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THE CONES OVER LOCALLY CONNECTED CURVES

DARIA MICHALIK

Abstract. We prove that if X and Y are locally connected curves
not being ANRs, then X and Y are homeomorphic if and only if
Cone(X) and Cone(Y ) are homeomorphic.

1. Introduction

Let X be a topological space. The cone of X is the quotient space
defined by

Cone(X) = X × I�(X × {1}).
The cylinder of X is the Cartesian product X × I and the suspension of
X is the quotient space

Sus(X) = X × I�(X × {0}, X × {1}).
It is well known that cones of non-homeomorphic spaces can be home-

omorphic, e.g., Cone(S1) and Cone(I).

Example 1.1. Let Ai be a cone over i-point space and Bi be a suspension
over i-point space. Then, for every i ∈ N, Cone(Ai) and Cone(Bi) are
homeomorphic, but Ai and Bi are not homeomorphic.

The main theorem of this note follows.

Theorem 1.2. Let us assume that X and Y are locally connected curves
not being ANRs. Then Cone(X) and Cone(Y ) are homeomorphic if and
only if X is homeomorphic to Y .

Remark 1.3. By [3], if X and Y are locally connected curves, then the
cylinder of X is homeomorphic to the cylinder of Y if and only if X is
homeomorphic to Y .
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Using the same methods as in the proof of Theorem 1.2 (see §5), one
can prove the following theorem.

Theorem 1.4. Let us assume that X and Y are locally connected curves
not being ANRs. Then Sus(X) and Sus(Y ) are homeomorphic if and only
if X is homeomorphic to Y .

An important step toward proving our main result is Theorem 4.1
about the uniqueness decomposition for the products of a locally con-
nected curve and the interval [0, 1). Let us recall that, in general, the
cancellation law in Cartesian products does not hold, especially for non-
compact factors, e.g.,

[0, 1]× [0, 1) ≈ [0, 1)× [0, 1) ≈ (0, 1)× [0, 1).

Thus, Theorem 4.1 seems to be interesting. It is also one of the crucial
steps in the proof of the main result of [4]. The proof of Theorem 4.1
involves techniques and ideas developed in [1] and employs the notation
of isotopic components. This part of our work is contained in §3 and the
proof of Theorem 4.1 may be found in §4. Finally, §5 contains the proof
of Theorem 1.2.

2. Notation and Tools

Our terminology follows [2]. All spaces are assumed to be metric.
All maps in this paper are continuous. A curve is a one-dimensional
continuum.

By α(X) we denote the set of Euclidean points of X, i.e., the points
having a neighborhood homeomorphic to Euclidean space En. By β(X)
we denote the set of semi-Euclidean points of X \α(X), namely the points
(x1, . . . , xn) ∈ En with xn ≥ 0 and γ(X) = X \ (α(X) ∪ β(X)). The
components of α(X) are called Euclidean components of X.

A space M is a manifold if M is compact and connected space such
that γ(M) = ∅.

Remark 2.1. If C is a locally connected curve, then

α(C × [0, 1)) = α(C)× (0, 1).

A point p ∈ X is approximately Euclidean if, for every ϵ > 0, there
exists a map f : X × I → X such that

(1) f(x, 0) = x,
(2) dist(f(x, t), x) < ϵ for every (x, t) ∈ X × I,
(3) p ∈ α(f(X × {1})), and
(4) the dimension of f(X × {1}) in point p is equal to the dimension

of X in p.
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Let κ be a cardinal number. A point x ∈ X is of order less than or equal
to κ provided that x has a basis of open neighborhoods whose boundaries
have at most κ elements. The smallest cardinal number κ with the above
property is called the order of point x in X.

Since the property of a point being approximately Euclidean is a lo-
cal one (see [1, p. 145]), by [1, theorems 7 and 9], we obtain following
proposition.

Proposition 2.2. Let C be a locally connected curve. A point (x, t) ∈
C × [0, 1) is approximately Euclidean in C × [0, 1) if and only if x is of
order 2, C is locally contractible at x, and t ∈ (0, 1).

For every pair of points x and y in a curve C, let us denote by νC(x, y)
the number (finite or not) of Euclidean components A in C such that the
boundary of A contains only the points x and y.

In the proof of Theorem 4.1, we will use the following result.

Lemma 2.3 ([1, p. 155]). Let C and C ′ be two locally connected curves
and h : β(C) ∪ γ(C) → β(C ′) ∪ γ(C ′) be a homeomorphism. Then h
can be extended to a homeomorphism between C and C ′ if and only if
νC(x, y) = νC′(h(x), h(y)) for every pair of points x, y ∈ β(C) ∪ γ(C).

3. Isotopic Components

A continuous mapping h : X×I → X is an isotopic deformation in X if
h(x, 0) = x for every x ∈ X, and a map ht(x) = h(x, t) is a homeomorphic
embedding in X for every t ∈ I. If, for every t ∈ [0, 1], a map ht(x) =
h(x, t) is a homeomorphism on X, then h : X × I → X is an isotopic
deformation on X. Two points x1 and x2 are isotopic in X (in symbols
x1 ∼ x2) if there exists an isotopic deformation h : X × I → X on X such
that h(x1, 1) = x2.

A point p ∈ X is isotopically labile if, for every ϵ > 0, there exists an
isotopic deformation h(x, t) in X satisfying the following conditions:

(1) dist(h(x, t), x) < ϵ, for every (x, t) ∈ X × I and
(2) h(x, 1) ̸= p, for every x ∈ X.

The points which are not isotopically labile are said to be isotopically
stable.

Remark 3.1 (see [1, p. 149]). If C is a locally connected curve, then the
isotopically labile points are the same as semi-Euclidean points.

The following result is analogous to [1, Lemma 11].

Lemma 3.2. Let C be a locally connected curve. The set of isotopically
labile points in C × [0, 1) is the same as the set C × {0} ∪ β(C)× [0, 1).
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Proof. Obviously, every point in C × {0} ∪ β(C) × [0, 1) is isotopically
labile.

To prove the inverse implication, let p ∈ C × [0, 1) be an isotopically
labile point in C× [0, 1). First, we will prove that p is also an isotopically
labile point in C × [0, 1]. Fix ϵ > 0. There exists an isotopic deformation
h : C × [0, 1) × I → C × [0, 1) such that dist(h(x, t), x) < ϵ/2 for every
(x, t) ∈ C × [0, 1) × I, and h(x, 1) ̸= p for every x ∈ C × [0, 1). Let
g : C × [0, 1] × I → C × [0, 1] be an isotopic deformation into C × [0, 1]
such that g(C × [0, 1] × {1}) ⊆ C × [0, 1) and dist(g(x, t), x) < ϵ/2 for
x ∈ C×[0, 1] and t ∈ I. One can see that hg(x, t) : C×[0, 1]×I → C×[0, 1],
defined by the formula

hg(x, t) =

{
g(x, 2t) for t ∈ [0, 1/2]
h(g(x, 1), 2t− 1) for t ∈ (1/2, 1]

in an isotopic deformation, dist(hg(x, t), x) < ϵ for (x, t) ∈ C × [0, 1]× I,
and hg(x, 1) ̸= p for x ∈ C × [0, 1]. Hence, p is an isotopically labile point
in C × [0, 1]. By [1, Lemma 11], p ∈ C × {0} ∪ β(C)× [0, 1). �

The following result will be used in the proof of Lemma 3.9. Its state-
ment and proof are analogous to [1, Lemma 13].

Lemma 3.3. Let C be a locally connected curve. Two points (x0, y0) ∈
γ(C)× (0, 1) and (x1, y1) ∈ C× [0, 1) are isotopic in C× [0, 1) if and only
if x0 = x1 and y1 ∈ (0, 1).

Proof. Obviously, if x0 = x1 and y1 ∈ (0, 1), then (x0, y0) and (x1, y1) are
isotopic.

Assume now that (x0, y0) ∈ γ(C) × (0, 1) and (x1, y1) ∈ C × [0, 1)
are isotopic in C × [0, 1). Hence, there exists an isotopic deformation
ϕ : C × [0, 1)× I → C × [0, 1) such that

ϕ(x, y, t) = (ϕC(x, y, t), ϕ[0,1)(x, y, t)),

ϕ(x0, y0, 1) = (x1, y1).

Since (x0, y0) is not Euclidean and, by Lemma 3.2, is isotopically stable,
a point ϕ(x0, y0, t) = (ϕC(x, y, t), ϕ[0,1)(x, y, t)) is also isotopically stable
and is not Euclidean for every t ∈ [0, 1]. By Lemma 3.2 and Remark 2.1,
ϕC(x0, y0, t) ∈ γ(C) and ϕ[0,1)(x, y, t) ∈ (0, 1) for every t ∈ [0, 1].

Assume that x0 ̸= x1. Hence, x0 ̸= ϕC(x0, y0, 1) = x1.
Let us observe that ϕC(x, y0, t) is a homotopic deformation of C and

ϕC(x0, y0, 1) ̸= x0. Since, in a locally connected curve, the homotopically
fixed points are the same as the points in which the curve is not locally
dendrite, x0 has a neighborhood U in C being a dendrite. The set of
points of order ≥ 3 of a dendrite is always finite or countable. Since
ϕC(x0, y0, t) ∈ γ(C) for every t ∈ [0, 1], there exist t1 and t2 ∈ [0, 1] such
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that ϕC(x0, y0, t1) ∈ U is of order 2 and ϕC(x0, y0, t2) ∈ U is of order ≥ 3.
By Proposition 2.2, the point ϕC(x0, y0, t1) is approximately Euclidean
and the point ϕC(x0, y0, t2) is not approximately Euclidean in C × [0, 1).
Since ϕ(x0, y0, t1) and ϕ(x0, y0, t2) are isotopic, we obtain a contradiction.
Hence, x0 = x1. �

We recall that two points x and y are isotopic in X if there exists an
isotopic deformation h : X × I → X on X such that h(x, 1) = y. It is
easy to observe that the relation ∼ is reflexive and transitive. We prove
that ∼ is also symmetrical. Let x ∼ y. Hence, there exists an isotopic
deformation h : X × I → X such that h(x, 1) = y. Let h−1(x, t0) denote
the inverse of the mapping h(x, t0), for every t0 ∈ I. Then h−1(x, t) is
an isotopic deformation satisfying h−1(y, 1) = x. Thus, the relation ∼ is
an equivalence relation on X. The equivalence class of the relation ∼ is
called an isotopic component of X and the equivalence class of a point x
is called an isotopic component of x. We denote it by K(x).

The idea of isotopic components comes from [1], where isotopic compo-
nents are used in the proof of the decomposition uniqueness for the prod-
ucts of a locally connected curve and a manifold. Our proofs of Lemma
3.9, Lemma 3.11, and Theorem 4.1 are based on K. Borsuk’s proofs from
[1], where reader can find more properties of isotopic components.

Remark 3.4. Let X be a topological space.
(a) Every isotopic component of X is arcwise connected.
(b) If x ∈ X and h : X → Y is a homeomorphism then the image of

the isotopic component of a point x is an isotopic component of
the point h(x).

(c) If x and y belong to the same isotopic component of X then X is
locally homeomorphic at x and y.

Remark 3.5. If (x1, x2) ∈ X1 ×X2, then the isotopic component of the
point (x1, x2) contains the product of the isotopic component of the point
x1 and the isotopic component of the point x2. The inverse inclusion does
not hold. If I = [0, 1], then {0} is the isotopic component of the point
0 ∈ I, but ∂I2 is the isotopic component of the point (0, 0) ∈ I2.

Remark 3.6. Every Euclidean component of a space X is an isotopic
component of X.

Proposition 3.7 ([1, p. 152]). Let C be a locally connected curve. The
isotopy components of C containing at least two points are identical with
the Euclidean components of C.

Corollary 3.8. A locally connected curve C has, as isotopic components,
• Euclidean components,
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• the individual points of β(C),
• the individual points of γ(C).

Let C be a locally connected curve, S1 ̸= C ̸= I, and A be a set of
all Euclidean components of C. Observe that every Euclidean component
A ⊂ C is homeomorphic to the open interval (0, 1) and Ā∩γ(C) contains
one or two points. Hence, there are three types of Euclidean components
of C. Strictly speaking, A = A1∪A2∪A3, where Ai are pairwise disjoint
and

(1) A ∈ A1 if Ā ∩ β(C) = ∅ and |Ā ∩ γ(C)| = 1,
(2) A ∈ A2 if Ā ∩ β(C) = ∅ and |Ā ∩ γ(C)| = 2,
(3) A ∈ A3 if Ā ∩ β(C) ̸= ∅.

Now, we will use the introduced above sets A1,A2,A3 to classify the
isotopic components of the product C × [0, 1).

Lemma 3.9. Assume that C is a locally connected curve, S1 ̸= C ̸= I,

and B is a set of isotopic components of C × [0, 1). Then B =
7∪

i=1

Bi,

where Bi are pairwise disjoint and
1.–3. B ∈ Bi if B = A× (0, 1), where A ∈ Ai, for i = 1, 2, 3;

4. B ∈ B4, if B = A× {0}, where A ∈ A1 ∪ A2;
5. B ∈ B5, if B = (Ā ∩ β(C))× [0, 1) ∪A× {0}, where A ∈ A3;
6. B ∈ B6, if B = {x} × (0, 1), where x ∈ γ(C);
7. B ∈ B7, if B = {x} × {0}, where x ∈ γ(C).

Proof. Obviously, for every set B ∈
7∪

i=1

Bi, there exists an isotopic com-

ponent of C × [0, 1) containing B.

By remarks 2.1 and 3.6, every B ∈
3∪

i=1

Bi is an isotopic component of

C × [0, 1).
Observe that β(C × [0, 1)) =

∪
B∈B4∪B5

B. By Remark 3.4(a)(c), every

B ∈ B4 ∪ B5 is an isotopic component of C × [0, 1).
By Lemma 3.3, B is an isotopic component of C × [0, 1) for every

B ∈ B6. Since every set B ∈ B7 is a boundary of some set B′ ∈ B6, every
B from B7 is also an isotopic component of C × [0, 1). �

Remark 3.10. If B ∈
3∪

i=1

Bi, then B is 2-dimensional; if B ∈
6∪

i=4

Bi, then

B is 1-dimensional; and if B ∈ B7, then B is a singleton.

If B ∈ Bi, we say that B is an isotopic component of type i for i =
1, 2, . . . , 7. Now, we shall prove that every homeomorphism preserves
types of isotopic components.
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Lemma 3.11. Let us assume that C and C ′ are locally connected curves,

S1 ̸= C, C ′ ̸= I, B =
7∪

i=1

Bi, and B′ =
7∪

i=1

B′
i are sets of isotopic compo-

nents of C × [0, 1) and C ′ × [0, 1) defined in Lemma 3.9, respectively. If
h : C× [0, 1) → C ′× [0, 1) is a homeomorphism, then h maps each B ∈ Bi

onto h(B) ∈ B′
i for every i = 1, 2, . . . , 7.

Proof. By Remark 3.4(b), if B ∈ B, then h(B) ∈ B′. It is enough to prove
that if B ∈ Bi, then h(B) ∈ B′

i for i = 1, . . . , 7.
Let B ∈ B1. Then B is homeomorphic to S1 × [0, 1) and

B ∩ (C × [0, 1)) \B is homeomorphic to [0, 1).
If B ∈ B2, then B is homeomorphic to [0, 1]× [0, 1) and

B ∩ (C × [0, 1)) \B is homeomorphic to {0, 1} × [0, 1).
If B ∈ B3, then B is homeomorphic to [0, 1]× [0, 1) and

B ∩ (C × [0, 1)) \B is homeomorphic to [0, 1).

Since only isotopic components from
3∪

i=1

Bi are 2-dimensional and the

above topological properties distinguish each of them, we can conclude
that h preserves types i of isotopic components for i = 1, 2, 3.

If B ∈ B4 ∪ B5, then B lies on the boundary of exactly one isotopic
component CB of C× [0, 1). Moreover, if B ∈ B4, then CB ∈ B1 ∪B2 and
if B ∈ B5, then CB ∈ B3. Since h preserves types i of isotopic components
for i = 1, 2, 3, it also preserves types 4 and 5.

Since B is 0-dimensional only for B ∈ B7, we can conclude that h
preserves type 7 of isotopic components.

Let us observe that, for i = 1, 2, 3, 4, 5, 7, the type i of isotopic compo-
nents is preserved by the homeomorphism h. Thus, type 6 is preserved
by h as well. �

4. Decomposition Uniqueness for the Products of
a Locally Connected Curve and the Interval [0, 1)

Theorem 4.1. If C and C ′ are locally connected curves and C × [0, 1) is
homeomorphic to C ′ × [0, 1), then C is homeomorphic to C ′.

Proof. If γ(C × [0, 1)) = ∅, then C is an arc or a simply closed curve, and
the assertion of the theorem holds.

We assume now that γ(C × [0, 1)) ̸= ∅. Then I ̸= C ̸= S1. Since
there are only two 1-dimensional compact manifolds (S1 and I), C is
not a manifold. Hence, γ(C) ̸= ∅. Let h : C × [0, 1) → C ′ × [0, 1)
be a homeomorphism. We will construct a homeomorphism h0 : C ×
{0} → C ′ × {0}. First, we will construct a homeomorphism between
(γ(C)∪ β(C))×{0} and (γ(C ′)∪ β(C ′))×{0}. By Lemma 3.9, for every



42 D. MICHALIK

x ∈ γ(C)×{0}, the set {x} is an isotopic component of C× [0, 1). Hence,
by Lemma 3.11, the homeomorphism h maps γ(C)×{0} onto γ(C ′)×{0}.
Define

h0(x) = h(x) for x ∈ γ(C)× {0}.
We observe now that for every x ∈ β(C)× {0} there exists an isotopic

component K(x) ∈ B5 such that x ∈ K(x), where B5 is the set of isotopic
components in C × [0, 1) of type 5 defined in Lemma 3.9. By Lemma
3.11, h(K(x)) ∈ B′

5 and h(K(x)) = (Ā∩β(C ′))× [0, 1)∪A×{0} for some
A ∈ A′

3. We observe that β(C ′) × {0} ∩ h(K(x)) = (Ā ∩ β(C ′)) × {0}.
Since C ′ ̸= I, |Ā ∩ β(C ′)| = 1. Hence, there exists exactly one point
x′ ∈ β(C ′)× {0} ∩ h(K(x)). Define

h0(x) = x′ for x ∈ β(C)× {0}.
Let us prove that the map h0 defined above is continuous. Obviously,
h0|γ(C)×{0} is continuous. Take a sequence (xn)n∈N such that xn ∈ β(C)×
{0} and assume that xn → x0 = (xC

0 , x
[0,1)
0 ). Obviously, x[0,1)

0 = 0. Since
in every neighborhood of xC

0 there are points from β(C), the point xC
0

belongs to γ(C). For every n ∈ N, there exists an isotopic component
K(xn) ∈ B5 such that

xn ∈ K(xn) = (Ān ∩ β(C))× [0, 1) ∪An × {0},
where An is a Euclidean component of C and An ∈ A3. Since C is a locally
connected curve, the diameters of Euclidean components of C tend to zero.
Hence, diam(An) → 0 and K(xn) tends to {xC

0 }× [0, 1). The sequence of
sets h(K(xn)) tends to h({xC

0 } × [0, 1)), and h0(xn) → h(x0) = h0(x0).
Since γ(C) ∪ β(C) is compact, h0 defined in this way is a homeomor-

phism between (γ(C) ∪ β(C))× {0} and (γ(C ′) ∪ β(C ′))× {0}.
Recall that νC(x, y) denotes the number of Euclidean components A

in C such that the boundary of A contains only the points x and y and
K(x) denotes the isotopic component of the point x. Now, observe that,
for x, y ∈ (γ(C) ∪ β(C)) × {0}, the number νC×{0}(x, y) is equal to the
number of Euclidean components of C×[0, 1) for which the boundary con-
tains both sets K(x) and K(y) and does not contain any other sets K(z)
for z ∈ (γ(C) ∪ β(C))× {0}. The same equality holds for νC′×{0}(x

′, y′),
where x′, y′ ∈ (γ(C ′) ∪ β(C ′)) × {0}. Again by Lemma 3.11, we obtain
νC×{0}(x, y) = νC′×{0}(h0(x), h0(y)). Now, using Lemma 2.3, we con-
clude the proof. �

5. Proof of the Main Theorem

Obviously, if X and Y are homeomorphic, then the cones over X and
Y are also homeomorphic. In the proof of the inverse implication we use
the following lemma.
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Lemma 5.1. If C and C ′ are locally connected curves not being an ANR
and h : Cone(C) → Cone(C ′) is a homeomorphism, then h maps the vertex
of Cone(C) onto the vertex of Cone(C ′).

Proof. Assume that C is a locally connected curve. There are three kinds
of points in Cone(C):

(1) the points (c, t) ∈ C × [0, 1) such that c has a neighborhood in C
being a dendrite,

(2) points (c, t) ∈ C × [0, 1) such that every neighborhood of c in C
contains a simply closed curve,

(3) the vertex of Cone(C).
Let x ∈ Cone(C). Obviously, if x satisfies (1), then Cone(C) is locally
contractible at x and at all points sufficiently closed to x.

If x satisfies (2), then Cone(C) is not locally contractible at x.
If x is a vertex of Cone(C), then Cone(C) is locally contractible at x,

but, since C is not an ANR, in every neighborhood of x, there is a point
y such that Cone(C) is not locally contractible at y.

Since the vertex of Cone(C) is the unique point in Cone(C) having the
last property, every homeomorphism of Cone(C) onto Cone(C ′) maps the
vertex of Cone(C) onto the vertex of Cone(C ′). �
Proof of Theorem 1.2. Assume that h : Cone(X) → Cone(Y ) is a home-
omorphism. By Lemma 5.1, h(x0) = y0, where x0 and y0 are vertices of
Cone(X) and Cone(Y ), respectively. Thus, h(X × [0, 1)) = Y × [0, 1).
Using Theorem 4.1, we conclude that X is homeomorphic to Y . �
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