
⊂ IntU ;

• p−1λ(0)

(
Intpλ(0)(V )

)
⊂ IntV .

Since Intpλ(0)(U)∩Intpλ(0)(V ) ̸= ∅, the above inclusions imply U∩V ̸= ∅,
a contradiction. Hence, Intpγ(U) ∩ Intpγ(V ) = ∅. �
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The next proposition was announced in [14, Proposition 3.2] and a
proof was presented in [13, Proposition 3.4] (see Proposition 3.2 below for
a similar statement concerning inverse systems with nearly open projec-
tions).

Proposition 2.6. [14] Let S = {Xα, p
β
α, α < β < τ} be an almost contin-

uous inverse system with skeletal bonding maps such that X = a− lim←−S.
Then the family of all open subsets of X having a finite rank is a π-base
for X.

Proposition 2.7. Let X be a compact I-favorable space. Then every
embedding of X in another space is π-regular.

Proof. We are going to prove this proposition by transfinite induction
with respect to the weight w(X). This is true if X is metrizable, see for
example [8, §21, XI, Theorem 2]. Assume the proposition is true for any
compact I-favorable space Y of weight < τ , where τ is an uncountable
cardinal. Suppose X is compact I-favorable with w(X) = τ . Then, by
Proposition 2.2, X is the limit space of a continuous inverse system S =
{Xα, p

β
α, α < β < λ}, where λ = cf(τ), such that all Xα are compact

I-favorable spaces of weight < τ and all bonding maps are surjective and
skeletal. If suffices to show that there exists a π-regular embedding of X
in a Tychonoff cube IA for some set A.

By Proposition 2.6, X has a π-base B consisting of open sets U ⊂ X
with finite rank. For every U ∈ B let Ω(U) = {α0, α, α + 1 : α ∈ q(U)},
where α0 < λ is fixed. Obviously, X is a subset of

∏
{Xα : α < λ}. For

every U ∈ B we consider the open set Γ(U) ⊂
∏
{Xα : α < λ} defined by

Γ(U) =
∏
{Intpα(U) : α ∈ Ω(U)} ×

∏
{Xα : α ̸∈ Ω(U)}.

Claim 2. Γ(U1) ∩ Γ(U2) = ∅ whenever U1 ∩ U2 = ∅. Moreover, there
exists β ∈ Ω(U1) ∩ Ω(U2) with pβ(U1) ∩ pβ(U2) = ∅.

Let β = max{Ω(U1) ∩ Ω(U2)}. Then β is either α0 or max{q(U1) ∩
q(U2)}+1. In both cases q(U1)∩q(U2)∩ [β, λ) = ∅. According to Lemma
2.5, Intpβ(U1)∩Intpβ(U2) = ∅. Since β ∈ Ω(U1)∩Ω(U2), Γ(U1)∩Γ(U2) =
∅.

For every U ∈ B and α let Uα = Intpα(U).

Claim 3.
∩

α∈∆ p−1α (Vα)∩U ̸= ∅ for every finite set ∆ ⊂ {α : α < λ},
where each Vα is an open and dense subset of Uα.

Obviously, this is true if |∆| = 1. Suppose it is true for all ∆ with
|∆| ≤ n for some n, and let {α1, .., αn, αn+1} be a finite set of n + 1

cardinals < τ . Then V =
∩
i≤n

p−1αi
(Vαi) ∩ U ̸= ∅. Since pαn+1 is a closed
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and skeletal map, W = Intpαn+1(V ) is a non-empty subset of Xαn+1 and
W ⊂ Uαn+1 . Consequently Vαn+1 ∩W ̸= ∅. So, Vαn+1 ∩ pαn+1(V ) ̸= ∅
and

∩
i≤n+1

p−1αi
(Vαi) ∩ U ̸= ∅.

Claim 4. Γ(U) ∩X is a non-empty subset of U for all U ∈ B.
We are going to show first that Γ(U) ∩X ̸= ∅ for all U ∈ B. Indeed,

we fix such U and let Ω(U) = {αi : i ≤ k} with αi ≤ αj for i ≤ j.
By Claim 3, there exists x ∈

∩
i≤k

p−1αi
(Uαi) ∩ U . So, pαi(x) ∈ Uαi for all

i ≤ k. This implies Γ(U) ∩ X ̸= ∅. To show that Γ(U) ∩ X ⊂ U , let
y ∈ Γ(U) ∩X and β(U) = max q(U) + 1. Then pβ(U)(y) ∈ Intpβ(U)(U).
Since α ̸∈ q(U) for all α ≥ β(U), according to Lemma 2.4(2), we have
y ∈ p−1β(U)

(
Intpβ(U)(U)

)
⊂ U . This completes the proof of Claim 4.

According to our assumption, each Xα is π-regularly embedded in IA(α)

for some A(α). So, there exists a π-regular operator eα : TXα → TIA(α) .
For every U ∈ B define the open set θ1(U) ⊂

∏
α<λ IA(α),

θ1(U) =
∏

α∈Ω(U)

eα
(
Intpα(U)

)
×

∏
α ̸∈Ω(U)

IA(α).

Now, we define a function θ from TX to the topology of
∏

α<λ IA(α) by

θ(G) =
∪
{θ1(U) : U ∈ B and U ⊂ G}.

Let show that θ is π-regular. It follows from Claim 2 that θ(G1)∩θ(G2) =
∅ provided G1 ∩G2 = ∅. On the other hand, for every open G ⊂ X we
have θ(G) ∩X ⊂

∪
{Γ(U) ∩X : U ∈ B and U ⊂ G}. Hence, by Claim 4,

θ(G) ∩X ⊂
∪
{U : U ∈ B and U ⊂ G} ⊂ G. To prove that θ(G) ∩X a

dense subset of G it suffices to show that θ1(U) ∩ X ̸= ∅ for all U ∈ B
with U ⊂ G. To this end, we fix such U and let Vα = eα(Uα) ∩ Xα for
every α ∈ Ω(U). Then Vα is a dense open subset of Uα, and by Claim 3,
V =

∩
α∈Ω(U) p

−1
α (Vα)∩U is a non-empty subset of θ1(U)∩X. Therefore,

X is π-regularly embedded in IA =
∏

α<λ IA(α). �

The next proposition was established in [13] (Proposition 3.7) assuming
that X is a π-regularly C∗-embedded subset of the limit space of a σ-
complete inverse system with open bounding maps and second countable
spaces. The arguments there work if X is just a π-regularly embedded
subset of a product of second countable spaces.

Proposition 2.8. Let X be a π-regularly embedded subspace of a product
of second countable spaces. Then X is skeletally generated.
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Proof of Theorem 1.1. To prove implication (1) ⇒ (2), suppose X is
I-favorable subspace of a space Y . Then X̃ = X

βY
is a compactification

of X. Since X̃ is also I-favorable, according to Proposition 2.7, X̃ is π-
regularly embedded in βY . This yields that X is π-regularly embedded
in Y .

(2) ⇒ (3) Let X be a subset of a Tychonoff cube IA. Then X is
π-regularly embedded in IA, and by Proposition 2.8, X is skeletally gen-
erated.

The implication (3) ⇒ (1) follows as follows. If X is skeletally gen-
erated, then X = a − lim

←
S, where S is an almost σ-continuous inverse

system of second countable spaces Xα, α ∈ A, and skeletal bounding
maps pαβ . Because each Xα is I-favorable, it follows from [4, Theorem 3.3]
(see also [6, Theorem 13]) that X is I-favorable too. 2

Proof of Corollary 1.2. Suppose X is an I-favorable subspace of an
extremally disconnected space Y . Then there exists a π-regular operator
e : TX → TY . We need to show that the closure (in X) of every open subset
of X is also open. Since Y is extremally disconnected, e(U)

Y
is open in

Y . So, the proof will be done (finished) if we prove that e(U)
Y
∩X = U

X

for all U ∈ TX . Because e(U) ∩ X is a dense subset of U , we have
U

X ⊂ e(U)
Y
∩X. Assume e(U)

Y
∩X\UX ̸= ∅ and choose V ∈ TX with

V ⊂ e(U)
Y
\UX

. Then e(V ) ∩ e(U)
Y
̸= ∅, so e(V ) ∩ e(U) ̸= ∅. The last

one contradicts U ∩ V = ∅. 2

Proof of Corollary 1.3. Suppose X is I-favorable and W ⊂ X is open.
Then there is a π-regular embedding of X into a product Π of lines.
Obviously, W is also π-regularly embedded in Π, and by Proposition 2.8,
W is I-favorable. 2

3. Quasi κ-metrizable spaces

Proof of Theorem 1.4. Suppose X is a compact I-favorable. We embed
X in Rτ for some cardinal τ , and let ρ(z, C) be a κ-metric on Rτ , see [9].
According to Theorem 1.1, there exists a π-regular function e : TX → TRτ .
We define a new function e1 : TX → TRτ ,

e1(U) =
∪
{e(V ) : V ∈ TX and V ⊂ U}.

Obviously e1 is π-regular and it is also monotone, i.e. U ⊂ V implies
e1(U) ⊂ e1(V ). Moreover, for every increasing transfinite family γ =
{Uα} of open sets in Y we have e1(

∪
α Uα) =

∪
α e1(Uα). Indeed, if

z ∈ e1(
∪

α Uα), then there is an open set V ∈ TX with V ⊂
∪

α Uα

and z ∈ e(V ). Since V is compact and the family is increasing, V is
contained in some Uα0

. Hence, z ∈ e(V ) ⊂ e1(Uα0
). Consequently,

e1(
∪

α Uα) ⊂
∪

α e1(Uα). The other inclusion follows from monotonicity
of e1.
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Now, for every open U ⊂ X and x ∈ X we can define the function
d(x, U) = ρ(x, e1(U)), where e1(U) is the closure of e1(U) in Rτ . It is
easily seen that d(x, U) satisfies axioms K2)−K3). Let show that it also
satisfies K4) and K1∗). Indeed, assume {Cα} is an increasing transfinite
family of regularly closet sets in X. We put Uα = IntCα for every α and
U =

∪
α Uα. Thus, e1(U) =

∪
α e1(Uα). Since {e1(Uα)} is an increasing

transfinite family of regularly closed sets in Rτ ,

d(x,
∪
α

Cα) = ρ(x,
∪
α

e1(Uα)) = inf
α

ρ(x, e1(Uα)) = inf
α

d(x,Cα).

To show that K1∗) also holds, observe that d(x, U) = 0 if and only if
x ∈ X ∩ e1(U). Thus, we need to show that there is an open dense subset
V of X \ U such that X ∩ e1(U) = X \ V . Because e1(U) ∩ X is dense
in U , U ⊂ e1(U). Hence, V = X \ e1(U) is contained in X \ U . To
prove V is dense in X \ U , let x ∈ X \ U and Wx ⊂ X \ U be an open
neighborhood of x. Then W ∩ U is empty, so e1(W ) ∩ e1(U) = ∅. This
yields e1(W ) ∩ X ⊂ V . On the other hand, e1(W ) ∩ X is a non-empty
subset of W , hence W ∩ V ̸= ∅. Therefore, d is a quasi κ-metric on X.

Suppose X is a compact space and let d(x, U) be a quasi κ-metric
on X. We are going to show that X is skeletally generated. To this
end we embed X in IA for some A. Following the notations from the
proof of Proposition 2.2, for any countable set B ⊂ A let AB be the
countable base for XB = pB(X) consisting of all open sets in XB of the
form XB ∩

∏
α∈B Vα, where each V α is an open subinterval of I = [0, 1]

with rational end-points and Vα ̸= I for finitely many α. For any open
U ⊂ X denote by fU the function d(x, U). We also write pB ≺ g, where
g is a map defined on X, if there is a map h : pB(X) → g(X) such
that g = h ◦ pB . Since X is compact this is equivalent to the following:
if pB(x1) = pB(x2) for some x1, x2 ∈ X, then g(x1) = g(x2). We say
that a countable set B ⊂ A is d-admissible if pB ≺ fp−1

B (V ) for every
V ∈ AB . Denote by D the family of all d-admissible subsets of A. We are
going to show that all maps pB : X → XB , B ∈ D, are skeletal and the
inverse system S = {XB : pBC : C ⊂ B,C,B ∈ D} is σ-continuous with
X = lim

←
S.

Claim 5. For every countable set C ⊂ A there is B ∈ D with C ⊂ B.
We are going to construct a sequence of countable sets Bn ⊂ A such

that for every n ≥ 1 we have:

• C ⊂ Bn ⊂ Bn+1;
• pBn+1 ≺ fp−1

Bn

(V ) for all V ∈ ABn .
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We show the construction of B1; the other sets Bn can be obtained
in a similar way. Every function fpC

−1(V ), V ∈ AC , has a contin-
uous extension f̃pC

−1(V ) on IA. Moreover, every continuous function
g on IA depends on countably many coordinates (i.e., there exists a
countable set Bg ⊂ A with πBg ≺ g). This fact allows us to find a
countable set B1 ⊂ A containing C such that pB1 ≺ fpC

−1(V ) for all
V ∈ AC . Next, let B =

∪
n=1 Bn. Since AB is the union of all families

{(pBBn
)−1(V ) : V ∈ ABn}, n ≥ 1, for every W ∈ AB there is m and

V ∈ ABm with p−1B (W ) = p−1Bm
(V ). Then, according to the construction

of the sets Bn, we have pBm+1 ≺ fp−1
B (W ). Hence pB ≺ fp−1

B (W ) for all
W ∈ AB , which means that B is d-admissible.

Claim 6. For every B ∈ D the map pB is skeletal.
Suppose there is an open set U ⊂ X such that the interior in XB of

the closure pB(U) is empty. Then W = XB \ pB(U) is dense in XB .
Let {Wm}m≥1 be a countable cover of W with Wm ∈ AB for all m.
Since AB is finitely additive, we may assume that Wm ⊂ Wm+1, m ≥ 1.
Because B is d-admissible, pB ≺ fp−1

B (Wm) for all m. Hence, there are
continuous functions hm : XB → R with fp−1

B (Wm) = hm ◦pB , m ≥ 1. Re-

call that fp−1
B (Wm)(x) = d(x, p−1B (Wm)) and p−1B (W ) =

∪
m≥1 p

−1
B (Wm).

Therefore, fp−1
B (W )(x) = d(x, p−1B (W )) = infm fp−1

B (Wm)(x) for all x ∈ X.
Moreover, fp−1

B (Wm+1)
(x) ≤ fp−1

B (Wm)(x) because Wm ⊂ Wm+1. The last
inequalities together with pB ≺ fp−1

B (Wm) yields that pB ≺ fp−1
B (W ). So,

there exists a continuous function h on XB with d(x, p−1B (W )) = h(pB(x))

for all x ∈ X. Since pB(p
−1
B (W )) = W = XB , we have that h is the

constant function zero. Then d(x, p−1B (W )) = 0 for all x ∈ X. But
p−1B (W )∩U = ∅. So, according to K1∗), there is a dense open subset U ′

of U with d(x, p−1B (W )) > 0 for each x ∈ U ′, a contradiction.
It is easily seen that the union of any increasing sequence of d-admissible

sets is also d-admissible. This fact and Claim 5 yield that the inverse sys-
tem S = {XB : pBC : C ⊂ B,C,B ∈ D} is σ-continuous and X = lim

←
S.

Finally, by Claim 6, all maps pB , B ∈ D, are skeletal. So are the bounding
maps pBC in S. Therefore, X is skeletally generated, and hence I-favorable
by Theorem 1.1.

Proof of Corollary 1.5. Since Y = βX is I-favorable, by Theorem 1.4
there is a quasi κ-metric d on Y . We are going to show that dX(x, U

X
) =

d(x, U), U ∈ TX , defines a quasi κ-metric on X, where U
X

and U is
the closure of U in X and Y respectively. Since U is regularly closed in
Y , this definition is correct. It follows directly from the definition that
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dX satisfies axioms K2) and K3). Because for any increasing transfinite
family {Cα} of regularly closed sets in X the family {Cα} is also increasing
and consists of regularly closed sets in Y ,

dX(x,
∪
α

Cα

X

) = d(x,
∪
α

Cα) = inf
α

d(x,Cα) = inf
α

dX(x,Cα),

dX satisfies K4). Finally, dX satisfies also K1∗). Indeed, for any U ∈ TX
there exists V ∈ TY such that V is dense in Y \U and d(x, U) > 0 if and
only if x ∈ V . This implies that the set V ∩ X is dense in X \ UX

and
dX(x, U

X
) > 0 iff x ∈ V ∩X. So, dX is a quasi κ-metric on X.

4. Inverse systems with nearly open bounding maps

In this section we consider almost continuous inverse systems with
nearly open bounding maps. Recall that a map f : X → Y is nearly open
[1] if f(U) ⊂ Intf(U) for every open U ⊂ X. Nearly open maps were con-
sidered by Tkachenko [12] under the name d-open maps. The following
properties of ranks were established in Lemmas 2.3-2.5 when consider-
ing almost continuous inverse systems with skeletal bounding maps. The
same proofs remain valid and for inverse systems with nearly open bound-
ing maps.
Lemma 4.1. Let X = a − lim←−S, where S = {Xα, p

β
α, α < β < τ} is

almost continuous with nearly open bonding maps. Then for every open
sets U, V ⊂ X we have:

(1) α ̸∈ q(U) if and only if (pα+1
α )−1

(
Intpα(U)

)
⊂ pα+1(U);

(2) q(U) ∩ [α, τ) = ∅ provided U = p−1α (W ) for some open W ⊂ Xα;
(3) Suppose q(U) and q(V ) are finite and U ∩ V = ∅. If q(U) ∩

q(V ) ∩ [γ, τ) = ∅ for some γ < τ , then Intpγ(U) and Intpγ(V )
are disjoint.

The next proposition was announced in [14, Proposition 2.2] without
a proof. Note that a similar statement was established in [9] for inverse
systems with open bounding maps.
Proposition 4.2. [14] Let S = {Xα, p

β
α, α < β < τ} be an almost con-

tinuous inverse system with nearly open bonding maps such that X =
a− lim←−S. Then the family of all open subsets of X having a finite rank is
a base for X.

Proof. We are going to show by transfinite induction that for every α < τ
the open subsets U ⊂ X with q(U) ∩ [1, α] being finite form a base for
X. Obviously, this is true for finite α, and it holds for α + 1 provided
it is true for α. So, it remains to prove this statement for a limit cardi-
nal α if it is true for any β < α. Suppose G ⊂ X is open and x ∈ G.
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Since pα is nearly open, Gα = Intpα(G) contains pα(G) (here both interior
and closure are taken in Xα). Let Sα = {Xγ , p

β
γ , γ < β < α}, Yα = lim←−Sα

and p̃αγ : Yα → Xγ are the limit projections of Sα. Obviously, Xα is
naturally embedded as a dense subset of Yα and each p̃αγ restricted on Xα is
pαγ . So, there exists γ < α and an open set Uγ ⊂ Xγ containing xγ = pγ(x)

such that (p̃αγ )
−1(Uγ) ⊂ IntYαGα

Yα . Consequently, (pαγ )
−1(Uγ) ⊂ Gα.

We can suppose that Uγ = IntUγ . Then, according to the inductive
assumption, there is an open set W ⊂ X such that q(W ) ∩ [1, γ] is finite
and x ∈ W ⊂ p−1γ (Uγ) ∩ G. So, xγ ∈ pγ(W ) ⊂ Wγ = Intpγ(W ) and
Wγ ⊂ Uγ . Hence, x ∈ p−1γ (Wγ) ∩ G ⊂ G. The next claim completes the
induction.

Claim 7. q
(
p−1γ (Wγ) ∩G

)
∩ [1, α] = q(W ) ∩ [1, γ].

Indeed, for every β ≤ γ we have pβ
(
p−1γ (Wγ) ∩G

)
= pβ(W ). This

implies

(6) q(W ) ∩ [1, γ] = q
(
p−1γ (Wγ) ∩G

)
∩ [1, γ].

Moreover, since (pαγ )
−1(Wγ) ⊂ (pαγ )

−1(Uγ) ⊂ pα(G), we have

pβ
(
p−1γ (Wγ) ∩G

)
= pβ

(
p−1γ (Wγ)

)
for each β ∈ [γ, α]. Hence,

(7) q
(
p−1γ (Wγ) ∩G

)
∩ [γ, α] = q

(
p−1γ (Wγ)

)
∩ [γ, α].

Note that, by Lemma 4.1(2), q
(
p−1γ (Wγ)

)
∩ [γ, α] = ∅. Then the combi-

nation of (1) and (2) provides the proof of the claim.
Therefore, for every α < τ the open sets W ⊂ X with q(W ) ∩ [1, α]

being finite form a base for X. Now, we can finish the proof of the
proposition. If V ⊂ X is open and x ∈ V we find a set G ⊂ V with
x ∈ G = p−1β (Gβ), where Gβ is open in Xβ for some β < τ . Then there
exists an open set W ⊂ G containing x such that q(W ) ∩ [1, β] is finite.
Let Wβ = Intpβ(W ) and U = p−1β (Wβ ∩Gβ). It is easily seen that x ∈ U

and pν(U) = pν(W ) for all ν ≤ β. This yields q(U)∩ [1, β] = q(W )∩ [1, β].
On the other hand, by Lemma 4.1(2), q(U) ∩ [β, τ) = ∅. Hence U is a
neighborhood of x which is contained in V and q(U) is finite. �

Similar to the previous proposition, the next was also announced in
[14, Proposition 2.3] without a proof.

Proposition 4.3. [14] Let S = {Xα, p
β
α, α < β < τ} be an almost con-

tinuous inverse system with nearly open bonding maps such that X =
a− lim←−S. Then:

(1) X is regularly embedded in
∏

α<τ Xα;
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(2) If, additionally, each Xα is regularly embedded in a space Yα, then
X is regularly embedded in

∏
α<τ Yα.

Proof. (1) We consider the embedding of X in X̃ =
∏

α<τ Xα generated
by the maps pα. According to Proposition 4.2, X has a base B consisting
of open sets U ⊂ X with finite rank q(U). As in Proposition 2.7, for every
U ∈ B let Ω(U) = {α0, α, α + 1 : α ∈ q(U)}, where α0 < τ is fixed. For
all U ∈ B and α < τ let Uα = Intpα(U) and Γ(U) ⊂

∏
{Xα : α < τ} be

defined by

Γ(U) =
∏
{Uα : α ∈ Ω(U)} ×

∏
{Xα : α ̸∈ Ω(U)}.

Since pα(U) ⊂ Uα for each α, U is contained in Γ(U).
Using the arguments from the proof of Proposition 2.7, one can show

that Γ(U) ∩ X ⊂ U . Finally, we define the required regular operator
e : TX → TX̃ by e(V ) =

∪
{Γ(U) : U ∈ B, U ⊂ V }.

(2) For each α < τ let eα : TXα → TYα be a regular operator. Define a
function θ1 : B → TỸ , where Ỹ =

∏
α<τ Yα, by

θ1(U) =
∏

α ̸∈Ω(U)

eα(Uα)×
∏

α ̸∈Ω(U)

Yα.

Consider θ : TX → TỸ , θ(G) =
∪
{θ1(U) : U ∈ B and U ⊂ G}. Since

θ1(U) ∩ X = Γ(U) and U ⊂ Γ(U) ⊂ U for any U ∈ B, θ(G) ∩ X = G.
Moreover, Claim 4 implies that θ(G1)∩θ(G2) = ∅ provided G1∩G2 = ∅.
Thus, θ is a regular operator. �
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