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STUDY OF TRANSITIVITY THROUGH STEEPNESS

V. KANNAN, R. BASU, K. SANNYASI, AND N. UNNIKRISHNAN

Abstract. The aim of this work is to provide some simple suffi-
cient conditions for topological transitivity of piecewise monotone
maps on [0, 1]. Here we introduce a steepness condition that will
imply that the map is expanding (in the sense that for every in-
terval, the length of its image is greater than the length of that
interval, unless the image is the whole space), and then we prove
that these expanding maps are transitive. The theorems stated in
this paper improve some known recent results. Moreover, they are
simpler to state.

1. Introduction

Discrete dynamical systems arise as mathematical models of any mo-
tion obeying a rule that does not change with time. The rough idea
behind transitivity is that we like to require any point in the phase space
to visit every portion of the space in the course of time. Because points
are seldom handled accurately, due to round-off errors and computational
errors, we modify our requirement: Every neighborhood of every point
visits every region at some time or other. Consequently, such a dynam-
ical system cannot be decomposed into two disjoint sets with nonempty
interiors which do not interact under the transformation. Thus, transi-
tivity in some sense is irreducibility.
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Moreover, for interval maps transitivity is the same as the well-known
property of chaos (according to Robert L. Devaney’s definition) (see [3],
[7], [8]).

Sufficient conditions for topological transitivity of a dynamical sys-
tem have been studied by many persons. In [5], Peter Raith and Angela
Stachelberger found some sufficient conditions for the topological transi-
tivity of interval maps. Also in [6], the authors found that “A subshift of
finite type is topologically transitive if and only if the associated matrix
M is irreducible in the sense that for every (i, j), the (i, j)th entry of the
matrix power Mn is strictly positive for some positive integer n.”

It has been observed that transitivity of a dynamical system can be
inferred through the steepness of the graph of the function. Raith found
some sufficient conditions for the transitivity of a function [4, Theorem 1].
Later, in [2], Anima Nagar, V. Kannan, and Karanam Srinivas improved
the results obtained by Raith (see section 4 of this paper).

In this paper, we try to improve the results further and examples have
been provided to show that these new theorems are more powerful than
the previous ones. In addition, our results simplify the condition for
transitivity. Since it is not always possible to exhibit dense orbits or
to construct a topological conjugacy with known topologically transitive
maps, these results have acquired practical value.

The main theorem of this paper paves the way for writing an algorithm
to check in some cases whether a given piecewise linear map is transitive.
This is because there are only finitely many intervals of surjection where
the steepness condition is to be verified.

2. Definitions

A self-map f on a topological space X is said to be topologically tran-
sitive if for every pair of non-empty open sets U and V in X, there exists
n ∈ N such that fn(U) ∩ V ̸= ϕ.

A function f on X is said to be locally eventually onto (leo) if for every
non-empty open set U there exists n ∈ N such that fn(U) = X.

A set A ⊂ X is said to be forward invariant under f if f(A) ⊆ A.
A lap is defined as a maximal subinterval in the domain (here it is

[0, 1]) of f , on which f is monotonic.
A function is said to be piecewise monotone (p.m.) if the domain is the

union of finitely many subintervals on each of which f is monotonic.
A function is said to be piecewise linear (p.l.) if the domain is the union

of finitely many subintervals on each of which f is linear.
A function is said to be admissible piecewise linear (a.p.l.) if it is piece-

wise linear and slopes are alternately positive and negative. This is equiv-
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alent to saying that f is linear on each lap. It is obvious that an a.p.l.
map ⇒ a p.l. map ⇒ a p.m. map.

A point x is said to be a critical point of f if in every neighborhood of
x, f fails to be one-one.

An a.p.l. map is completely specified by its values at the end points of
the laps. By an a.p.l. map, defined by

f(ai) = bi for i ∈ {0, 1, . . . , r + 1},(2.1)

we mean the map f satisfying (2.1), where

0 = a0 < a1 < · · · < ar < ar+1 = 1

such that f is linear in [ai, ai+1] for i ∈ {0, 1, . . . , r}. For example, the
tent map is defined by f(0) = 0, f( 12 ) = 1, and f(1) = 0.

3. Transitivity Through Expansion

The next theorem makes precise the following rough idea: If f admits
several intervals of surjection on which the steepness condition holds, then
f has to be transitive.

Theorem 3.1. Let f : I(= [0, 1]) → I be a p.m. interval map differen-
tiable at all points outside a finite set F . Let J1, J2, . . . , Jk be subintervals
of I in the increasing order of their left end-points such that

(1) f(Ji) = [0, 1] for all i ∈ {1, 2, . . . , k}
(2) If c is an end point of Ji, then either c is a critical point or c

belongs to {0, 1}.
(3) inf{|f ′(x)| : x ∈ (Ji ∪ Ji+1) − F} > no of laps in (Ji ∪ Ji+1) for

i ∈ {1, 2, . . . , k − 1}.
If {Ji|i = 1, 2, . . . , k} covers the whole I, then f is topologically transitive.

Proof. Consider an open interval K in I. Our present purpose is to find
a lower bound for |f(K)|

|K| .

Case 1: Let K lie completely inside some lap in I. If K = (a, b),
then |K| = b − a. Because f is monotonic on K, the length of f(K) is
equal to |f(b) − f(a)|. Applying MVT to every one of the open inter-
vals K1,K2, . . . ,Kp which are components of K − F , we can conclude
that there exist cj ∈ Kj for all j ∈ {1, 2, . . . , p} such that |f(Kj)| =
|f ′(cj)||Kj |. Hence,

|f(K)| = |f(b)− f(a)|
= |f ′(c1)||K1|+ |f ′(c2)||K2|+ · · ·+ |f ′(cp)||Kp|
≥ inf{|f ′(x)| : x ∈ K − F}|K|.
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Case 2: Let K ⊂ (Ji∪Ji+1) for some i ∈ {1, . . . , k−1}. Let L1, L2, . . . Ln

be the laps that meet K. Let Kl = K ∩ Ll for 1 ≤ l ≤ n. Choose l such
that |Kl| ≥ |Kj | for all j. Hence,

|f(K)| ≥ |f(Kl)| ≥ inf{|f ′(x)| : x ∈ Kl − F}|Kl|
≥ inf{|f ′(x)| : x ∈ (Ji ∪ Ji+1)− F}|Kl|

≥ inf{|f ′(x)| : x ∈ (Ji ∪ Ji+1)− F}
n

|K|.

Case 3: Let K * (Ji ∪ Ji+1) and ai and bi be the end points of Ji for
all i = 1, 2, . . . , k− 1. Take the largest i such that ai is less than or equal
to the left end point of K. (Note that ai+1 is not less than or equal to
the left end point of K.) Two cases are possible:

(i): If bi+1 ∈ K, then K ⊃ Ji+1. Hence, f(K) = [0, 1].
(ii): If bi+1 is greater than or equal to every element in K, then K ⊂

Ji ∪ Ji+1, a contradiction to our assumption.

Thus, we have found lower bounds for |f(K)|
|K| . In Case 1, it was

inf{|f ′(x)| : x ∈ K − F}

and in Case 2, it was

inf{|f ′(x)| : x ∈ (Ji ∪ Ji+1)− F}
n

.

Now we find a common lower bound that works in all cases. Let

δ = min
1≤i<k

(
inf{|f ′(x)| : x ∈ (Ji ∪ Ji+1)− F}

{no of laps in (Ji ∪ Ji+1)}

)
− 1.

Note that assumption (3) implies δ > 0.
We shall prove

|f(K)|
|K|

≥ (1 + δ)

in all cases, unless f(K) = [0, 1].
We may note that in Case 1,

inf{|f ′(x)| : x ∈ K − F} ≥ inf{|f ′(x)| : x ∈ (Ji ∪ Ji+1)− F}
for that i such that K ⊂ Ji

≥ inf{|f ′(x)| : x ∈ (Ji ∪ Ji+1)− F}
{no of laps in (Ji ∪ Ji+1) }

≥ (1 + δ),
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and in Case 2,

inf{|f ′(x)| : x ∈ (Ji ∪ Ji+1)− F}
n

≥ inf{|f ′(x)| : x ∈ (Ji ∪ Ji+1)− F}
{no of laps in (Ji ∪ Ji+1)}

≥ (1 + δ).

Thus, in all the cases,

|f(K)| ≥ (1 + δ)|K| or f(K) = [0, 1].

Proceeding in the same way, we can show that for all positive intergers n

|fn(K)| ≥ (1 + δ)n|K| or fn(K) = [0, 1].

Since (1 + δ)n → ∞ as n → ∞, there exists n ∈ N such that fn(K) =
[0, 1]. So the function is transitive and, in fact, leo. Hence, the theorem
is proved. �

Remark 3.2. If F = ϕ (empty set), then by using Rolle’s theorem, we
can show that f is not expanding.

4. Theorem 1 of [2] as a Corollary of Theorem 3.1

In our statement of Theorem 1 of [2], let n ≥ 2 be in N. Let f be
a p.m. map differentiable at all points outside a finite set F . Assume
(1) if an interval J contains n critical points, then f(J) = [0, 1], and (2)
inf{|f ′(x)| : x /∈ F} > n. Then f is topologically transitive.

Proof. Let c1, c2, . . . , ck be the critical points of f such that 0 = c0 <
c1 < · · · < ck < ck+1 = 1. We claim that k + 1 > n, that is, k ≥ n.
If not, let us assume that k + 1 ≤ n. Consider the lap L of maximum
length, say [ci, ci+1] for some i ∈ {0, 1, . . . , k}, then |L| > 1

k+1 |[0, 1]| =
1

k+1 which implies that |f(L)| > n
k+1 ≥ 1, a contradiction to the fact

that f is a self-map. So we can conclude that 0 < c1 < c2 < · · · <
cn ≤ ck < 1. Hence, there are intervals containing n critical points. Let
J1 = [0, cn], J2 = [c1, cn], J3 = [c2, cn+1], . . . , and Jl = [ck−n+1, 1]. We
find that condition (1) in our statement of [2, Theorem 1] implies that
f(J1) = f(J2) = f(J3) = · · · = f(Jl) = [0, 1]. Hence, condition (1) of
Theorem 3.1 is verified. Condition (2) of Theorem 3.1 is obvious. Next,
we find that condition (2) in our statement of [2, Theorem 1] implies
condition (3) of Theorem 3.1, as inf{|f ′(x)| : x ∈ (J1 ∪ J2) − F} >
n = number of laps in J1 ∪ J2. Similar results can be proved for Ji ∪ Ji+1

for all i. Therefore, we have shown that assumptions (1) and (2) of our
statement of [2, Theorem 1] imply assumptions (1), (2) and (3) of Theorem
3.1. Hence, by Theorem 3.1, f is topologically transitive. �
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5. Example

Consider the function depicted in the graph shown below. Every in-
terval of surjection containing zero should contain seven critical points;
hence, n mentioned in [2, Theorem 1] will be greater than or equal to 7.
So the steepness of the graph has to be more than or equal to 8, but in
another interval of surjection (between 0.3 − 0.6), the steepness is 3.33
(not more than 8), so [2, Theorem 1] is not applicable. But Theorem 3.1
of this paper is applicable as the minimum steepness is allowed to vary
here.
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0.9

1

6. Estimation for the Ratio |f(K)|
|K|

This section provides results supplementing the previous theorem in a
manner that is easier for practical applications.

Theorem 6.1. If s1, s2, . . . , sn and l1, l2, . . . , ln are positive real numbers,
then

s1l1 ∨ s2l2 ∨ · · · ∨ snln
l1 + l2 + · · ·+ ln

≥ 1
1
s1

+ 1
s2

+ · · ·+ 1
sn

(6.1)

and equality occurs when s1l1 = s2l2 = · · · = snln, where ∨ represents the
maximum. In fact, if s1, s2, . . . , sn(> 0) are fixed and l1, l2, . . . , ln(> 0)
are allowed to vary, then

inf
l1,l2,...,ln

(
s1l1 ∨ s2l2 ∨ · · · ∨ snln

l1 + l2 + · · ·+ ln

)
=

1
1
s1

+ 1
s2

+ · · ·+ 1
sn

.(6.2)

It follows that if f is an a.p.l. continuous function from R to R and
s1, s2, . . . , sn are moduli of slopes in the graph of f , then for any interval
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K meeting n laps, we have

|f(K)|
|K|

≥ 1
1
s1

+ 1
s2

+ · · ·+ 1
sn

.(6.3)

Proof. We prove (6.2) by induction. The result is trivially true for n = 1.
Let us prove it for n = 2; that is,

inf
l1,l2

(
s1l1 ∨ s2l2
l1 + l2

)
=

1
1
s1

+ 1
s2

.

Let t = l1
l2

, then the last equality becomes

inf
t

(
s1t ∨ s2
t+ 1

)
=

1
1
s1

+ 1
s2

.

Since s1t
1+t is an increasing function and s2

1+t is a decreasing function, the
point of intersection of these two curves gives the infimum value for s1t∨s2

t+1 .
We can easily show that the point of intersection is at t = s2

s1
. Hence,

inf
t

(
s1t ∨ s2
t+ 1

)
=

s1s2
s1 + s2

=
1

1
s1

+ 1
s2

.(6.4)

Let us assume that (6.2) holds for n = k. Next, we will prove (6.2) for
n = k + 1. Let s = 1

1
s1

+ 1
s2

+···+ 1
sk

and l = l1 + l2 + · · · + lk. As (6.2) is

true for n = k, so

inf
l1,l2,...,lk

(
s1l1 ∨ s2l2 ∨ · · · ∨ sklk

l

)
= s,

which implies

s1l1 ∨ s2l2 ∨ · · · ∨ sklk ≥ sl.

Hence, we can write

s1l1 ∨ s2l2 ∨ · · · ∨ sk+1lk+1

l1 + l2 + · · ·+ lk+1
≥ {sl ∨ sk+1lk+1}

l + lk+1
.

By using the results for n = 2, we get

{sl ∨ sk+1lk+1}
l + lk+1

≥ 1
1
s + 1

sk+1

=
1

1
s1

+ 1
s2

+ · · ·+ 1
sk+1

.
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Equality occurs when li =
1
si

for all i. So,

inf
l1,l2,...,lk+1

(
s1l1 ∨ s2l2 ∨ · · · ∨ sk+1lk+1

l1 + l2 + · · ·+ lk+1

)
=

1
1
s1

+ 1
s2

+ · · ·+ 1
sk+1

.

Hence, by induction, the result follows. Inequality (6.1) follows from (6.2).
We will prove (6.3).

Let K be an interval meeting n laps namely L1, L2, . . . , Ln and suppose
li = |K ∩ Li| for i ∈ {1, . . . , n}. Therefore,

K = (K ∩ L1) ∪ (K ∩ L2) ∪ · · · ∪ (K ∩ Ln).

Hence, f(K) ⊃ f(K ∩Li) for all i, which implies |f(K)| ≥ |f(K ∩Li)| =
sili for all i. Therefore, |f(K)| ≥ s1l1 ∨ s2l2 ∨ · · · ∨ snln. Since |K| =
l1 + l2 + · · ·+ ln, we can conclude that

|f(K)|
|K|

≥ s1l1 ∨ s2l2 ∨ · · · ∨ snln
l1 + l2 + · · ·+ ln

.

From (6.1), it follows that

|f(K)|
|K|

≥ 1
1
s1

+ 1
s2

+ · · ·+ 1
sn

.

Hence, the result follows. �

Remark 6.2. The previous theorem is also true for piecewise monotone
maps. For a piecewise monotone map, the steepness on a lap L is defined
as inf{|f ′(x)| : x ∈ L − F}, where f is differentiable at all points ouside
a finite set F .

Theorem 6.3. Let f be a p.m. interval map on I differentiable at all
points outside a finite set F . Let L1, L2, . . . , Lm be the laps and let
s1, s2, . . . , sm be the steepnesses there (assume steepness si is always > 1
and on a lap Li it is defined as si =inf{|f ′(x)| : x ∈ Li − F}). If for all
i < j, 1

si
+ · · ·+ 1

sj
< 1 or f(Li ∪ · · · ∪ Lj) = [0, 1] (this will be hereafter

called the steepness condition), then f is topologically transitive.

Proof. Consider an open interval K in I.

Case 1: Let K lie completely inside some lap in I with steepness si.
Because f is monotonic on K, the length of f(K) is greater than or equal
to si|K|. Therefore,

|f(K)|
|K|

≥ si > 1.
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Hence,

|f(K)| ≥ 1
1
si

|K|

≥ 1
1
s1

+ 1
s2

+ · · ·+ 1
sm

|K|

= (1 + δ)|K|,
where

δ =
1

1
s1

+ 1
s2

+ · · ·+ 1
sm

− 1.

We can easily verify that δ > 0.
Case 2: Let K meet n laps, namely L1, L2, . . . , Ln with steepnesses

s1, s2, . . . , sn, and suppose li = |K ∩ Li| for i = 1, . . . , n. Then we obtain
|f(K)| ≥ |f(K ∩ Li)| ≥ sili for all i. Therefore,

|f(K)|
|K|

≥ 1
1
s1

+ 1
s2

+ · · ·+ 1
sn

≥ 1 + δ,

where |K| = l1 + l2 + · · · + ln. Thus, our assumption gives |f(K)| ≥
(1 + δ)|K| unless f(K) = [0, 1]. Proceeding as in Theorem 3.1, we can
conclude that f is topologically transitive. �

7. Theorem 1 of [2] and Theorem 3.1
as a Corollary of Theorem 6.3

We now show that the assumptions of [2, Theorem 1] and Theorem 3.1
imply the assumptions of Theorem 6.3.

Proof. Let i < j. Let K = Li ∪ ... ∪ Lj and si, . . . , sj be the steepnesses
in Li, . . . , Lj , respectively. We will deduce from these assumptions that
either

1

si
+ · · ·+ 1

sj
< 1

or f(Li∪· · ·∪Lj) = [0, 1]. First, we will prove [2, Theorem 1] as a corollary
of Theorem 6.3. Let k be the number of critical points in K. Let n be as
in [2, Theorem 1]. If k < n, then

1

si
+

1

si+1
+ · · ·+ 1

sj
<

1

n
+ · · ·+ 1

n
(k times) =

k

n
< 1,

(as each si > n). If k ≥ n, then by the assumptions of [2, Theorem 1],
f(K) = [0, 1]. Hence, by Theorem 6.3, f is topologically transitive.

Next, we will prove Theorem 3.1 of this paper as a corollary of Theorem
6.3. If K ⊃ Jl, then f(K) = [0, 1] as f(Jl) = [0, 1]. Next, if K ⊂
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Jl ∪ Jl+1 for some l, then it follows from assumption (3) of Theorem 3.1
that steepness in each Lr(i ≤ r ≤ j) (in fact in Jl ∪ Jl+1) is greater than
the number of laps in Jl ∪ Jl+1, say m (m depends on l). So,

1

si
+

1

si+1
+ · · ·+ 1

sj
<

1

m
+ · · ·+ 1

m

=
number of laps in K

m
≤ m

m
= 1.

Hence, by Theorem 6.3, f is topologically transitive. �

8. More on the Steepness Condition

Consider the function depicted in the following graph. In this example,
the critical points are 0.1, 0.25, 0.3375, and 0.39375, and the steepnesses
of the graph in the first, second, third, and fourth laps are 2, 4, 8, and
16, respectively.

Suppose J1 is an interval of surjection containing the laps with slopes 2,
4, 8, and 16, and J2(= I − J1) is another interval of surjection containing
one lap.

Note that Theorem 3.1 is not applicable here as the steepness in the
first lap is 2 which is not greater than the number of laps in J1 ∪ J2,
but Theorem 6.3 is applicable since the sum of the reciprocals of the
steepnesses on J1 is less than 1.

Remark 8.1. In both [4] and [2], the steepness was required to be greater
than a fixed lower bound everywhere. In this paper, Theorem 3.1 is also
similar, but the lower bound of the steepness is allowed to vary at different
places.
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Remark 8.2. Consider the a.p.l. map f : [0, 1] → [0, 1] defined by f(0) =
0, f( 14 ) =

3
4 , f( 13 ) =

1
2 , f( 7

12 ) = 1, f( 34 ) = 0, and f(1) = 1. We can easily
verify that for the function f , the sum of the reciprocals of the steepnesses
in the first three laps is 1

3+
1
3+

1
2 = 7

6 > 1, so Theorem 6.3 is not applicable
to f . But from the graph of fof , we can easily verify that the sum of the
reciprocals of the steepnesses in any interval outside the laps of surjection,
i.e., outside those laps L for which f(L) = [0, 1], is less than 1; hence, by
applying Theorem 6.3 to fof , we can conclude that fof is topologically
transitive. Consequently, f is topologically transitive (by [1, Theorem
2.3]).

We would like to know whether for every a.p.l. transitive map f , should
some power of f satisfy the steepness condition? While this is open, the
next theorem gives some other kind of converse.

Theorem 8.3. Suppose s1, s2, ...sk are positive numbers such that every
a.p.l. map on R with these as moduli of slopes is expanding. Then the
sum of their reciprocals is less than 1.

Proof. Consider this example. Suppose the critical points for a function
are 1

s1
, 1
s1

+ 1
s2
, . . . , 1

s1
+ 1

s2
+ · · · + 1

sk
. The function takes the value 0

at 0, then 1 at 1
s1

, and alternately 0 and 1 at these critical points. The
a.p.l. map defined by these is also expanding by our assumption. Let s
be the sum of the reciprocals of s1, s2, . . . , sk. Then, because the closed
interval [0, s] under this map goes to the closed interval [0, 1], it follows
that s < 1. �
Remark 8.4. If the steepness condition fails for some map, then there
exists a non-transitive map with the same sequence of steepnesses. There-
fore, among all steepness conditions implying transitivity, the one studied
in this paper is the best.

Theorem 8.5. Any continuous a.p.l. function f : [0, 1
2 ] → [0, 1] satisfying

1

s1
+

1

s2
+ · · ·+ 1

sn
< 1,

where s1, s2, . . . , sn are moduli of slopes in the graph of f , can be extended
to a function g : [0, 1] → [0, 1] such that g is transitive.

Proof. Choose s > 0 such that
1

s
+

1

s1
+ · · ·+ 1

sn
< 1.

Next choose α in [ 12 , 1] such that 1−f( 1
2 )

α− 1
2

= s. (If f( 12 ) = 1, we take

α = 1
2 .) Now by extending f as an a.p.l. map such that f(α) = 1 and

f(1) = 0, the result follows from Theorem 6.3. �
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Remark 8.6. An open map from [0, 1] to [0, 1] is transitive if and only
if it is not one-one.

As for every open map, the critical values are either 0 or 1. So every
lap is mapped onto [0, 1]; hence, by applying Theorem 6.3, we get the
results.

Remark 8.7. Note that an a.p.l. continuous function f from R to R with
steepnesses s1, s2, . . . , sn is expanding if

1

s1
+

1

s2
+ · · ·+ 1

sn
< 1.(8.1)

Remark 8.8. An a.p.l. continuous function f from R to R with steep-
nesses s1, s2, . . . , sn is expanding if the harmonic mean of s1, s2, . . . , sn is
greater than n.
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