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PRESERVATION OF A NEIGHBORHOOD BASE
OF A SET BY CCC FORCINGS

AKIRA IWASA

Abstract. Let ⟨X, τ⟩ be a topological space and let A be a subset
of X. We investigate under what circumstances a neighborhood
base of A remains a neighborhood base of A in countable chain
condition (ccc) forcing extensions.

We prove that if ⟨X, τ⟩ is a metrizable space and A ⊆ X, then
the following are equivalent (Corollary 2.9):
(1) Every forcing preserves a neighborhood base of A.
(2) Every ccc forcing preserves a neighborhood base of A.
(3) If B is the boundary of A, then B ∩A is scattered and com-

pact.

1. Introduction

Let V be a ground model and let P be a forcing. VP denotes the forcing
extension of V by the forcing P. For a topological space ⟨X, τ⟩ in V, we
define a topological space ⟨X, τP⟩ in VP such that

τP is the topology on X generated by τ in VP.

Observe that, in general, τ $ τP (because the forcing P introduces new
open sets) and that τ serves as a base for τP by definition.

We say that a topological property φ is preserved by forcing if, when-
ever a space ⟨X, τ⟩ satisfies φ, ⟨X, τP⟩ satisfies φ for any forcing P. Topo-
logical properties such as Hausdorffness, regularity, and complete regu-
larity are preserved by forcing ([2, Lemma 22]), but normality may not
be preserved by forcing ([10, Theorem 1.8]). Renata Grunberg, Lúcia

2010 Mathematics Subject Classification. Primary 54A35.
Key words and phrases. forcing, neighborhood base of a set.
The author was supported by a RISE grant from the Office of the Vice President

for Research at the University of South Carolina.
c⃝2017 Topology Proceedings.

61



62 A. IWASA

R. Junqueira, and Franklin D. Tall in [6] and William G. Fleissner, Tim
LaBerge, and Adrienne Stanley in [5] studied under what circumstances
Cohen forcing preserves (or destroys) normality. In this note, instead
of topological properties, we consider a neighborhood base of a set in a
topological space. We are interested in whether countable chain condi-
tion (ccc) forcings preserve being a neighborhood base of the set. Let us
explain this in detail below.

Definition 1.1. Let ⟨X, τ⟩ be a topological space and let A ⊆ X. We
denote the set of all neighborhoods of A by

Nτ (A) := {H ⊆ X : ∃U ∈ τ(A ⊆ U ⊆ H)}.
If A = {x}, then we write Nτ (x) for Nτ ({x}).

Definition 1.2. Let ⟨X, τ⟩ be a topological space and let A ⊆ X. We
say that a family B of subsets of X is a neighborhood base of A if for each
B ∈ B, the interior of B contains A, and for every open set U containing
A, there is B ∈ B such that B ⊆ U .

Definition 1.3. Let ⟨X, τ⟩ be a topological space and let A ⊆ X. We
say that a forcing P preserves a neighborhood base of A if for some neigh-
borhood base B of A, B remains a neighborhood base of A in the space
⟨X, τP⟩. Or equivalently, we say that a forcing P preserves a neighbor-
hood base of A if Nτ (A) remains a neighborhood base of A in the space
⟨X, τP⟩; that is, we say that a forcing P preserves a neighborhood base of
A if

(∀W ∈ τP with A ⊆ W )(∃H ∈ Nτ (A))(H ⊆ W ).

If a forcing P does not preserve a neighborhood base of A, then we say
that P destroys a neighborhood base of A.

It is not difficult to prove the proposition below.

Proposition 1.4. Let ⟨X, τ⟩ be a topological space and let A ⊆ X. The
following are equivalent:

(1) A forcing P preserves a neighborhood base of A.
(2) Every neighborhood base of A remains a neighborhood base of A

in the space ⟨X, τP⟩.

The purpose of this note is to investigate under what circumstances a
neighborhood base of a set remains a neighborhood base of the set in ccc
forcing extensions. The main results are Theorem 2.4 and Corollary 2.9.
In Theorem 2.4, we establish a necessary condition for a neighborhood
base of a set to be preserved by ccc forcings. In Corollary 2.9, we establish
a necessary and sufficient condition for a neighborhood base of a subset
of a metrizable space to be preserved by ccc forcings.
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The proposition below says that if a set A is a singleton, then Nτ (A)
remains a neighborhood base of A in any forcing extension.

Proposition 1.5. Let ⟨X, τ⟩ be a topological space and let x ∈ X. Every
forcing preserves a neighborhood base of x.

Proof. Let P be a forcing. In VP, take W ∈ τP such that x ∈ W . By
the definition of τP, there is U ∈ τ such that x ∈ U ⊆ W , and we
have U ∈ Nτ (x). Thus, Nτ (x) is a neighborhood base of x in the space
⟨X, τP⟩. �

We use the following forcings.

Fact 1.6. (1) C is the Cohen forcing that adds a Cohen real. ([9,
VII, Definition 5.1]; C = Fn(ω, 2).)

(2) B(F) is the Booth forcing for a free filter F ⊆ [ω]ω. B(F) is σ-
centered and so it has the ccc. Forcing with B(F) adds an infinite
set E ⊆ ω such that E \ F is finite for all F ∈ F . ([3]; see also
[7, Definition 2.5 ])

(3) D is the dominating forcing. D has the ccc, and forcing with D
adds a dominating function g ∈ ωω over V; that is, for every
f ∈ ωω ∩ V, f(n) < g(n) for all but finitely many n ∈ ω. ([1,
Definition 3.1.9.])

We finish this section illustrating an example where a neighborhood
base of a set is destroyed by a ccc forcing. We will use the idea of this
example later to prove the main theorem (Theorem 2.4).

Example 1.7. There are a topological space ⟨X, τ⟩, a subset A of X, and
a ccc forcing P such that P destroys a neighborhood base of A.

Proof. Let
• X = ω × (ω + 1) and
• A = ω × {ω}.

Let the topology τ on X be the usual product topology, and we consider
the order topology on ω and ω + 1. For each f ∈ ωω, define

Uf := A ∪ {(i, j) ∈ ω × ω : i ∈ ω and j > f(i)}.
Then Nτ (A) = {H ⊆ X : (∃ f ∈ ωω)(Uf ⊆ H)}. We consider the
forcing D in Fact 1.6(3) and take a dominating function g ∈ ωω. Let
E = {(n, g(n)) : n ∈ ω}; then E is a closed subset of X, E ∩ A = ∅, and
E ∩ Uf ̸= ∅ for all f ∈ ωω ∩V. Let W = X \ E; then W ∈ τP, A ⊆ W ,
and Uf * W for all f ∈ ωω ∩V. This implies that for every H ∈ Nτ (A),
we have H * W . Thus, Nτ (A) is not a neighborhood base of A in the
space ⟨X, τP⟩. �
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2. Preserving a Neighborhood Base of a Set

A subset S of a space X is called scattered if for every nonempty subset
S′ of S, S′ contains an isolated point in the relative topology of S′. Note
that the empty set is scattered. We use the following notation.

Definition 2.1. For a subset A of a topological space X, let bd(A) denote
the boundary of A and define

bd∗(A) := bd(A) ∩A.

The theorem below gives a sufficient condition for a neighborhood base
of a set to be preserved by any forcing.

Theorem 2.2. Let ⟨X, τ⟩ be a topological space and let A ⊆ X. Suppose
that

(1) bd∗(A) is scattered and
(2) bd∗(A) is compact.

Then every forcing preserves a neighborhood base of A.

Proof. Let P be a forcing and take W ∈ τP such that A ⊆ W . We
will find H ∈ Nτ (A) such that H ⊆ W . If bd∗(A) = ∅, then A is an
open set, and {A} is a neighborhood base of A. Clearly, {A} remains a
neighborhood base of A in any forcing extension. So assume that bd∗(A) ̸=
∅. Scattered and compact spaces remain compact in any forcing extension
by [8, Lemma 7]. Therefore, in VP, bd∗(A) is compact. In VP, using
Proposition 1.5, take Ux ∈ τ for each x ∈ bd∗(A) such that x ∈ Ux ⊆ W .
In VP, {Ux : x ∈ bd∗(A)} is an open cover of the compact set bd∗(A), so
it has a finite subcover, say {Uxi

: i < n}. Note that the finite subcover
{Uxi : i < n} of bd∗(A) is in V. Let H = A ∪

∪
{Uxi : i < n}; then

H ∈ Nτ (A) and H ⊆ W . �

We will show in Proposition 3.3 that the converse of Theorem 2.2 is
actually true, but if we require forcings to preserve ω1, then the converse
of Theorem 2.2 would not hold (see Example 3.4). We use the following
notation.

Definition 2.3. For a subset A of a topological space X, define

bdc(A) := {x ∈ A : x ∈ C for some countable set C ⊆ X \A}

and
bd∗c(A) := bdc(A) ∩A.

Note that bdc(A) ⊆ bd(A). Now we are ready to prove the main the-
orem. We use bd∗c(A), instead of bd∗(A), to characterize a set A whose
neighborhood base is preserved by ccc forcings. The idea of the proof is
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similar to that of Example 1.7 (see Remark 2.5). We assume that a space
is regular (see Example 2.6 for the reason for this assumption).

Theorem 2.4. Let ⟨X, τ⟩ be a regular space and let A ⊆ X. Suppose
that every ccc forcing preserves a neighborhood base of A. Then

(1) bd∗c(A) is scattered,
(2) bd∗c(A) is countably compact, and
(3) if bd∗c(A) is not compact, then it is not separable.

Proof. We prove the contrapositive by considering the following three
cases:

Case 1. bd∗c(A) is not scattered.
Case 2. bd∗c(A) is not countably compact.
Case 3. bd∗c(A) is not compact and is separable.

In each case, we construct a ccc forcing which destroys a neighborhood
base of A.

Proof of Case 1. Suppose that bd∗c(A) is not scattered.

Claim 1. In VC, bd∗c(A) is not countably compact, where C is as in Fact
1.6(1).

Proof. By [4, Problem 1.7.10], bd∗c(A) can be uniquely represented as
bd∗c(A) = P∪S, where P is a perfect set, S is a scattered set, and P∩S = ∅.
Further, P is a closed subset of bd∗c(A). Since bd∗c(A) is not scattered, P
is not empty. Adjoining a real makes a perfect set non-countably compact
by [7, Proposition 2.10], so P is not countably compact in VC. Since every
closed subspace of a countably compact space is countably compact ([4,
Theorem 3.10.4]) and P is a closed subspace of bd∗c(A), we can conclude
that bd∗c(A) is not countably compact in VC. ⊣ (Claim)

By Claim 1, in VC, there is a closed discrete subset

D = {dn : n ∈ ω}
of bd∗c(A) ([4, Theorem 3.10.3]). Since dn ∈ bd∗c(A) for each n ∈ ω, there
is a countable set Cn ⊆ X \A such that dn ∈ Cn. For each n ∈ ω, let

Fn = {Cn ∩ U : U ∈ Nτ (dn)};
then Fn is a free filter on Cn. Consider the Booth forcing B(Fn) for each
n ∈ ω as in Fact 1.6(2). Let B be the product of the family {B(Fn) : n ∈
ω} with finite support:

B =

{
p ∈

∏
n∈ω

B(Fn) : the support of p is finite

}
.

Since each B(Fn) is σ-centered, it is not difficult to prove that B is still
σ-centered, and so it has the ccc. For each n ∈ ω, B(Fn) adds an infinite
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set En ⊆ Cn such that En \ F is finite for all F ∈ Fn by Fact 1.6(2), so
En \ U is finite for all U ∈ Nτ (dn). This means that a sequence formed
by any enumeration of En converges to dn. For each n ∈ ω, enumerate

En = {en,i : i ∈ ω}.

Let Ḃ be a C-name for B. Let Ḋ be a C ∗ Ḃ-name for the dominating
forcing D in Fact 1.6(3). Let

P = C ∗ Ḃ ∗ Ḋ.
Then P has the ccc ([9, VIII, Lemma 5.7] ). In VP, take a dominating
function g over VC∗Ḃ, and let

Eg = {en,g(n) : n ∈ ω}.
We prove three claims which involve the set Eg.

Claim 2. Eg ∩D = ∅.
Proof. Assume to the contrary that there is dk ∈ D such that dk ∈ Eg.

Since D is a discrete subset of bd∗c(A) and X is regular, we can find U ∈ τ
such that dk ∈ U and U ∩ (D \ {dk}) = ∅. Note that for each n ∈ ω with
n ̸= k, En ∩ U is finite because En converges to dn ∈ X \ U . Define a
function f ∈ ωω ∩VC∗Ḃ such that for n with n ̸= κ and En ∩ U ̸= ∅,

f(n) = max{i ∈ ω : en,i ∈ U};
if n = k or En ∩U = ∅, then let f(n) = 0. Since Eg ∩U is an infinite set,
we have that f(n) ≥ g(n) for infinitely many n ∈ ω. This contradicts the
fact that g is a dominating function over VC∗Ḃ. ⊣ (Claim)

Claim 3. Eg \ Eg ⊆ D.
Proof. Assume that x /∈ D; we will show that x /∈ Eg \ Eg. Using the

regularity of X, take U ∈ τ such that x ∈ U and U ∩ D = ∅. Define a
function f ∈ ωω ∩VC∗Ḃ such that

f(n) = min{i ∈ ω : (∀ j ≥ i)(en,j ∈ X \ U)}.
Note that f is well defined because for each n ∈ ω, En = {en,i : i ∈ ω}
converges to dn ∈ D ⊆ X \ U . Since f(n) < g(n) for all but finitely
many n ∈ ω, en,g(n) ∈ X \ U for all but finitely many n ∈ ω. Therefore,
Eg \Eg ⊆ X \ U . Since X \ U = X \U , we have (Eg \Eg) ∩U = ∅, and
thus x /∈ Eg \ Eg. ⊣ (Claim)

Claim 4. Eg ∩A = ∅.
Proof. First recall that Eg ⊆

∪
{En : n ∈ ω} and that En ⊆ Cn

and Cn ∩ A = ∅ for each n ∈ ω. Assume to the contrary that there is
y ∈ Eg ∩ A. Since Eg ∩ A = ∅, we have y ∈ Eg \ Eg. By Claim 3, we
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have y ∈ D. Since Eg ⊆
∪
{Cn : n ∈ ω}, we have y ∈

∪
{Cn : n ∈ ω},

and so y ∈ bdc(A). Since y ∈ A, we have y ∈ bdc(A) ∩ A = bd∗c(A).
Consequently, we have y ∈ D ∩ bd∗c(A). Since D is a closed subset of
bd∗c(A), D = D

bd∗
c (A)

= D ∩ bd∗c(A). This would imply that y ∈ D,
contradicting Claim 2. ⊣ (Claim)

Let W = X \ Eg; then W ∈ τP and, by Claim 4, we have A ⊆ W .
To show that W witnesses the fact that P destroys a neighborhood base
of A, take H ∈ Nτ (A); we will show that H * W . Define a function
h ∈ ωω ∩VC∗Ḃ such that for each n ∈ ω,

h(n) = min{i ∈ ω : (∀ j ≥ i)(en,j ∈ H)}.
Since En = {en,i : i ∈ ω} converges to dn ∈ D ⊆ H for each n ∈ ω, h
is well defined. If H ⊆ W , then H ∩ Eg = ∅, and so h(n) > g(n) for all
n ∈ ω, contradicting the fact that g is a dominating function over VC∗Ḃ.
Therefore, we must have H * W , and we can conclude that P destroys a
neighborhood base of A. This finishes the proof of Case 1.

Proof of Case 2. Suppose that bd∗c(A) is not countably compact. Skip the
forcing C in the proof of Case 1 and in V take a closed discrete subset
{dn : n ∈ ω} of bd∗c(A). Using the set {dn : n ∈ ω}, construct the forcing
B as in the proof of Case 1 and let

P = B ∗ Ḋ,
where Ḋ is a B-name for the dominating forcing D in Fact 1.6(3). Then
P is a ccc forcing, and in VP, Nτ (A) is no longer a neighborhood base of
A as in Case 1.

Proof of Case 3. Suppose that bd∗c(A) is not compact and is separable.
Because of Case 2, we may assume that bd∗c(A) is countably compact. By
[7, Corollary 2.8], there is a Booth forcing B(F) for some filter F such
that in VB(F), bd∗c(A) is not countably compact. Following Case 2, let

P = B(F) ∗ Ḃ ∗ Ḋ.
Then P has the ccc and destroys a neighborhood base of A.

This concludes the proof of the theorem. �
Remark 2.5. The proof of Theorem 2.4 is similar to that of Example
1.7: The discrete set D = {dn : n ∈ ω} corresponds to A = ω × {ω};
the sequence En converging to dn corresponds to the column {n} × ω
converging to (n, ω); the set Eg = {en,g(n) : n ∈ ω} corresponds to
E = {(n, g(n)) : n ∈ ω}.

We give an example which shows that the regularity of ⟨X, τ⟩ in The-
orem 2.4 cannot be weakened to Hausdorffness.
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Example 2.6. There are a Hausdorff (non-regular) space ⟨X, τ⟩ and a
subset A of X such that

(1) bd∗c(A) is not countably compact and
(2) every forcing preserves a neighborhood base of A.

Proof. Let X = R, where R is the set of all real numbers. Let us define
a topology τ on X. Each point in X \ {0} has the usual (Euclidean)
neighborhoods. An open neighborhood U of 0 has the form

U = V \ {1/n : n ∈ N},

where V is a Euclidean open set containing 0 and N is the set of all
natural numbers. The space ⟨X, τ⟩ is not regular because the point 0 and
the closed set {1/n : n ∈ N} cannot be separated by disjoint open sets.
Let

A = {0} ∪ {1/n : n ∈ N}.
Then A is a closed discrete subset of X and is not countably compact.
It is easy to see that A = bd∗c(A). Let P be any forcing. To show that P
preserves a neighborhood base of A, take W ∈ τP such that A ⊆ W ; we
will find H ∈ Nτ (A) such that H ⊆ W . Take U ∈ τ such that 0 ∈ U ⊆ W .
Then U = V \{1/n : n ∈ N} for some Euclidean open set V in the ground
model which contains 0. Since {1/n : n ∈ N} ⊆ A ⊆ W , we have V ⊆ W .
Take k ∈ N such that for each i ≥ k, 1/i ∈ V . For each i < k, take a
Euclidean open set Oi in the ground model such that 1/i ∈ Oi ⊆ W . Let

H = V ∪ {Oi : i < κ}.

Then H ∈ Nτ (A) and H ⊆ W . Thus, P preserves a neighborhood base
of A. �

A space X is called countably tight if, whenever B ⊆ X and x ∈ B \B,
there is a countable set C ⊆ B such that x ∈ C. A space X is called locally
separable if every point in X is contained in a separable open set. It is not
difficult to prove that if a space X is countably tight or locally separable,
then bdc(A) = bd(A) for every subset A of X and so bd∗c(A) = bd∗(A) for
every A ⊆ X. Consequently, we have the following corollary to Theorem
2.4.

Corollary 2.7. Let ⟨X, τ⟩ be a countably tight regular space or a locally
separable regular space, and let A ⊆ X. Suppose that every ccc forcing
preserves a neighborhood base of A. Then

(1) bd∗(A) is scattered,
(2) bd∗(A) is countably compact, and
(3) if bd∗(A) is not compact, then it is not separable.
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We give an example of a subset A of a separable regular space such
that bd∗(A) is scattered, countably compact, and non-separable, yet a ccc
forcing destroys a neighborhood base of A. If CH holds, then the space
is first countable (so it is countably tight). This example shows that the
converse of Corollary 2.7 does not hold.

Example 2.8. There are a separable regular space ⟨X, τ⟩, a subset A of
X, and a ccc forcing P such that

(1) bd∗(A) is scattered,
(2) bd∗(A) is countably compact,
(3) bd∗(A) is not separable, and
(4) P destroys a neighborhood base of A.

If CH is assumed, then ⟨X, τ⟩ is first countable.

Proof. Let γ ′N be the space in [4, Problem 3.12.17(d)]. γ ′N is a com-
pactification of the set N of all natural numbers such that γ ′N \ N is
homeomorphic to δ + 1 for some ordinal δ of uncountable cofinality. Let

• X = γ ′N \ {δ} and
• A = X \ N.

The subspace A is homeomorphic to the ordinal δ, and so A = bd∗(A)
satisfies the conditions (1), (2), and (3).

Claim. For every H ∈ Nτ (A), X \H is finite.
Proof. Assume to the contrary that X \ H is infinite for some H ∈

Nτ (A). Since X \ H ⊆ N, X \ H consists of isolated points of γ ′N.
Since γ ′N is compact, X \ H has an accumulation point in γ ′N. The
only non-isolated point in γ ′N \ H is δ, and so a sequence formed by
an enumeration of X \H must converge to δ. However, as explained in
[4, Problem 3.12.17(d)], no sequence of points in N converges to δ in the
space γ ′N. Thus, X \H must be finite. ⊣ (Claim)

To prove condition (4), first note that X is a separable non-compact
regular space. By applying [7, Lemma 2.7], we can find a free filter F ⊆
[N]ω such that in VB(F) there is an infinite set E ⊆ N such that E is a
closed subset of X, where B(F) is as in Fact 1.6(2). Note that B(F) has
the ccc. Let W = X \ E; then W ∈ τB(F) and A ⊆ W . By the claim, for
every H ∈ Nτ (A), X \H is finite and so H * W . Thus, Nτ (A) is not a
neighborhood base of A in the space ⟨X, τB(F)⟩. If CH holds, then X is
first countable by [4, Problem 3.12.17(e)]. �

If we assume that a space is metrizable, then we have the following.

Corollary 2.9. Let ⟨X, τ⟩ be a metrizable space and let A ⊆ X. Then
the following are equivalent:
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(1) Every forcing preserves a neighborhood base of A.
(2) Every ccc forcing preserves a neighborhood base of A.
(3) bd∗(A) is scattered and compact.

Proof. (3) =⇒ (1) is proved in Theorem 2.2.
(1) =⇒ (2) is obvious.
(2) =⇒ (3) Note that metrizable spaces are countably tight, so by

Corollary 2.7, bd∗(A) is scattered and countably compact. In metrizable
spaces, countably compact sets are compact ([4, Theorem 4.1.17]). �

3. Collapsing ω1

In this section, we consider forcings that collapse ω1 and obtain the
converse of Theorem 2.2. To do so, we use the following two lemmas,
which say that “not scattered” and “not compact” are preserved by any
forcing.

Lemma 3.1. Let ⟨X, τ⟩ be a topological space and let P be a forcing. If
⟨X, τ⟩ is not scattered, then ⟨X, τP⟩ is not scattered either.

Proof. Suppose that ⟨X, τ⟩ is not scattered. Then there is a non-empty
subset B ⊆ X such that B does not contain an isolated point in the
relative topology of B; that is, for any b ∈ B and any U ∈ τ , U ∩B ̸= {b}.
By absoluteness, this property of the set B holds in VP as well. Therefore,
⟨X, τP⟩ is not scattered. �

Lemma 3.2. Let ⟨X, τ⟩ be a topological space and let P be a forcing. If
⟨X, τ⟩ is not compact, then ⟨X, τP⟩ is not compact either.

Proof. Assume that ⟨X, τ⟩ is not compact. Let U be an open cover of
⟨X, τ⟩ with no finite subcover. Then U is also an open cover of ⟨X, τP⟩
with no finite subcover. Thus, ⟨X, τP⟩ is not compact. �

Now let us prove the converse of Theorem 2.2.

Proposition 3.3. Let ⟨X, τ⟩ be a regular space and let A ⊆ X. Then the
following are equivalent:

(1) Every forcing preserves a neighborhood base of A.
(2) bd∗(A) is scattered and compact.

Proof. (2) =⇒ (1) is proved in Theorem 2.2.
Let us prove (1) =⇒ (2). Suppose that |X| = κ. Let P = Fn(ω, κ) as in

[9, VII, Definition 5.1]. If κ is an uncountable cardinal, then P collapses κ
to a countable ordinal ([9, VII, Lemma 5.2]). Therefore, X is a countable
space in VP, and so bd∗c(A) = bd∗(A) in VP. By the assumption, every
forcing preserves a neighborhood base of A. Therefore, for a P-name for
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any forcing Q̇, Nτ (A) remains a neighborhood base of A in VP∗Q̇. By
Theorem 2.4 applied in VP, bd∗(A) is scattered and countably compact
in VP. Since bd∗(A) is countable in VP, it is actually compact. Thus,
bd∗(A) is scattered and compact in VP. By Lemma 3.1, every forcing
preserves the property of being not scattered, and by Lemma 3.2, every
forcing preserves the property of being not compact. Therefore, bd∗(A)
must be scattered and compact in V. �

We give an example which shows that if we restrict ourselves to forcings
which preserve ω1, then (1) =⇒ (2) in the proof of Proposition 3.3 would
not hold.

Example 3.4. There are a topological space ⟨X, τ⟩ and a subset A of X
such that

(1) any forcing that preserves ω1 preserves a neighborhood base of A,
and

(2) bd∗(A) is not compact.

Proof. Let
• X = ω1 × (ω + 1) and
• A = ω1 × {ω}.

Let the topology τ on X be the usual product topology, and we consider
the order topology on ω1 and ω + 1. Clearly, A is not compact and
A = bd∗(A). Let P be a forcing which preserves ω1. To show that P
preserves a neighborhood base of A, take W ∈ τP such that A ⊆ W ; we
will find H ∈ Nτ (A) such that H ⊆ W .

Claim. The set {n ∈ ω : (∃ ξ ∈ ω1)[(ξ, n) ∈ X \W ]} is finite.
Proof. Let J = {n ∈ ω : (∃ ξ ∈ ω1)[(ξ, n) ∈ X \W ]}. Assume to the

contrary that J is infinite. For each n ∈ J , pick ξn such that (ξn, n) ∈
X \W . Since P preserves ω1, there is γ < ω1 such that {ξn : n ∈ J} ⊆ γ.
The product (γ + 1)× (ω + 1) is a scattered compact space in V, and so
it remains compact in VP ([8, Lemma 7]). Therefore, {(ξn, n) : n ∈ J}
has an accumulation point in (γ + 1) × (ω + 1), and the accumulation
point must be in A. This contradicts the fact that X \W is a closed set
containing {(ξn, n) : n ∈ J} and missing A. ⊣ (Claim)

By the claim, there is k ∈ ω such that X\W ⊆ {(ξ, n) : ξ ∈ ω1, n ≤ k}.
Let H = A ∪ {(ξ, n) : ξ ∈ ω1, n > k}. Then H ∈ Nτ (A) and H ⊆ W . �

Before concluding this note, let us ask a question. Proposition 3.3 says
that a necessary and sufficient condition for a neighborhood base of a set
A to be preserved by any forcing is that bd∗(A) is scattered and compact.
We do not know such a condition for ccc forcings. (Note that the converse
of Theorem 2.4 does not hold because of Example 2.8.)
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Question 3.5. What is a necessary and sufficient condition for a neigh-
borhood base of a subset of a regular space to be preserved by ccc forcings?
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