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DYNAMICS OF NON-AUTONOMOUS
DISCRETE DYNAMICAL SYSTEMS

PUNEET SHARMA AND MANISH RAGHAV

Abstract. We study the dynamics of a general non-autonomous
dynamical system generated by a family of continuous self-maps
on a compact space X. We derive necessary and sufficient con-
ditions for the system to exhibit complex dynamical behavior. In
the process we discuss properties like transitivity, weakly mixing,
topologically mixing, minimality, sensitivity, topological entropy,
and Li–Yorke chaoticity for the non-autonomous system. We also
give examples to prove that the dynamical behavior of the non-
autonomous system in general cannot be characterized in terms of
the dynamical behavior of its generating functions.

1. Introduction

Let (X, d) be a compact metric space and let F = {fn : n ∈ N} be
a family of continuous self-maps on X. Any such family F generates
a non-autonomous dynamical system via the relation xn = fn(xn−1);
such a dynamical system will be denoted by (X,F). For any x ∈ X,
{fn ◦ fn−1 ◦ . . . ◦ f1(x) : n ∈ N} defines the orbit of x. The objective of
study of a non-autonomous dynamical system is to investigate the orbit
of an arbitrary point x in X. For notational convenience, let ωn(x) =
fn ◦ fn−1 ◦ . . . ◦ f1(x) be the state of the system after n iterations. If
y = ωn(x) = fn◦fn−1◦. . .◦f1(x), then x ∈ f−1

1 ◦f−1
2 ◦. . .◦f−1

n (y) = ω−1
n (y)

and, hence, ω−1
n traces the point n units back in time.

A point x is called periodic for F if there exists n ∈ N such that
ωnk(x) = x for all k ∈ N. The least such n is known as the period
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46 P. SHARMA AND M. RAGHAV

of the point x. The system (X,F) is transitive (or F is transitive) if
for each pair of open sets U and V in X, there exists n ∈ N such that
ωn(U)

∩
V ̸= ϕ. The system (X,F) is said to be minimal if it does not

contain any proper non-trivial subsystems. The system (X,F) is said to
be weakly mixing if for any two pairs U1, U2 and V1, V2 of non-empty open
subsets of X, there exists a natural number n such that ωn(Ui)

∩
Vi ̸= ϕ

for i = 1, 2. Equivalently, we say that the system is weakly mixing if
F × F is transitive. The system is said to be topologically mixing if for
every pair of non-empty open sets U and V , there exists a natural number
K such that ωn(U)

∩
V ̸= ϕ for all n ≥ K. The system is said to be

sensitive if there exists a δ > 0 such that for each x ∈ X and each
neighborhood U of x, there exists n ∈ N such that diam(ωn(U)) > δ. If
there exists K > 0 such that diam(ωn(U)) > δ, for all n ≥ K, then the
system is cofinitely sensitive. A set S is said to be scrambled if for any
x, y ∈ S, lim sup

n→∞
d(ωn(x), ωn(y)) > 0, but lim inf

n→∞
d(ωn(x), ωn(y)) = 0. A

system (X,F) is said to be Li–Yorke chaotic if it contains an uncountable
scrambled set. In case the fn’s coincide, the above definitions coincide
with the known notions of an autonomous dynamical system. See [4], [5],
and [6] for details.

We now define the notion of topological entropy for a non-autonomous
system (X,F).

Let X be a compact space and let U be an open cover of X. Then
U has a finite subcover. Let L be the collection of all finite subcovers
and let U∗ be the subcover with minimum cardinality, say NU . Define
H(U) = logNU . Then H(U) is defined as the entropy associated with
the open cover U . If U and V are two open covers of X, define U ∨ V =
{U

∩
V : U ∈ U , V ∈ V}. An open cover β is said to be refinement of an

open cover α; i.e., α ≺ β, if every open set in β is contained in some open
set in α. It can be seen that if α ≺ β, then H(α) ≤ H(β). For a self-map
f on X, f−1(U) = {f−1(U) : U ∈ U} is also an open cover of X. Define

hF,U = lim sup
k→∞

H(U∨ω−1
1 (U)∨ω−1

2 (U)∨...∨ω−1
k−1(U))

k .

Then suphF,U , where U runs over all possible open covers of X, is
known as the topological entropy of the system (X,F) and is denoted by
h(F). In case the maps fn coincide, the above definition coincides with
the known notion of topological entropy. See [4] and [5] for details.

Let (X, d) be a metric space and let CL(X) denote the collection of
all non-empty closed subsets of X. For any two closed subsets A and B
of X, define

dH(A,B) = inf{ϵ > 0 : A ⊆ Sϵ(B) and B ⊆ Sϵ(A)}.
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It is easily seen that dH defined above is a metric on CL(X) and is
called Hausdorff metric. The metric dH preserves the metric on X; i.e.,
dH({x}, {y}) = d(x, y) for all x, y ∈ X. The topology generated by this
metric is known as the Hausdorff metric topology on CL(X) with respect
to the metric d on X (see [3] and [11]). It is known that lim

n→∞
An = A if

and only if An converges to A under Hausdorff metric [10].

Many of the systems occurring in nature have been studied using math-
ematical models. While systems like the logistic model have been used to
characterize the population growth, continuous systems like the Lorenz
model have been used for weather prediction to great precision. Although
various mathematical models exploring such systems have been proposed
and long-term behavior of such systems has been studied, most of the
mathematical models are autonomous in nature and hence cannot be
used to model a general dynamical system. Thus, there is a strong need
to study and develop the theory of non-autonomous dynamical systems.
The theory of non-autonomous dynamical systems helps to characterize
the behavior of various natural phenomena which cannot be modeled by
autonomous systems. Some studies in this direction have been made and
some results have been obtained. In [8], the authors study the topological
entropy of a general non-autonomous dynamical system generated by a
family F. In particular, the authors study the case when the family F is
equicontinuous or uniformly convergent. In [9], the authors discuss mini-
mality conditions for a non-autonomous system on a compact Hausdorff
space while focusing on the case when the non-autonomous system is de-
fined on a compact interval of the real line. In [7], the authors prove that if
fn → f , in general there is no relation between the chaotic behavior of the
non-autonomous system generated by fn and the chaotic behavior of f .
In [1], the authors investigate properties like weakly mixing, topological
mixing, topological entropy, and Li–Yorke chaos for the non-autonomous
system. They prove that the dynamics of a non-autonomous system are
very different from those of the autonomous case. They also give a few
techniques to study the qualitative behavior of a non-autonomous system.

Although some studies have been made and some useful results have
been obtained, a lot of questions in the field are still unanswered and a
lot of investigation still needs to be done. In this paper, we study dif-
ferent possible dynamical notions for a non-autonomous dynamical sys-
tem generated by a family F. We prove that if F = {f1, f2, . . . fn} is
finite, the non-autonomous system is topological mixing if and only if
the autonomous system (X, fn ◦ fn−1 ◦ . . . ◦ f1) is topological mixing.
We also prove that if (X, fn ◦ fn−1 ◦ . . . ◦ f1) has positive topological
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entropy (is Li–Yorke chaotic) then (X,F) also has positive topological
entropy (is Li–Yorke chaotic). We also establish similar results for tran-
sitivity/dense periodicity of the non-autonomous system. In addition, if
F is commutative, the non-autonomous system is weakly mixing if and
only if (X, fn ◦ fn−1 ◦ . . . ◦ f1) is weakly mixing. Thus, we prove that if
the family F is finite, under certain assumptions, the study of the non-
autonomous dynamical system can be reduced to the autonomous case.
We also establish alternate criteria to establish weakly mixing/topological
mixing for a general non-autonomous dynamical system. In the end, we
study the dynamical behavior of the system with respect to the members
of the family F. We prove that the dynamical behavior of the generating
members in general does not carry over to the non-autonomous system
generated. While the non-autonomous system can exhibit a certain dy-
namical notion without any of the generating members exhibiting the
same, in some instances, the system might not exhibit certain dynamical
behavior even when all the generating members exhibit the same.

2. Main Results

Throughout the paper, let (X, d) be a compact metric space and let
F = {fn : n ∈ N} be a family of surjective continuous self-maps on X.

We first give some results establishing various dynamical properties
of the non-autonomous system when the family F = {f1, f2, . . . , fn} is
finite. It is worth mentioning that when the family F = {f1, f2, . . . , fn} is
finite, the non-autonomous dynamical system is generated by the relation
xk = fk(xk−1) where fk = f(1+(k−1) mod n).

Lemma 2.1. (X, fn ◦ fn−1 ◦ . . . ◦ f1) has a dense set of periodic points
⇒ (X,F) has a dense set of periodic points.

Proof. Let U be any non-empty open subset of X. As fn ◦ fn−1 ◦ . . . ◦ f1
has a dense set of periodic points, there exists k ∈ N and x ∈ U such
that (fn ◦ fn−1 ◦ . . . ◦ f1)

k(x) = x. Thus, ωnk(x) = x. Consequently,
ωrnk(x) = x for all r ≥ 1 and x is also periodic for (X,F). Hence, (X,F)
has a dense set of periodic points. �

Lemma 2.2. If (X, fn ◦ fn−1 ◦ . . . ◦ f1) is transitive, then (X,F) is tran-
sitive.

Proof. Let U and V be any pair of non-empty open subsets of X. Since
fn ◦ fn−1 ◦ . . . ◦ f1 is transitive, there exists k ∈ N such that (fn ◦ fn−1 ◦
. . . ◦ f1)k(U) ∩ V ̸= ϕ. Consequently, ωnk(U) ∩ V ̸= ϕ and, hence, (X,F)
is transitive. �
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The above result establishes the transitivity of the non-autonomous
system when the corresponding autonomous system is transitive. How-
ever, the correspondence is one-sided and the converse of the above result
is not true. We give an example in support of our statement.

Example 2.3. Let I be the unit interval and let f1 and f2 be defined as

f1(x) =


2x+ 1

2 for x ∈ [0, 1
4 ]

−2x+ 3
2 for x ∈ [ 14 ,

3
4 ]

2x− 3
2 for x ∈ [ 34 , 1]

f2(x) =


x+ 1

2 for x ∈ [0, 1
2 ]

−4x+ 3 for x ∈ [ 12 ,
3
4 ]

2x− 3
2 for x ∈ [ 34 , 1].

Let F = {f1, f2} and (X,F) be the corresponding non-autonomous dy-
namical system. As (X, f2 ◦ f1) has an invariant set U = [ 12 , 1], f2 ◦ f1
is not transitive. However, as f1 expands every open set U in [0, 1] and
f2 expands the right half of the unit interval with f2([0,

1
2 ]) = [ 12 , 1], the

non-autonomous system generated by F is transitive.

Lemma 2.4. If F is a commutative family, then F×F is transitive if and
only if F× F× . . .× F︸ ︷︷ ︸

n times

is transitive for all n ≥ 2.

Proof. Let F × F be transitive. We prove the forward part with the
help of mathematical induction. Let F× F× . . .× F︸ ︷︷ ︸

k times

be transitive and

let U1, U2, . . . , Uk+1 and V1, V2, . . . , Vk+1 be a pair of k + 1 non-empty
open sets in X. As F × F is transitive, there exists r > 0 such that
ωr(Uk)∩Uk+1 ̸= ϕ and ωr(Vk)∩ Vk+1 ̸= ϕ. Let U = Uk ∩ω−1

r (Uk+1) and
V = Vk ∩ω−1

r (Vk+1). Then U and V are non-empty open sets in X. Also
as F× F× . . .× F︸ ︷︷ ︸

k times

is transitive, there exists t > 0 such that ωt(Ui)∩Vi ̸= ϕ

for i = 1, 2, . . . , k − 1 and ωt(U) ∩ V ̸= ϕ.
As U ⊂ Uk and V ⊂ Vk, we have ωt(Uk)∩Vk ̸= ϕ. Also, ωt(U)∩V ̸= ϕ

implies ωr(ωt(U))∩ ωr(V ) ̸= ϕ. As fi commute with each other, we have
ωt(ωr(U)) ∩ ωr(V ) ̸= ϕ. As ωr(U) ⊆ Uk+1 and ωr(V ) ⊂ Vk+1, we have
ωt(Uk+1)∩Vk+1 ̸= ϕ. Consequently, ωt(Ui)∩Vi ̸= ϕ for i = 1, 2, . . . , k+1
and, hence, F× F× . . .× F︸ ︷︷ ︸

k+1 times

is transitive.
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Proof of the converse is trivial because if F× F× . . .× F︸ ︷︷ ︸
n times

is transitive

for all n ≥ 2; in particular, taking n = 2 yields that F×F is transitive. �

Remark 2.5. For autonomous systems, it is known that if f × f is tran-
sitive, then f × f × . . .× f︸ ︷︷ ︸

n times

is transitive for all n ≥ 2 [2] and, hence,

the result established above is an analogous extension of the autonomous
case. It may be noted that the proof uses the commutative property of
the members of the family F and, hence, is not true for a non-autonomous
system generated by any general family F. However, the proof does not
use the finiteness of the family F and, hence, the result holds even when
the generating family F is infinite.

Lemma 2.6. If F is a commutative family, then (X,F) is weakly mixing if
and only if for any finite collection of non-empty open sets {U1, U2, . . . , Um},
there exists a subsequence (rn) of positive integers such that lim

n→∞
ωrn(Ui) =

X for all i = 1, 2, . . . ,m.

Proof. Let n ∈ N be arbitrary and let {U1, U2, . . . , Um} be any finite
collection of non-empty open sets of X. As X is compact, there exist

x1, x2, . . . xkn such that X =
kn∪
i=1

S(xi,
1
n ). As (X,F) is weakly mixing, by

Lemma 2.4, there exists rn > 0 such that ωrn(Ui) ∩ S(xj ,
1
n ) ̸= ϕ for all i

and j and, hence, for any i, dH(ωrn(Ui), X) ≤ 1
n . As n ∈ N is arbitrary,

lim
n→∞

ωrn(Ui) = X for all i, and the proof for the forward part is complete.

Conversely, let U1, U2 and V1, V2 be two pairs of non-empty open
subsets of X. For i = 1, 2, let vi ∈ Vi and let ϵ > 0 be such that
S(vi, ϵ) ⊂ Vi. By the given condition, there exists a subsequence (rn)
of natural numbers such that lim

n→∞
ωrn(Ui) = X for i = 1, 2. Thus,

there exists rk such that dH(ωrk(Ui), X) < ϵ
2 , i = 1, 2. Consequently,

ωrk(Ui) ∩ Vi ̸= ϕ and, hence, (X,F) is weakly mixing. �

Remark 2.7. It may be noted that the proof of the converse does not
need commutativity of the family F. However, to establish the forward
part, we use Lemma 2.4 and, hence, use the commutativity of the family
F. Thus, the result may not hold well when considered for a general non-
autonomous system. Also, the result does not use a finiteness condition
on F and hence is valid even when the system is generated by an infinite
family F.

Remark 2.8. It is known that an autonomous system is weakly mixing
if and only if for any non-empty open set U , there exists a subsequence
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(rn) of positive integers such that lim
n→∞

frn(U) = X [10]. Thus, for the
non-autonomous case, the result above establishes a stronger extension
of the result proved in the autonomous case. However, the above result
also holds when the maps fn coincide and, hence, a stronger version of the
result in [10] is true for the autonomous case. For the sake of completeness,
we mention the obtained result below.

Corollary 2.9. A continuous self-map f is weakly mixing if and only if
for any finite collection of non-empty open sets {U1, U2, . . . , Um}, there
exists a subsequence (rn) of positive integers such that lim

n→∞
frn(Ui) = X

for all i = 1, 2, . . . ,m.

Lemma 2.10. (X,F) is topologically mixing if and only if for each non-
empty open set U , lim

n→∞
ωn(U) = X.

Proof. Let n ∈ N be arbitrary and let U be any non-empty open subset of

X. As X is compact, there exist x1, x2, . . . xkn such that X =
kn∪
i=1

S(xi,
1
n ).

As F is topologically mixing, there exists Mi, i = 1, 2, . . . , kn such that
ωk(U) ∩ S(xi,

1
n ) ̸= ϕ for all k ≥ Mi. Let M = max{Mi : 1 ≤ i ≤ kn}.

Then ωk(U)∩S(xi,
1
n ) ̸= ϕ for all k ≥ M . Consequently, dH(ωk(U), X) <

1
n for all k ≥ M . As n ∈ N is arbitrary, lim

n→∞
ωn(U) = X, and the proof

of the forward part is complete.
Conversely, let U and V be any pair of non-empty open subsets of X.

Let v ∈ V and let ϵ > 0 be such that S(v, ϵ) ⊂ V . By the given condition,
lim

n→∞
ωn(U) = X. Thus, there exists K > 0 such that dH(ωk(U), X) < ϵ

2

for all k ≥ K. Consequently, ωk(U) ∩ V ̸= ϕ for all n ≥ K and, hence,
(X,F) is topologically mixing. �

Remark 2.11. In [10], the authors establish that an autonomous system
(X, f) is topologically mixing if and only if for each non-empty open set
U , lim

n→∞
fn(U) = X. Once again, we prove that an analogous result does

hold when considered for a general non-autonomous system. However, it
may be noted that neither commutativity nor finiteness of the family F
was needed to establish the above result and, hence, the result holds for
a general non-autonomous dynamical system.

Lemma 2.12. If F = {f1, f2, . . . , fn} is a finite commutative family, then
(X,F) is weakly mixing if and only if (X, fn ◦ fn−1 ◦ . . . ◦ f1) is weakly
mixing.

Proof. Let U be a non-empty open subset of X. We will equivalently prove
that there exists a sequence (zk) of natural numbers such that lim

k→∞
(fn ◦
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fn−1◦. . .◦f1)zk(U) = X. As (X,F) is weakly mixing, by Lemma 2.6, there
exists a sequence (sk) such that lim

k→∞
ωsk(U) = X. Also, the family F is

finite and, hence, there exists l ∈ {1, 2, . . . , n} and a subsequence (mk)
of (sk), mk = l + rkn such that lim

k→∞
fl ◦ fl−1 ◦ . . . ◦ f1 ◦ ωrkn(U) = X.

As each fi is surjective, lim
k→∞

ω(rk+1)n(U) = X. Consequently, lim
k→∞

(fn ◦
fn−1 ◦ . . . ◦ f1)rk+1(U) = X and (X, fn ◦ fn−1 ◦ . . . ◦ f1) is weakly mixing.

Conversely, let U1, U2 and V1, V2 be any two pairs of non-empty open
subsets of X. As fn ◦ fn−1 ◦ . . . ◦ f1 is weakly mixing, there exists k ∈ N
such that (fn ◦ fn−1 ◦ . . . ◦ f1)k(Ui) ∩ Vi ̸= ϕ for i = 1, 2. Consequently,
ωnk(Ui) ∩ Vi ̸= ϕ for i = 1, 2 and, hence, (X,F) is weakly mixing. �
Remark 2.13. The result establishes the equivalence of the weakly mix-
ing of the non-autonomous system (X,F) and the autonomous system
(X, fn ◦fn−1 ◦ . . .◦f1). It may be noted that as the proof uses Lemma 2.6
proved earlier, commutativity of the family F cannot be relaxed. Thus,
the result may not hold if the assumptions in the hypothesis are relaxed.

Remark 2.14. It may be noted that the above result uses the surjectivity
of the maps fi. Thus, if the maps are not surjective, the above result may
not hold; i.e., the non-autonomous system may exhibit weakly mixing
even if the system (X, fn ◦ fn−1 ◦ . . . ◦ f1) is not weakly mixing. We now
give an example in support of our statement.

Example 2.15. Let I be the unit interval and let f1 and f2 be defined
as

f1(x) =

{
2x for x ∈ [0, 1

2 ]

−x+ 3
2 for x ∈ [ 12 , 1]

f2(x) =


−2x+ 1

2 for x ∈ [0, 1
4 ]

2x− 1
2 for x ∈ [ 14 ,

1
2 ]

−2x+ 3
2 for x ∈ [ 12 ,

3
4 ]

2x− 3
2 for x ∈ [ 34 , 1].

Let F be a finite family of maps f1 and f2 defined above. As [0, 1
2 ] is

invariant for f2 ◦ f1, the map f2 ◦ f1 does not exhibit any of the mixing
properties. However, for any open set U in [0, 1], there exists k ∈ N
such that (f2 ◦ f1)k(U) = [0, 1

2 ]. Consequently, ω2k+1(U) = [0, 1]. As the
argument holds for any odd integer greater than k, the non-autonomous
system is weakly mixing.

Lemma 2.16. If F = {f1, f2, . . . , fn} is a finite family, then (X,F) is
topologically mixing if and only if (X, fn ◦ fn−1 ◦ . . . ◦ f1) is topologically
mixing.
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Proof. Let U be a non-empty open subset of X. We will equivalently prove
that lim

k→∞
(fn ◦fn−1 ◦ . . .◦f1)k(U) = X. As (X,F) is topologically mixing,

by Lemma 2.10, lim
k→∞

ωk(U) = X. In particular, lim
k→∞

ωnk(U) = X or

lim
k→∞

(fn ◦ fn−1 ◦ . . . ◦ f1)k(U) = X and, hence, (X, fn ◦ fn−1 ◦ . . . ◦ f1) is
topologically mixing.

Conversely, let U be a non-empty open subset of X. We will equiva-
lently prove that lim

k→∞
ωk(U) = X. As fn ◦ fn−1 ◦ . . . ◦ f1 is topologically

mixing, lim
k→∞

(fn ◦ fn−1 ◦ . . . ◦ f1)k(U) = X. Consequently, lim
k→∞

ωnk(U) =

X. As each fi is surjective, by continuity we have for each l ∈ {1, 2, . . . , n},
fl ◦ fl−1 ◦ . . . ◦ f1( lim

k→∞
ωnk(U)) = lim

k→∞
(fl ◦ fl−1 ◦ . . . ◦ f1 ◦ ωnk(U)) = X.

Consequently, lim
k→∞

ωk(U) = X and (X,F) is topologically mixing. �

Remark 2.17. The result once again is an analogous extension of the
autonomous case. The result proves that the identical conclusion can be
made for the non-autonomous case without strengthening the hypothesis.
It is worth noting that the result does not use commutativity of F and,
hence, asserts the complex nature of a topological mixing in a general
dynamical system.

In [8], the authors prove that if F = {f1, f2, . . . , fn} is a finite family,
then h(F) = 1

nh(fn ◦fn−1 ◦ . . .◦f1). However, as the authors of this paper
were not aware of this result while addressing the problem, for the sake
of completion, we include the proof here.

Lemma 2.18. If F = {f1, f2, . . . , fn} is a finite family, then h(F) ≥
1
nh(fn◦fn−1◦. . .◦f1). Consequently, if the associated autonomous system
has a positive topological entropy, the non-autonomous system also has a
positive topological entropy.

Proof. For any open cover U of X, the entropy of the system with respect
to the open cover U is defined as

hF,U = lim sup
k→∞

H(
k−1∨
i=0

ω−1
i (U))

k = lim sup
k→∞

H(
nk−1∨
i=0

ω−1
i (U))

nk

where
k−1∨
i=0

ω−1
i (U) denotes U ∨ ω−1

1 (U) ∨ ω−1
2 (U) ∨ . . . ∨ ω−1

k−1(U).

Also, as
k−1∨
i=0

ω−1
in (U) ≺

nk−1∨
i=0

ω−1
i (U),

we have
H(U ∨ ω−1

n (U)∨ ω−1
2n (U)∨ . . .∨ ω−1

n(k−1)(U)) ≤ H(U ∨ ω−1
1 (U)∨ ω−1

2 (U)∨
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. . . ∨ ω−1
nk−1(U)).

Therefore,

lim sup
k→∞

H(U∨ω−1
n (U)∨ω−1

2n (U)∨...∨ω−1
n(k−1)

(U))

nk

≤ lim sup
k→∞

H(U∨ω−1
1 (U)∨ω−1

2 (U)∨...∨ω−1
nk−1(U))

nk .

Consequently,

1
n lim sup

k→∞

H(
k−1∨
i=0

(fn◦fn−1◦...◦f1)−i(U))

k ≤ lim sup
k→∞

H(
nk−1∨
i=0

ω−1
i (U))

nk ,

or 1
nH(fn ◦ fn−1 ◦ . . . ◦ f1,U) ≤ H(F,U). As U was arbitrary, h(F) ≥

1
nh(fn ◦ fn−1 ◦ . . . ◦ f1), and the proof is complete. �

Lemma 2.19. (X, fn ◦ fn−1 ◦ . . . ◦ f1) is Li–Yorke chaotic ⇒ (X,F) is
Li–Yorke chaotic.

Proof. Let (X, fn ◦ fn−1 ◦ . . . ◦ f1) be Li–Yorke chaotic and let S be an
uncountable scrambled set for g = fn ◦ fn−1 ◦ . . . ◦ f1. Consequently, for
any x, y ∈ S, there exists a sequence (rk) and (sk) of natural numbers
such that lim

k→∞
d(grk(x), grk(y)) > 0 and lim

k→∞
d(gsk(x), gsk(y)) = 0. Con-

sequently, lim
k→∞

d(ωrkn(x), ωrkn(y)) > 0 and lim
k→∞

d(ωskn(x), ωskn(y)) = 0

and, hence, (X,F) is Li–Yorke chaotic. �

In general, investigating the dynamical behavior of a non-autonomous
system is difficult. However, if the generating functions fi are surjective,
the above results show that under certain conditions, some of the dy-
namical properties of the non-autonomous system can be studied using
its generating functions. Further, if the generating functions are finite,
under certain conditions, some of the dynamical properties of the non-
autonomous systems can be studied (and in many cases characterized)
using autonomous systems.

We now study the dynamics of the non-autonomous system in terms of
its components fi. We prove that even if the individual maps fk exhibit
certain dynamical behavior, the system (X,F) may not exhibit similar
dynamical behavior.

Example 2.20. Let
∑

= {0, 1}N be the collection of two-sided sequences
of 0 and 1 endowed with the product topology. Let σ1, σ2 :

∑
→

∑
be defined as σ1(. . . x−2x−1.x0x1x2 . . .) = (. . . x−2x−1x0.x1x2 . . .) and
σ2(. . . x−2x−1.x0x1x2 . . .) = (. . . x−2.x−1x0x1x2 . . .). Then σ1 and σ2

are the shift operators and are continuous with respect to the product
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topology. Let F = {σ1, σ2} and let (X,F) be the corresponding non-
autonomous system. It can be seen that each σi is transitive. However,
as σ1 ◦ σ2 = id, the system generated is not transitive.

Remark 2.21. The above example proves that a non-autonomous dy-
namical system may not be transitive even if each of its generating systems
exhibits the same. It can also be seen that each of the functions is Li–
Yorke chaotic. However, as σ2 ◦ σ1 = id, the system (X,F) fails to be
Li–Yorke chaotic. Thus, the example also shows that the system gener-
ated may not exhibit Li–Yorke chaoticity even if each of the generating
functions is Li–Yorke chaotic.

Example 2.22. Let I be the unit interval and let f1, f2 : I → I be
defined as

f1(x) =

{
2x if x ∈ [0, 1

2 ]
3
2 − x if x ∈ [ 12 , 1]

f2(x) =

{
1
2 − x if x ∈ [0, 1

2 ]

2x− 1 if x ∈ [ 12 , 1] .

Let F = {f1, f2} and let (X,F) be the corresponding non-autonomous
system. As [ 12 , 1] and [0, 1

2 ] are invariant for f1 and f2, respectively, none
of the fi are transitive. However, the map

f2 ◦ f1(x) =


1
2 − 2x if x ∈ [0, 1

4 ]

4x− 1 if x ∈ [ 14 ,
1
2 ]

2− 2x if x ∈ [ 12 , 1]

is transitive, and, hence, the non-autonomous system (X,F) is transitive.

Remark 2.23. Example 2.20 shows that even if each of the maps fi is
transitive, the non-autonomous system generated by F = {fn : n ∈ N}
may not be transitive. On the other hand, the above example shows
that the non-autonomous system can exhibit transitivity without any of
the maps fi being transitive. Thus, transitivity in general cannot be
characterized in terms of transitivity of its generating components fi.

Example 2.24. Let S1 be the unit circle and let θ ∈ (0, 1) be a rational
number. Let fn : S1 → S1 be defined as fn(ϕ) = ϕ + 2π θ

3n and let
F = {fn : n ∈ N} generate the corresponding non-autonomous system.
As θ is rational, each map fn has a dense set of periodic points. However,

as
∞∑

n=1

θ
3n < 1, for any β ∈ S1, ωn(β) ̸= β for all n. Hence, the non-

autonomous system generated by F = {fn : n ∈ N} fails to have any
periodic point.
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Example 2.25. Let S1 be the unit circle and let θ ∈ (0, 1) be an ir-
rational. Let f1, f2 : S1 → S1 be defined as f1(ϕ) = ϕ + 2πθ and
f2(ϕ) = ϕ − 2πθ, respectively, and let (X,F) be the corresponding non-
autonomous dynamical system. As each fi is an irrational rotation, no
point is periodic for any fi. However, as f1 ◦ f2 = Id, the system (S1,F)
has a dense set of periodic points.

Remark 2.26. Examples 2.24 and 2.25 prove that dense periodicity for
a non-autonomous dynamical system cannot be characterized in terms of
dense periodicity of the generating functions. While Example 2.25 shows
the system may exhibit dense periodicity without any of the generating
functions exhibiting the same, Example 2.24 proves that the system may
fail to have a dense set of periodic points even when all its generating
functions have the same. Also, it may be noted that as θ is irrational, f1
and f2 are also minimal. However, as f2 ◦ f1 = id, the system (X,F) fails
to be minimal. Thus, the example also shows that the system generated
by a set of minimal systems may not be minimal.

Example 2.27. Let I be the unit interval and let (qn) be an enumeration
of rationals in I. Let fn : I → I be defined as fn(x) = qn for all x ∈ I.
Then each fn is a constant map, but the system (X,F) generated by
F = {fn : n ∈ N} is minimal.

Remark 2.28. Once again, Example 2.25 shows that even if each of the
maps fi is minimal, the non-autonomous system generated by F need
not be minimal. On the other hand, Example 2.27 shows that the non-
autonomous system can exhibit minimality without any of the maps fi
being minimal. Thus, minimality, in general, cannot be characterized in
terms of minimality of its generating functions.

Example 2.29. Let I be the unit interval and let f1 and f2 be defined
as

f1(x) =


2x+ 1

2 for x ∈ [0, 1
4 ]

−2x+ 3
2 for x ∈ [ 14 ,

3
4 ]

2x− 3
2 for x ∈ [ 34 , 1]

f2(x) =

{
2x for x ∈ [0, 1

2 ]

−x+ 3
2 for x ∈ [ 12 , 1].

Let F = {f1, f2} and let (X,F) be the corresponding non-autonomous
system. It can be seen that none of the maps fi are weakly mixing.
However, for any open set U , there exists a natural number n such that
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ωn(U) = [0, 1]. Hence, the non-autonomous system (X,F) is weakly mix-
ing.

Remark 2.30. The non-autonomous dynamical system generated above
also exhibits topological mixing. Thus, the above example also proves
that the non-autonomous system generated can be weakly mixing (topo-
logically mixing) without any of its components fi exhibiting the same.
Also, Example 2.20 shows that the non-autonomous system generated
need not exhibit weakly mixing (topological mixing) even if each of the
generating functions exhibits weakly mixing (topological mixing). This
proves that, in general, weakly mixing (topologically mixing) of a non-
autonomous system cannot be characterized in terms of weakly mixing
(topologically mixing) of its components.

Example 2.31. Let I × S1 be the unit cylinder. Let f1, f2 : I × S1 →
I × S1 be defined as f1((r, θ)) = (r, θ + r) and f2((r, θ)) = (r, θ − r),
respectively. Let F = {f1, f2} and let (X,F) be the corresponding non-
autonomous system. As points at different heights of the cylinder are
rotating with different speeds, each of the maps fi is cofinitely sensitive
[12]. However, as f2 ◦ f1 = Id, the system (I × S1,F) is not sensitive.

Remark 2.32. Example 2.31 shows that even if each of the maps fi is
sensitive, the non-autonomous system generated need not be sensitive.
Also, Example 2.22 proves that the non-autonomous system can exhibit
sensitivity without any of the maps fi being sensitive. Thus, sensitivity
of the non-autonomous system also, in general, cannot be characterized
in terms of sensitivity of its generating functions.

Example 2.33. Let f1, f2 : R → R be defined as f1(x) = |x| and
f2(x) = 2x − 1. Let F = {f1, f2} and let (X,F) be the corresponding
non-autonomous system. Then f1 and f2 fail to be Li–Yorke chaotic.
However, as f2(f1(−7

9 )) = 5
9 , f2(f1(

5
9 )) = 1

9 , and f2(f1(
1
9 )) = − 7

9 , the
map f2 ◦ f1(x) : R → R possesses a period 3 point, and hence is Li–Yorke
chaotic. Consequently, (X,F) is Li–Yorke chaotic.

Remark 2.34. The above example shows that the non-autonomous sys-
tem may be Li–Yorke chaotic without the generating members being Li–
Yorke chaotic. Also, Example 2.20 shows that the non-autonomous sys-
tem may not be Li–Yorke chaotic even when all the generating functions
are Li–Yorke chaotic. Thus, Li–Yorke chaoticity of a non-autonomous
system cannot be characterized in terms of Li–Yorke chaoticity of its gen-
erating functions.
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3. Conclusion

In this paper, the dynamical behavior of the non-autonomous system
generated by a family F of continuous self-maps on a compact metric space
are discussed. Properties like dense periodicity, transitivity, various forms
of sensitivity, weakly mixing, topologically mixing, Li–Yorke chaoticity,
and topological entropy are studied and investigated. For a commutative
finite family, we establish that some of the stronger notions of mixing for
the non-autonomous system can be studied using autonomous systems.
We also establish that the characterization of properties like weakly mix-
ing also holds analogously in the non-autonomous case, if the generating
family is commutative. A similar characterization is proved for topologi-
cal mixing for a general non-autonomous dynamical system asserting the
complex behavior of a non-autonomous topologically mixing system. It
is also observed that the dynamics of the non-autonomous system gener-
ated by the family F cannot be characterized in terms of the dynamics of
the generating functions. While the non-autonomous system can exhibit
a certain dynamical behavior without any of the generating functions
exhibiting the same, a non-autonomous system may fail to exhibit a dy-
namical behavior even if all the generating functions exhibit the same.
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