http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

The Cones Over Locally Connected Curves

by

DARIA MICHALIK

Electronically published on June 2, 2017

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on June 2, 2017

THE CONES OVER LOCALLY CONNECTED CURVES

DARIA MICHALIK

ABSTRACT. We prove that if X and Y are locally connected curves not being ANRs, then X and Y are homeomorphic if and only if Cone(X) and Cone(Y) are homeomorphic.

1. INTRODUCTION

Let X be a topological space. The *cone* of X is the quotient space defined by

$$\operatorname{Cone}(X) = X \times \mathbb{I}/(X \times \{1\}).$$

The *cylinder* of X is the Cartesian product $X \times \mathbb{I}$ and the *suspension* of X is the quotient space

$$\mathrm{Sus}(X)=X\times\mathbb{I}\diagup(X\times\{0\},\ X\times\{1\}).$$

It is well known that cones of non-homeomorphic spaces can be homeomorphic, e.g., $\text{Cone}(S^1)$ and $\text{Cone}(\mathbb{I})$.

Example 1.1. Let A_i be a cone over *i*-point space and B_i be a suspension over *i*-point space. Then, for every $i \in \mathbb{N}$, $\text{Cone}(A_i)$ and $\text{Cone}(B_i)$ are homeomorphic, but A_i and B_i are not homeomorphic.

The main theorem of this note follows.

Theorem 1.2. Let us assume that X and Y are locally connected curves not being ANRs. Then Cone(X) and Cone(Y) are homeomorphic if and only if X is homeomorphic to Y.

Remark 1.3. By [3], if X and Y are locally connected curves, then the cylinder of X is homeomorphic to the cylinder of Y if and only if X is homeomorphic to Y.

²⁰¹⁰ Mathematics Subject Classification. 54F45, 54C25, 54F50.

Key words and phrases. ANR, Cartesian product, cone, curve. ©2017 Topology Proceedings.

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.