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A USER’S GUIDE TO CLONING SYSTEMS

MATTHEW C. B. ZAREMSKY

Abstract. The author, in joint work with Stefan Witzel (to ap-
pear in Groups, Geometry, and Dynamics), developed a procedure
for building new examples of groups in the extended family of
Thompson groups, using what we termed cloning systems. These
new Thompson-like groups can be thought of as limits of families of
groups; however, unlike other limiting processes, e.g., direct limits,
these tend to be well behaved with respect to finiteness properties.
In this expository paper, we distill the crucial parts of that 50-page
paper into a more digestible form for those curious to understand
the construction but less curious about the gritty details. We also
give some new examples involving signed symmetric groups and
twisted braid groups.

1. Introduction

The notion of a cloning system on a family of groups (Gn)n∈N was in-
troduced by Stefan Witzel and the author in [11]. Given a cloning system
on (Gn)n∈N, one gets a group T (G∗), called the generalized Thompson
group for the cloning system (more often called a Thompson-like group).
One original motivation for axiomatizing the cloning system construction
was to build a general framework giving rise to various preexisting ver-
sions of the Thompson groups, for example, groups called F , V , Vbr, and
Fbr (using the families ({1}), (Sn), (Bn), and (PBn), respectively), and
also some new examples the authors found, for example, using the family
(Bn(R)). Here, Bn(R) is the group of upper triangular n-by-n matrices
over a ring R. Throughout this paper, we will assume the reader has some
familiarity with Thompson groups; see [8] for a standard reference. (As a
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14 M. C. B. ZAREMSKY

remark, we do not discuss Thompson’s group T in this framework; as it
turns out, it is somewhat different from F and V from this point of view.)

The Thompson-like group T (G∗) can be viewed as a sort of limit
of the family (Gn). One can compare and contrast it to other limiting
operations, e.g., the direct limit. With a direct limit, finiteness properties
tend to be destroyed. For example, the symmetric groups Sn are all
finitely presented, but their direct limit S∞ is not even finitely generated.
However, arranging the Sn in a natural cloning system and taking the
“Thompson limit,” one gets Thompson’s group V , which is still finitely
presented. This is another motivating factor in the axiomatization of
cloning systems: they yield a limiting procedure that tends to preserve
finiteness properties.

Finally, cloning systems, and the Thompson-like groups they produce,
simply serve as new examples of interesting groups. For example, in an
REU run by Dan Farley, it was shown that certain such examples are coCF
groups [1]. There is an open conjecture that every coCF group embeds
into Thompson’s group V , and these are potential counterexamples. It
remains open whether or not these groups can in fact embed into V , but
at least there seems to be no natural embedding.

We will first discuss the definition of a cloning system followed by
various examples in sections 3 and 4. In sections 5 and 6, we explain
how Thompson-like groups and natural cube complexes arise from cloning
systems, and finally, in section 7, we discuss the finiteness properties of
the Thompson-like groups. We will not give any proofs here (except for
proving some statements about the new examples in section 4), but the
interested reader can reference [11] for more details.

2. Definitions

This section is devoted to defining a cloning system on a family of
groups. We fix a family of groups (Gn)n∈N. The rest of the data consist
of three families of maps.

2.1. Directed system morphisms.

First, we want the Gn to form a directed system of groups. That
is, there should exist maps ιm,n : Gm → Gn, for each m ≤ n, such that
ιn,n = idGn

for all n and ι`,m ◦ ιm,n = ι`,n for all ` ≤ m ≤ n. The astute
reader will notice that we are writing composition as though our maps
take inputs on the left; indeed, we write the ιm,n maps on the right of
their arguments, so notation like (g)ιm,n is our convention. (This is not
really important here, but we maintain this convention to be consistent
with [11].) We also require that the ιm,n be injective so we can view the
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direct limit lim−→Gn as being the direct union of its subgroups Gn. An
easy example is the family of symmetric groups Sn, with ιm,n : Sm → Sn
given by inclusion; i.e., the image is the subgroup fixing {m + 1, . . . , n}
pointwise.

2.2. Representation maps.

Next, we want to fix a homomorphism ρn : Gn → Sn for each n.
This should be viewed as specifying a way that each Gn acts on the
set {1, . . . , n}, and for the sake of giving ρn a name, we will call it a
representation map. For example, if Gn is the braid group Bn on n
strands, then elements of Bn naturally permute the numbering of the
strands, yielding the desired map Bn → Sn. For some choices of Gn,
there will not be any particularly interesting maps to Sn, and in practice,
the ρn will often be just the trivial maps. This is called the pure case, and
it still yields interesting cloning systems, so a lack of maps to Sn is not
a roadblock to finding a cloning system on a given family of groups. We
write the maps ρn on the left, so notation like ρn(g) is our convention.
For the ρn to count as representation maps, we impose a restriction,
namely that the ρn should give a homomorphism of directed systems
ρ∗ : G∗ → S∗. This just means we require

ρn((g)ιm,n) = (ρm(g))ιm,n(2.1)

for all m ≤ n and all g ∈ Gm. (Here we are writing ιm,n for both the map
Gm → Gn and also the map Sm → Sn.)

2.3. Cloning maps.

Finally, we need our “cloning maps.” More precisely, we want a family
of injective maps from Gn to Gn+1, for each n. There should be n such
maps, denoted κnk : Gn → Gn+1, for 1 ≤ k ≤ n. We mention now and will
reiterate later that the κnk need not be group homomorphisms. They are
merely (injective) functions on sets. Shortly, when we state the cloning
axioms, there will obviously be restrictions on what the κnk can be, but
for now we just have n functions from Gn to Gn+1. We do impose one
restriction: To be termed cloning maps, they should satisfy the rule that

ιm,n ◦ κnk = κmk ◦ ιm+1,n+1(2.2)

for all 1 ≤ k ≤ m ≤ n. Again, the way these equations are written, it is
clear that we must write the functions κnk on the right of their inputs, so
notation like (g)κnk is our convention.
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2.4. The cloning axioms.

We now state the axioms for the quadruple

((Gn)n∈N, (ιm,n)m≤n, (ρn)n∈N, (κ
n
k )1≤k≤n)

to be a cloning system. In the axioms, we always have 1 ≤ k < ` ≤ n and
g, h ∈ Gn.

(C1): (Cloning a product) (gh)κnk = (g)κnρn(h)k(h)κ
n
k .

(C2): (Product of clonings) κn` ◦ κ
n+1
k = κnk ◦ κ

n+1
`+1 .

(C3): (Compatibility) ρn+1((g)κ
n
k )(i) = (ρn(g))ς

n
k (i) for all i 6= k, k+1.

Definition 2.1 (Cloning system). Let ((Gn)n∈N, (ιm,n)m≤n) be a di-
rected system of groups, let (ρn)n∈N be a family of representation maps on
the directed system (so Equation (2.1) is satisfied), and let ((κnk )1≤k≤n)
be a family of cloning maps on the directed system (so Equation (2.2)
is satisfied). If the quadruple ((Gn)n∈N, (ιm,n)m≤n, (ρn)n∈N, (κ

n
k )1≤k≤n)

satisfies (C1), (C2), and (C3), then we call it a cloning system.

In axiom (C3) there is the mysterious notation ςnk . This will be ex-
plained in section 3; see Example 3.2. (Very quickly: ςnk are the cloning
maps for the natural cloning system on the symmetric groups.)

We mention some heuristic ways of understanding the axioms. Note
that axiom (C1) is saying that the κnk are not necessarily homomorphisms,
but are sort of “twisted” homomorphisms, with the twisting given by ρn.
Axiom (C2) is sort of a statement about cloning maps commuting, though
the subscripts change in a certain natural way, reminiscent of standard
relations in Thompson’s group F . Finally axiom (C3) says that when
hitting everything with the ρn, the cloning system resembles the standard
cloning system on the symmetric groups (which, again, we have not stated
yet, but will do so in Example 3.2). In practice, (C3) often holds even for
i = k, k+1, for example in the standard cloning system on the symmetric
groups, but this is not axiomatically required. We will discuss some new
examples in section 4 where (C3) does not hold for i = k, k + 1.

To close out this section on the definition of cloning systems, we discuss
one additional property that we usually want to ensure that a cloning
system is “nice.” This is the property of a cloning system being properly
graded.

Definition 2.2 (Properly graded). Let ((Gn)n∈N, (ιm,n)m≤n, (ρn)n∈N,
(κnk )1≤k≤n) be a cloning system. We call it properly graded if, for all
1 ≤ k ≤ n, we have the inclusion

imκnk ∩ im ιn,n+1 ⊆ im(ιn−1,n ◦ κnk ).
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In other words, if an element g ∈ Gn+1 can be “uncloned” and also
happens to already lie in Gn ≤ Gn+1, then when g is treated as an element
of Gn, it can still be “uncloned.” The terminology comes from viewing the
Gn as being a filtration, or grading, of lim−→Gn and requiring the cloning
maps to be well behaved with respect to this grading. The precise nature
of the “niceness” that cloning systems enjoy when they are properly graded
does not really come into play until one builds a Thompson-like group and
a Stein–Farley cube complex on which the group acts, after which the
groups Gn will appear as vertex stabilizers. This might fail if the cloning
system is not properly graded; namely, the stabilizers might not equal the
Gn. This will all be discussed later, when we construct the groups and
complexes.

3. Existing Examples

We now give some examples of cloning systems. The examples in this
section are all given in [11]. In section 5, we will discuss Thompson-like
groups that arise from cloning systems, and, in particular, we will refer
back to these examples to discuss the groups in these cases.

Example 3.1 (Direct powers). These examples were also observed by
Slobodan Tanushevski [10]. In discussions with him, we discovered that
his construction is an example of a cloning system, albeit in very different
language. We state the example here in our language.

Let G be any group, and consider the family (Gn)n∈N of direct powers
of G. The maps ιm,n : Gm → Gn are given by sending (g1, . . . , gm) to
(g1, . . . , gm, 1, . . . , 1), where the identity 1 ∈ G fills the last n−m entries.
The representation maps ρn : Gn → Sn are trivial. The cloning map
κnk : G

n → Gn+1 is given by

(g1, . . . , gn)κ
n
k := (g1, . . . , gk, gk, . . . , gn),

so it copies the kth entry into the (k+ 1)st entry and shifts all the higher
entries up one, ending with gn as the (n+ 1)st entry.

It is a straightforward exercise to check that the quadruple

((Gn)n∈N, (ιm,n)m≤n, (ρn)n∈N, (κ
n
k )1≤k≤n)

is a cloning system.
A variation on this example is the following. Let φ1, φ2 : G → G be

two self-monomorphisms of G. Then the maps

κnk : (g1, . . . , gn) 7→ (g1, . . . , φ1(gk), φ2(gk), . . . , gn)

are still injective, and it is easy to check that they still yield a cloning
system on (Gn). In the case when G is finite, φ1 = idG, and φ2 is
an automorphism, the resulting Thompson-like groups are known to be



18 M. C. B. ZAREMSKY

coCF [1] and serve as potential counterexamples to the conjecture that V
is universal coCF; see [1] for more details.

Example 3.2 (Symmetric groups). Take Gn = Sn and let ιm,n : Sm →
Sn be the usual inclusion whereby we view Sm as the subgroup of Sn
fixing {m + 1, . . . , n} pointwise. Also, naturally, the maps ρn : Sn → Sn
are just the identity. It remains to state the cloning maps ςnk : Sn → Sn+1

(note the special notation for these cloning maps, which are themselves
referenced in axiom (C3)).

Given a permutation g ∈ Sn, the easiest way to understand (g)ςnk ∈
Sn+1 is with a picture. Since g is a bijection from {1, . . . , n} to itself, we
can draw g as a diagram of arrows from one copy of {1, . . . , n} up to a
second copy. Then (g)ςnk is the diagram of arrows from {1, . . . , n+ 1} up
to a second copy of itself obtained by bifurcating the arrow, starting at
k, into two parallel arrows. See Figure 3.1 for an example.

ς22−→

1

1

2

2

1

1

2

2

3

3

Figure 3.1. Cloning in symmetric groups.
Here we see that (1 2)ς22 = (1 3 2).

A more formal definition of ςnk : Sn → Sn+1 is as follows. Let g ∈ Sn so
g is a bijection from {1, . . . , n} to itself. We want to specify what (g)ςnk
is as a bijection from {1, . . . , n + 1} to itself. The technical definition is
as follows:

((g)ςnk )m :=


gm if m ≤ k and gm ≤ gk
(gm) + 1 if m < k and gm > gk
g(m− 1) if m > k and g(m− 1) < gk
g(m− 1) + 1 if m > k and g(m− 1) ≥ gk.

For example, in Figure 3.1, where g = (1 2) and k = 2, when m = 1,
we have m ≤ k and gm = 2 > 1 = gk, so the definition says ((1 2)ς22 )1 =
((1 2)1) + 1 = 3, and, indeed, the picture of (1 2)ς22 shows 1 going to 3.
As another example, take m = 3; then m > k and g(m− 1) = 1 = gk, so
the definition says ((1 2)ς22 )3 = (1 2)(3− 1) + 1 = 2, and, indeed, we see
that 3 goes to 2.
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Using this technical definition, it is possible to formally check that

((Gn)n∈N, (ιm,n)m≤n, (ρn)n∈N, (κ
n
k )1≤k≤n)

is a properly graded cloning system [11, examples 2.9 and 2.16]. As some
foreshadowing to section 5, the Thompson-like group arising from this
cloning system will be Thompson’s group V .

Example 3.3 (Braid groups). The other example of a cloning system
that predates our axiomatization comes from Matthew G. Brin’s [3] and
Patrick Dehornoy’s [9] braided Thompson group Vbr (often denoted BV ).

Take (Gn) to be the family of braid groups, Gn = Bn. The inclusion
ιm,n : Bm → Bn is given by adding n −m extra strands to the right of
an m-strand braid to get an n-strand braid. The representation map
ρn : Bn → Sn is the usual map taking the numbering of strands at the
bottom to the numbering at the top. Finally, the cloning map κnk : Bn →
Bn+1 is obtained by bifurcating the kth strand (counting at the bottom)
into two parallel strands, such that no other strands pass between them;
see Figure 3.2 for an example.

κ2
1−→

Figure 3.2. An example of cloning in braid groups.
Here we start with a braid b ∈ B2, apply the cloning
map κ21, and get a braid in B3 that looks like b with its
first strand cloned (counting at the bottom).

The work involved in checking that ((Bn)n∈N, (ιm,n)m≤n, (ρn)n∈N,
(κnk )1≤k≤n) is a properly graded cloning system is similar to that in the
symmetric group example. Also, one can instead use the family (PBn)
of pure braid groups and get a similar cloning system (in this case the
representation maps will even be trivial).

Example 3.4 (Upper triangular matrix groups). In [11], one of the main
new examples of cloning systems involves upper triangular matrix groups.
For R a unital ring, let Bn(R) be the group of invertible upper triangular
n-by-n matrices. Let us describe a properly graded cloning system on the
family of groups (Bn(R))n∈N. First, the map ιm,n : Bm(R) → Bn(R) is
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the usual one, given by sending anm-by-m matrix A to the n-by-n matrix(
A 0
0 In−m

)
.

Next, the representation maps ρn : Bn(R) → Sn are all taken to be the
trivial map. Finally, the cloning map κnk : Bn(R)→ Bn+1(R) is given by A<,< A<,k A<,>

0 Ak,k Ak,>
0 0 A>,>

κnk =


A<,< A<,k A<,k A<,>
0 Ak,k 0 0
0 0 Ak,k Ak,>
0 0 0 A>,>

 .

Here the A∗,∗ represent blocks whose entries lie in positions relative to
k as indicated by the subscripts. Note that the block A<,k has width 1
and the block Ak,> has height 1. It is easier to see what κnk does by looking
at an example. In this example, we see what κ53 does to an illustrative
5-by-5 matrix.

1 2 3 4 5
0 6 7 8 9
0 0 10 11 12
0 0 0 13 14
0 0 0 0 15

κ53 =


1 2 3 3 4 5
0 6 7 7 8 9
0 0 10 0 0 0
0 0 0 10 11 12
0 0 0 0 13 14
0 0 0 0 0 15

 .

Showing that these data define a properly graded cloning system is not
too difficult. The only step that requires some work is axiom (C1), which,
since the ρn are trivial, says that the cloning maps should be homomor-
phisms, but technically this “just” requires doing a matrix multiplication.

4. New Examples

Here we present some new examples which do not appear in [11] but
are natural additions to the list of established cloning systems.

Example 4.1 (Signed symmetric groups). Let Gn = S±n be the signed
symmetric groups. The group S±n is the Coxeter group of type Bn = Cn,
with presentation

S±n :=

〈
s1, . . . , sn

∣∣∣∣∣∣∣∣
s2i = 1 for all i

sisj = sjsi for |i− j| > 1
(sisi+1)

3 = 1 for 1 ≤ i ≤ n− 2
(sn−1sn)

4 = 1

〉
.

We can realize S±n as the group of permutations σ of {1,−1, 2,−2, . . . ,
n,−n} satisfying σ(−i) = −σ(i) for all i. The generators si for 1 ≤ i ≤
n− 1 are the permutations (i i+1)(−i − (i+1)), and these generate the
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copy of Sn in S±n consisting of those σ stabilizing the subset {1, . . . , n}.
The generator sn is the transposition (n (−n)).

We will now put a cloning system on the family (S±n ). We have inclu-
sions ιm,n : S±m → S±n for m < n, given by viewing S±m as the subgroup
fixing {m+1,−(m+1), . . . , n,−n} pointwise. We also have natural repre-
sentation maps ρn : S±n → Sn given by sending each si for i < n to the gen-
erator also called si in Sn, and sending sn to the identity. This is clearly a
well-defined epimorphism and, in fact, yields a splitting S±n ∼= (Z/2Z) oSn,
where we recall that the wreath product is (Z/2Z) o Sn = (Z/2Z)n o Sn
with the natural action of Sn on (Z/2Z)n. We will not really use this
splitting, but it is good to have in mind. We now construct cloning maps
κnk and explain why all the cloning axioms hold.

Since we have an explicit presentation, we will first define the κnk : S
±
n →

S±n+1 on generators. We declare

(si)κ
n
k :=



si+1 if k < i < n
sisi+1 if k = i < n
si+1si if k = i+ 1 ≤ n
si if i+ 1 < k ≤ n
sn+1 if k < i = n
sn+1snsn+1 if k = i = n.

The i < n cases are all the same as for the standard cloning maps on
Sn. For the last two cases, intuitively, if we view S±n via pictures as in
Figure 3.1, but now the ith arrow has a positive or negative orientation
to indicate whether it takes (i,−i) to (j,−j) or (−j, j) for whichever
j is appropriate, then sn looks like the identity except the nth arrow
gets twisted to the opposite orientation. This makes the second to last
case clear, and for the last case, note that when we bifurcate this last
arrow, it becomes two arrows that cross and both switch orientation,
which corresponds to snsn−1sn.

To prove this yields a cloning system, we follow the procedure from
[11, Example 9.1]. We need to verify that (C2) and (C3) hold on the
generators si, and then to extend κnk to be defined on all of S±n , we
need to check that if we use (C1) to define κnk on products of generators,
this is well defined according to the defining relations above. The first
thing, that (C2) holds on generators, is easy but tedious and amounts to
checking lots of cases, so we leave this to the reader. Checking (C3) on
generators is more interesting. For s1 through sn−1, (C3) is evident since
ρn restricts to the identity on the subgroup Sn of S±n . Now consider sn.
We need to show that ρn+1((sn)κ

n
k )(i) = (ρn(sn))ς

n
k (i) for all i 6= k, k+1.

The right-hand side is i since ρn(sn) = 1. If k < n, then the left-hand
side is ρn+1(sn+1)(i) = id(i) = i, so this case is done. If k = n, then
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the left-hand side is ρn+1((sn)κ
n
n)(i) = ρn+1(sn+1snsn+1)(i) = sn(i), and

although sn is not the identity in Sn+1, it does send i to i for i < n,
which is sufficient for (C3) to hold. As a remark, in all the examples in
[11], (C3) holds for all i, but as this example illustrates, we can also have
cloning systems where (C3) “strictly” holds.

The last thing to check is that the relations are respected upon ex-
tending κnk to all of S±n . The only relation that does not work as in the
standard Sn cloning system is the last one, that (sn−1sn)4 = 1. When we
use (C1) to define κnk on (sn−1sn)

4, we get

((sn−1sn)
4)κnk = (s)κns(k)(t)κ

n
s(k)(s)κ

n
k (t)κ

n
k (s)κ

n
s(k)(t)κ

n
s(k)(s)κ

n
k (t)κ

n
k

where we write s := sn−1 and t := sn in S±n for brevity. If k < n −
1, then this becomes (snsn+1)

4 in S±n+1, which is the identity as de-
sired. Now suppose k = n − 1. Then since s(n − 1) = n, this becomes
(s)κnn(t)κ

n
n(s)κ

n
n−1(t)κ

n
n−1(s)κ

n
n(t)κ

n
n(s)κ

n
n−1(t)κ

n
n−1, which is

snsn−1sn+1snsn+1sn−1snsn+1snsn−1sn+1snsn+1sn−1snsn+1

in S±n+1, and applying the relations from S±n+1, this becomes

snsn−1sn+1snsn−1sn+1snsn+1snsn+1sn−1snsn+1sn−1snsn+1

= snsn−1sn+1snsn−1snsn+1snsn−1snsn+1sn−1snsn+1

= snsn+1snsn−1sn+1snsn−1snsn+1sn−1snsn+1

= snsn+1snsn+1snsn+1snsn+1 = 1.

Finally, when k = n, we get a similar expression and it similarly becomes
1 in S±n+1.

We conclude that ((S±n )n∈N, (ιm,n)m≤n, (ρn)n∈N, (κnk )1≤k≤n) is a cloning
system. It is also easy to check that it is properly graded, as in the stan-
dard Sn case.

Example 4.2 (Twisted braid groups). One can view S±n as a “twisted”
symmetric group, with the generator called sn in the previous example
serving to twist the nth arrow, and conjugates of sn twisting the other
arrows. (In this case, the twisting move has order 2, so “flipping” might be
a better word.) Passing from symmetric groups to braid groups, it makes
sense to again try to “twist” things. A first attempt at twisted braid
groups could be B±n = (Z/2Z) oBn, analogous to how S±n = (Z/2Z) o Sn,
with the action of Bn on (Z/2Z)n given via the projection Bn → Sn. This
admits a cloning system in much the same way as the previous example,
the details of which we will leave to the reader.

More interesting is to view the strands in the braids as ribbons that can
twist and to consider the group Btwistn :=ZoBn = ZnoBn, with the action
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of Bn on Zn given via the projection Bn → Sn. Now a twist is an infinite-
order move, and it is straightforward to see that ribbon pictures correctly
model this wreath product. Since Btwistn is a wreath product, we can
write down a presentation. Write the generators as s1, . . . , sn−1, sn, where
s1, . . . , sn−1 are the standard generators of Bn and sn is a twist of the
nth ribbon. The defining relations are the usual braid relations sisi+1si =
si+1sisi+1 for 1 ≤ i ≤ n− 2 plus the relations s−1n s−1i s−1n sisns

−1
i snsi = 1

for all i (to ensure sn commutes with all its conjugates).
We can define a cloning system on Btwistn as follows. First define κnk

on the generators exactly as in Example 4.1, via

(si)κ
n
k :=



si+1 if k < i < n
sisi+1 if k = i < n
si+1si if k = i+ 1 ≤ n
si if i+ 1 < k ≤ n
sn+1 if k < i = n
sn+1snsn+1 if k = i = n.

See Figure 4.1 for an example of this last cloning move. The figure
depicts the cloning move (s1)κ

1
1 = s2s1s2 (drawn here as s1(s−11 s2s1)s2).

κ1
1−→

Figure 4.1. Cloning a ribbon twist.
We see that (s1)κ11 = s2s1s2.

For the maps ρn : Btwistn → Sn, we just take the composition ofBtwistn →
Bn with Bn → Sn. Now we can verify the cloning axioms, again following
the procedure from [11, Example 9.1]. Most of the things to check work
in exactly the same way as they did in Example 4.1. In fact, the only
step that does not follow identically is the verification that the relations
s−1n s−1i s−1n sisns

−1
i snsi = 1 are respected by the cloning maps. We rewrite

this as sns−1i snsi = s−1i snsisn and apply κnk to both sides. On the left,
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we get

(sns
−1
i snsi)κ

n
k = (sn)κ

n
k (s
−1
i )κn(i i+1)k(sn)κ

n
(i i+1)k(si)κ

n
k ,

and on the right, we get

(s−1i snsisn)κ
n
k = (s−1i )κn(i i+1)k(sn)κ

n
(i i+1)k(si)κ

n
k (sn)κ

n
k .

It is now an exercise to verify that these equal each other in Btwistn+1 , for
each 1 ≤ i ≤ n − 1 and 1 ≤ k ≤ n. We will work out the most difficult
case, when i = n− 1 and k = n. In this case, we need to show that

(sn)κ
n
n(s
−1
n−1)κ

n
n−1(sn)κ

n
n−1(sn−1)κ

n
n equals

(s−1n−1)κ
n
n−1(sn)κ

n
n−1(sn−1)κ

n
n(sn)κ

n
n.

Applying all the cloning maps, the thing to show is that

sn+1snsn+1(snsn−1)
−1sn+1snsn−1 equals

(snsn−1)
−1sn+1snsn−1sn+1snsn+1,

or, equivalently, that (snsn−1)−1sn+1snsn−1 commutes with sn+1snsn+1.
Note that the former is in the Zn+1 factor of Btwistn+1 = Zn+1 o Bn, so
conjugating it by sn+1snsn+1 is the same as conjugating it by sn, which
yields

(snsn−1sn)
−1sn+1snsn−1sn = (sn−1snsn−1)

−1sn+1sn−1snsn−1 =

(snsn−1)
−1sn+1snsn−1.

Hence, (snsn−1)
−1sn+1snsn−1 commutes with sn+1snsn+1, and we are

done.
As a remark, one could also construct various “pure” versions, restrict-

ing only to pure braids and/or “pure twists.” This is a straightforward
generalization that we leave to the reader.

5. Thompson-like Groups

Given a cloning system ((Gn)n∈N, (ιm,n)m≤n, (ρn)n∈N, (κ
n
k )1≤k≤n), as

we have repeatedly promised, one gets a Thompson-like group T (G∗) out
of it. This group contains Thompson’s group F and all the groups Gn as
subgroups, and it maps to Thompson’s group V , all in natural ways. In
this section we will describe the group and state some of the important
properties. We will not get into the formal details that are necessary to
define the group, since this would take us on a long, technical detour into
Brin–Zappa–Szép products. These details can be found in [11, sections 1
and 2]. Rather than get into these details, here we will simply state what
the elements of the group T (G∗) look like, discuss some basic properties
of the groups, and give examples.
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5.1. Elements.

Throughout, we fix a cloning system ((Gn)n∈N, (ιm,n)m≤n, (ρn)n∈N,
(κnk )1≤k≤n). An element of the Thompson-like group T (G∗) is repre-
sented by a triple (T−, g, T+). Here T− and T+ are trees (by which we
always mean finite rooted binary trees) with the same number of leaves,
say n, and g ∈ Gn. This triple represents an element of T (G∗) in the
sense that elements of T (G∗) are actually equivalence classes of such
triples, under a certain equivalence relation. The equivalence relation is
the symmetric transitive hull of moves called expansions. An expansion of
(T−, g, T+) is a triple (U−, h, U+), where U+ is the tree obtained from T+
by adding a caret to the kth leaf of T+, for some 1 ≤ k ≤ n; U− is the tree
obtained by adding a caret to the (ρn(g)k)

th leaf of T−; and h = (g)κnk .
So two triples are considered equivalent if one can get from one to the
other by a finite sequence of expansions and inverse expansions (called
reductions). It is worth pointing out that both the representation maps
ρn and the cloning maps κnk came into play in defining this equivalence
relation. See Figure 5.1 for an example of expansion in the matrix group
case.

(
,

1 2 3
0 4 5
0 0 6


,

)
−→

(
,


1 2 2 3
0 4 0 0
0 0 4 5
0 0 0 6

 ,

)

Figure 5.1. An example of expansion in T (B∗(Q)).
The expansion amounts to adding a caret to the second
leaf of each tree (note that ρ3 is trivial) and applying κ32
to the matrix.

We write elements of T (G∗) as [T−, g, T+] to mean the equivalence
class of the triple (T−, g, T+). We are claiming that T (G∗) is a group, so
it had better make sense to take a product of two elements [T−, g, T+] and
[U−, h, U+]. It turns out that the following is the right thing to do. Find
a common expansion S of T+ and U−, for instance their union, and then
perform expansions on the two triples to get [T−, g, T+] = [T ′−, g

′, S] and
[U−, h, U+] = [S, h′, U ′+] for some T ′−, g′, h′, and U ′+. Then the product
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is defined by
[T−, g, T+][U−, h, U+] := [T ′−, g

′h′, U ′+].
This turns out to be a well-defined group operation. As a remark, ex-
panding T+ to S amounts to adding carets. Hence, the corresponding
expansion of (T−, g, T+) to (T ′−, g

′, S) amounts to also adding carets to
T− to get T ′− and applying some sequence of cloning maps to g to get
g′. Similarly, h′ is just h fed into some sequence of cloning maps. See
Figure 5.2 for an example of multiplication in T (S∗) = V .

[
, (1 2) ,

][
,
id

,

]
=

[
,
(1 3 2)

,

]
[

,
id

,

]
=

[
,
(1 3 2)

,

]

Figure 5.2. Multiplication in T (S∗) = V .
Note that we first have to expand the left triple using the
cloning map ς22 .

5.2. Basic properties.

Section 3 of [11] details some basic properties of the Thompson-like
groups T (G∗), regardless of the cloning system. We list a few of them
here. First, the map [T−, g, T+] 7→ [T−, ρn(g), T+] is a homomorphism
T (G∗) → V to Thompson’s group V = T (S∗). We call the kernel
K (G∗). If the ρn are all the trivial map, i.e., if we are in the pure case,
then the image of this map is Thompson’s group F , and moreover the map
splits (otherwise, the map does not necessarily split), so in the pure case,
we have T (G∗) = K (G∗) o F [11, Observation 3.2]. Second, for n ∈ N
and T , any tree with n leaves, the map g 7→ [T, g, T ] is a monomorphism
Gn ↪→ T (G∗). Hence, T (G∗) always contains the groups Gn, for all
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n ∈ N, as subgroups [11, Observation 3.1]. Also, any T (G∗) also contains
Thompson’s group F in a natural way, namely as the subgroup of elements
of the form [T−, 1, T+]. Finally, if we replace finitely many groups in the
family (Gn) with the trivial group, the isomorphism type of T (G∗) does
not change [11, Proposition 3.6]; this is one way in which we can think of
T (G∗) as a sort of limit of the Gn, in that it is immune to changes in an
initial segment of the sequence.

5.3. Examples.

We quickly review the examples of cloning systems given in sections 3
and 4 and discuss some details of the arising Thompson-like groups.

The very first example uses the trivial cloning system, where Gn = {1}
for all n and all the ιm,n, ρn, and κnk are trivial. In this case, the
Thompson-like group T ({1}) is Thompson’s group F . Elements are
equivalence classes of tree pairs [T−, T+].

An element of the Thompson-like group T (G∗), coming from the fam-
ily of direct powers Gn of a fixed group G (Example 3.1), looks like
[T−, (g1, . . . , gn), T+], where T− and T+ are trees with n leaves. Some
facts worth mentioning here are that T (G∗) = K (G∗)oF (since the ρn
are all trivial), and we actually have a sequence of maps G→ T (G∗)→ G
composing to the identity. Namely, the first map is g 7→ [1, g, 1], where 1 is
the trivial tree, and the second map is [T−, (g1, . . . , gn), T+] 7→ g1. These
are well-defined group homomorphisms, and their composition is clearly
the identity on G. Hence, we have what is called a retract of T (G∗) onto
G, which has various implications, e.g., for finiteness properties; see [10]
and [11, §6].

Next, we have Example 3.2 and the cloning system on the family of
symmetric groups. Here we find that T (S∗) equals Thompson’s group
V . Elements are equivalence classes [T−, σ, T+], where σ is a permutation
on the numbering of the leaves of the trees. Following this, the cloning
system on the (pure) braid groups (Example 3.3) yields the Thompson-like
groups T (B∗) = Vbr and T (PB∗) = Fbr, the braided Thompson groups.
The group Fbr split surjects onto F , and we have Fbr = K (PB∗) o F .
The group Vbr surjects onto V , but this does not split; indeed, Vbr is
torsion-free and V is not. Next, Example 3.4 gives us a cloning system on
(Bn(R)), and the resulting Thompson-like group T (B∗(R)) has elements
represented as [T−, A, T+] for A, an invertible upper triangular matrix.
Since the representation maps are all trivial in this case, T (B∗(R)) is a
semidirect product of F with K (B∗(R)).

Moving on to section 4, we first have Example 4.1. The cloning system
on (S±n ) gives us a Thompson-like group V ± :=T (S±∗ ). It is not hard to
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see that V ± is an example of the sort of group considered in [2], namely
V ± = V2(S2) in the authors’ notation. Since S2 is semiregular in itself,
[2, Theorem 1] says that V ± ∼= V (see also the discussion of this precise
example in [2, §5]). This is interesting since the families (S±n )n and (Sn)n
are different, but yield isomorphic “Thompson limits.” Finally, we have
Example 4.2 involving the family of twisted braid groups (Btwistn ), which
gives us a Thompson-like group V twistbr :=T (Btwist∗ ). The cloning systems
on (Btwistn ) and (S±n ) are compatible with the surjections Btwistn → S±n ,
and so we get a surjection V twistbr → V ± ∼= V . It is unclear whether
V twistbr and Vbr are isomorphic, though we suspect they are not. It is also
unclear whether V twistbr surjects onto Vbr; the maps Btwistn → Bn are not
compatible with the cloning systems, so there is no “obvious” way to build
such a surjection.

6. Stein–Farley Complexes

The data in a cloning system not only give rise to a Thompson-like
group T (G∗), but also a natural contractible cube complex X (G∗) on
which the group acts, called the Stein–Farley complex. The action is not
cocompact and is, in general, not proper, but it nonetheless reveals in-
formation about the group. In particular, there is a natural cocompact
filtration of the space, and understanding the topology of this filtration
reduces, via discrete Morse theory, to understanding the topology of cer-
tain descending links of vertices in the space. Also, if the cloning system
is properly graded, then the groups Gn are precisely the vertex stabiliz-
ers for the action of T (G∗) on X (G∗). In particular, the situation is
ready-made for Brown’s Criterion for finiteness properties [5], and one
can learn a lot about finiteness properties of T (G∗) by understanding
the aforementioned descending links.

Our goal here is not to get into the details of Morse theory, descending
links, or the more complicated situation in [11, Section 5.5] where one
cannot use Brown’s Criterion. Rather, in this section we will just state
the construction of the Stein–Farley complex and the natural filtration.

6.1. Vertices.

Given a cloning system on a family of groups (Gn), we described, in
the previous section, how to build the Thompson-like group T (G∗) in
the previous section, and there is a similar procedure for building the
Stein–Farley complex X (G∗). First, the vertices of the cube complex are
equivalence classes [T, g, E] of triples (T, g, E), where T is a tree, say with
n leaves, g is an element of Gn, and E is a forest with n leaves (and some
number of roots). By forest, we always mean a finite ordered disjoint union
of trees. The next definition will come up a lot and is worth recording



A USER’S GUIDE TO CLONING SYSTEMS 29

now, before stating what equivalence relations get us from (T, g, E) to
[T, g, E].

Definition 6.1 (Number of Feet). The number of feet of the triple (T, g, E)
as above is the number of roots of the forest E.

The equivalence relation we want to impose on such triples (T, g, E) is
similar to that for elements of T (G∗). Namely, we can add appropriate
carets to T and E and apply appropriate cloning maps to g without
changing the vertex. Details of these moves are exactly the same as for
elements of T (G∗), so we will not repeat them here. However, there is a
new aspect which we want to also include in the equivalence relation: Gn
acts on the set of triples (T, g, E) with n feet, from the right, and we also
mod out this action. Roughly, the action exists because if E has n roots,
then the product [T, g, E][1n, h, 1n] makes sense, where 1n is the trivial
forest consisting of n trivial trees. For each n we mod out the action of
Gn on the set of triples with n feet.

6.2. Edges and cubes.

So far we have only defined vertices of X (G∗). We need to say what
the cubes of this cube complex are. First, an edge is defined by its end-
points: a “top” vertex [T, g, E] and a “bottom” vertex [T, g, E′], where E′
is obtained from E by adding a new caret, whose leaves are the roots of
two of the trees in E (so E must have had at least two trees in it). Then
the higher dimensional cubes are glued in any time the 1-skeleton of a
cube appears. More precisely, a k-cube is given by a top vertex and a
collection of k disjoint new carets that may be added. See [11, §4.3] for
more details, including all the formalism. As seen in [11, Proposition 4.8],
the space X (G∗) is contractible.

6.3. The action.

Much like we can define a group multiplication operation on two
triples [T−, g, T+] and [U−, h, U+], now that we are considering forests
and not just trees, we can define a group action; namely, the product
[T−, g, T+][U, h,E] makes sense even if E is a forest (but U should still be
a tree). The left triple is a group element and the right triple is a vertex of
the space. (As a remark, if E is not a tree, the product [U, h,E][T−, g, T+]
does not make sense.) The action preserves adjacency of vertices and so
takes cubes to cubes. In summary, the group T (G∗) acts cellularly on
the contractible space X (G∗).

The action of T (G∗) on X (G∗) is not cocompact since it leaves invari-
ant the measurement “number of feet” on vertices, and this takes infin-
itely many values, but if we define X (G∗)

f≤n to be the full subcomplex
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supported on those vertices with at most n feet, then it turns out each
X (G∗)

f≤n is invariant and cocompact [11, Lemma 5.5]. Hence, these
subcomplexes provide a cocompact filtration of the cube complex. In
the case when the cloning system is properly graded, it turns out that
the stabilizer in T (G∗) of a vertex with n feet is isomorphic to Gn [11,
Lemma 4.9]. Hence, if the groups Gn that we started with are “nice” in
some way, then we now have an action with nice stabilizers.

In particular, having an action on a contractible space with nice sta-
bilizers and a cocompact filtration is the setup of Brown’s Criterion for
finiteness properties, referenced earlier. Rather than discuss why or wheth-
er all this setup tells us things about finiteness properties of T (G∗), in
the last section, we will just recall what we mean by finiteness proper-
ties, state some results for Thompson-like groups, and discuss the general
behavior that seems to occur often.

7. Finiteness Properties

In this final section, we discuss one of the main subjects that spurred
us to develop cloning systems, namely finiteness properties of groups. By
the finiteness properties of a group, we mean the properties of being of
type Fn, for n ∈ N. We say a group G is a of type Fn if it admits aK(G, 1)
with compact n-skeleton. Here, a K(G, 1), also called a classifying space
for G, is a connected CW complex X with π1(G) ∼= G and πk(X) = 0 for
k ≥ 2. For a given G, such spaces are unique up to homotopy equivalence.
For small n, these have nice algebraic interpretations: A group is of type
F1 if and only if it is finitely generated and of type F2 if and only if it is
finitely presented. If a group is of type Fn for all n, we say it is of type
F∞. Every group is of type F0.

Definition 7.1 (Finiteness length). The finiteness length φ(G) of a group
G is the largest n ∈ N0 ∪ {∞} such that G is of type Fn.

For example, if G is not finitely generated, then φ(G) = 0, and if
G is finitely generated but not finitely presented, then φ(G) = 1. This
finiteness length function φ is, in general, not well behaved with respect
to limiting procedures. Two standard notions of “limit” in group theory
are the direct limit (of groups in a directed system) and the inverse limit
(of groups in an inverse system). For both of these limiting processes, φ
is poorly behaved. Namely, outside some trivial cases, a direct or inverse
limit of infinitely many finite groups will not even be finitely generated,
so φ(limGn) = 0 even though φ(Gn) = ∞ for all n. This can be viewed
as a strong failure of φ to be “continuous.”

In contrast, the “Thompson limit” T (G∗) of a family of groups Gn
with a cloning system seems to be well behaved with respect to φ. The
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behavior that we find in many examples is

φ(T (G∗)) = lim inf
n→∞

φ(Gn).(7.1)

The examples where equation (7.1) is known to hold include the following
groups. First, when each Gn = {1} is trivial, the right-hand side of
equation (7.1) is ∞, and T ({1}) = F is of type F∞ [4], so the left-hand
side is also ∞. Similarly, when Gn = Sn, the right-hand side is ∞ and
so is the left since T (S∗) = V is of type F∞ [5]. In the braided cases,
Bn and PBn are F∞ and so are Vbr and Fbr [7], so again equation (7.1)
reads ∞ = ∞. When Gn = Gn, the nth direct power of G, it is known
([10] and [11, §6]) that φ(T (G∗)) = φ(G), which, in turn, equals φ(Gn)
for all n, so equation (7.1) holds.

The matrix group examples are an interesting situation. Theorem 8.1
of [11] says that φ(T (B∗(R))) ≥ lim infn→∞ φ(Bn(R)) always holds for
any R. When R = OS , the ring of S-integers of a global function field,
then φ(Bn(OS)) = |S| − 1 for n ≥ 2 [6], and [11, Theorem 8.1] says that
φ(T (B∗(OS))) = |S| − 1 as well, so equation (7.1) holds as an equality.

Other matrix groups also yield interesting behavior. Abels groups are
certain subgroups Abn(Z[1/p]) ≤ Bn(Z[1/p]) that satisfy φ(Abn(Z[1/p]))
= n−2. In particular, each group individually is not of type F∞, but as n
tends to ∞, their finiteness lengths do tend to ∞, so the right-hand side
of equation (7.1) is actually ∞. Theorem 8.10 of [11] says that one can
find a cloning system on (Abn(Z[1/p])) and the resulting Thompson-like
group T (Ab∗(Z[1/p])) is of type F∞; hence, equation (7.1) holds.

When Gn = S±n , we have T (S±∗ ) = V ± and, as remarked earlier, this is
actually isomorphic to V , which means it is of type F∞, and equation (7.1)
holds; this could also be deduced directly from the Stein–Farley complex
with an argument very similar to that for V . As for V twistbr , we conjecture
that it is of type F∞ like all the Btwistn , but we leave this for future work.

As a closing remark, it is an interesting question whether there are some
nice, general conditions one can impose on a cloning system to ensure that
equation (7.1) holds. We collect the known results in Table 7.1, where we
see in all cases that equation (7.1) holds.
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Gn φ(Gn) φ(T (G∗)) T (G∗)

{1} ∞ ∞ F
Sn ∞ ∞ V
Gn φ(G) φ(G) T (G∗)
Bn ∞ ∞ Vbr
PBn ∞ ∞ Fbr

Bn(OS) |S| − 1 (n ≥ 2) |S| − 1 T (B∗(OS))
Abn(Z[1/p]) n− 2 ∞ T (Ab∗(Z[1/p]))

S±n ∞ ∞ V ±

Table 7.1. Comparing finiteness lengths
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