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SECOND COUNTABLE UC METRIC SPACES
ARE LEBESGUE IN ZF

KYRIAKOS KEREMEDIS

Abstract. We show in the Zermelo-Fraenkel set theory ZF that
(i) if X is second countable, then X is Lebesgue if and only if

it is UC space (: every continuous real valued function on X is
uniformly continuous) if and only if it is normal (: the distance
of every two disjoint, non-empty, closed subsets of X is strictly
positive);

(ii) X is Lebesgue if and only if every open cover U of X has a
refinement V = {B(x, δ) : x ∈ K} for some δ > 0 and some K ⊆ X
if and only if for every open cover U of X consisting of open balls
there exists ε > 0 and a subcover V of U such that for every V ∈ V,
δ(V ) > 2ε;

(iii) X is complete if and only if it is almost complete;
(iv) X is almost Cauchy if and only if every sequence in X

admits an almost Cauchy subsequence;
(v) every sequence (xn)n∈N in X has a Cauchy subsequence if

and only if each countable subspace of X is almost compact if and
only if each countable subspace of X is totally bounded;

(vi) X is sequentially compact if and only if each countable
subspace of X is almost compact and almost complete;

(vii) if each countable subspace of X is totally bounded, then
X is sequentially bounded.

1. Notation and Terminology

Let X = (X, d) be a metric space, x ∈ X, and ε > 0. B(x, ε) = {y ∈
X : d(x, y) < ε} denotes the open ball in X with center x and radius
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ε. Given B ⊆ X, δ(B) = sup{d(x, y) : x, y ∈ B} ∈ [0,∞) ∪ {+∞} will
denote the diameter of B.

X is said to be bounded if and only if δ(X) < +∞.
Let U be an open cover of X. We say that U has a Lebesgue number

δ > 0 if and only if, for every A ⊆ X with δ(A) < δ, there exists U ∈ U
with A ⊆ U .

Given ε > 0, a subset O of X is called ε-open if and only if, for every
x ∈ O, there is y ∈ O such that x ∈ B(y, ε) ⊆ O. The complement of an ε-
open set is called ε-closed. A subset D of X is called ε-dense if and only if,
for every x ∈ X, B(x, ε)∩D ̸= ∅. Equivalently, X =

∪
{B(d, ε) : d ∈ D}.

A finite ε-dense set D of X is called ε-net. A refinement of a cover U of X
is another cover V such that for every V ∈ V there is U ∈ U with V ⊆ U .

X is said to be Heine-Borel compact or compact if and only if every
open cover U of X has a finite subcover V.

X is said to be countably compact if and only if every countable open
cover U of X has a finite subcover V.

X is said to be Lebesgue (countably Lebesgue, respectively) if and only if
every open (every countably open, respectively) cover of X has a Lebesgue
number.

Given ε > 0, X is said to be ε-compact if and only if every open cover
U of X consisting of open balls of radius ε has a finite subcover V.

X is called almost compact if and only if for every ε > 0, X is ε-compact.
X is said to be almost Lebesgue if and only if, for every open cover U

of X, there exists a δ > 0 such that V = {B(x, δ) : x ∈ K} is a refinement
of U for some δ-dense subset K of X.

X is sequentially compact if and only if every sequence has a convergent
subsequence.

X is said to be totally bounded if and only if, for every ε > 0, there
exists an ε-net of X. Evidently, each totally bounded metric space is
bounded, but the converse is not true in general. For example, every
infinite set equipped with the discrete metric is bounded but not totally
bounded.

X is said to be sequentially bounded if and only if every sequence in X
admits a Cauchy subsequence.

X is said to be complete or Frechét complete if and only if every Cauchy
sequence of points of X converges to some element of X.

A sequence (xn)n∈N in X satisfying for each ε > 0 there exists F ∈
[N]<ω such that for every n ∈ N, there is m ∈ F with xn ∈ B(xm, ε) is
called almost Cauchy.

X is called almost Cauchy (almost complete, respectively) if and only
if each sequence in X is almost Cauchy (each almost Cauchy sequence in
X has a limit point, respectively).
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An infinite set X is said to be
• Dedekind-infinite, denoted by DI(X), if and only if X contains

a countably infinite subset. Otherwise, it is said to be Dedekind-
finite.
• Weakly Dedekind-infinite, denoted by WDI(X), if and only if
P(X) contains a countably infinite set. Otherwise, it is said to
be weakly Dedekind-finite.

By universal quantifying over X, DI(X) gives rise to the choice prin-
ciple IDI: For all X(X infinite → DI(X)), that is, “every infinite set
is Dedekind-infinite” ([6, Form 9]). One defines IWDI ([6, Form 82])
similarly.

Below we list some of the weak forms of the axiom of choice we shall
deal with in the sequel.

• CAC ([6, Form 8]): For every countable family A of non-empty
sets there exists a function f such that for all x ∈ A, f(x) ∈ x.
• CACfin ([6, Form 10]): CAC restricted to countable families of

non-empty finite sets. Equivalently, see [6, Form [10 O]], every
infinite well-ordered familyA of non empty finite sets has a partial
choice set, i.e., some infinite subfamily B of A with a choice set.
• PKW(ℵ0,≥ 2,∞) Partial Kinna-Wagner Principle ([6, Form 167]):

Every disjoint family A = {Ai : i ∈ ω} such that for all i ∈
ω, |Ai| ≥ 2 has a partial Kinna-Wagner choice; i.e., there ex-
ists an infinite subfamily B = {Aki

: i ∈ ω} of A and a family
F = {Fi : i ∈ ω} of non-empty sets such that for all i ∈ ω,
Fi ( Aki

.

2. Introduction and Some Preliminary
and Known Results

In this paper, the intended context for reasoning and statements of
theorems will be the Zermelo-Fraenkel set theory ZF unless otherwise
noted. In order to stress the fact that a result is proved in ZF (ZFC (=
ZF+AC), respectively), we shall write in the beginning of the statements
of the theorems and propositions (ZF) ((ZFC), respectively).

Some of the very basic notions in a course of metric spaces one en-
counters when compactness is studied are those of countable compact-
ness, sequential compactness, total boundedness, completeness, and the
Lebesgue number of an open cover. One invariably learns the following.

Proposition 2.1 ([12]). Let X = (X, d) be a metric space.
(a) (ZFC) The following are equivalent:

(i) X is compact.
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(ii) X is sequentially compact.
(iii) X is complete and totally bounded.
(iv) X is complete and sequentially bounded.
(v) X is countably compact.

(b) (ZF) X is sequentially compact if and only if it is complete and se-
quentially bounded.
(c) (ZF) X is compact if and only if it is totally bounded and Lebesgue.

Evidently, (i) of Proposition 2.1(a) implies each of the conditions (ii)–
(v). In addition, if one backtracks to the proofs of the equivalence of each
of (ii)–(v) with (i), then one will realize that some portion of AC is needed
to carry out the proofs. Likewise, a portion of AC is needed for some of
the implications p → q, where p and q denote the properties given in
(ii)–(v). The following diagram lists the implications which hold in ZF.

Compact

↕
totally bounded
and Lebesgue

↓
complete and
totally bounded

↓
complete and
sequentially bounded

↕
sequentially compact

Diagram 1

The given implications in Diagram 1 cannot be reversed in ZF. Coun-
terexamples are supplied in [9], [7], and [8].

The most useful of all characterizations of compactness given in Propo-
sition 2.1 has proven to be sequential compactness. We stress the fact,
see e.g., Diagram 1, that sequential compactness is the weakest equivalent
of all. However, the real equivalent of compactness is the conjunction of
totally bounded with Lebesgue in the sense that it is choice free. In view
of the latter equivalence, one may ask if there are other similar properties
equivalent to compactness in ZF. In the next theorem we observe that the
conjunction almost compact and almost Lebesgue is a pair of such prop-
erties. This justifies the initiation of these two notions. First, we give a
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characterization of almost compactness which points to compactness if we
read “open cover” as “ε-dense” and “subcover” as “finite ε-dense subset.”
We call attention here to the fact that almost compactness in this project
refers solely to metric spaces and should not be confused with the notion
of almost compact (= every open cover has a finite subset with a dense
union in the space) in general topology.

Proposition 2.2 (ZF). A metric space X = (X, d) is almost compact if
and only if for every ε > 0, every ε-dense subset of X has a finite ε-dense
subset.

Proof. (→) Fix ε > 0 and let K be an ε-dense subset K of X. Then
U = {B(k, ε) : k ∈ K} is an open cover of X. By our hypothesis, U has a
finite subcover; i.e., there exists ki ∈ K, i ≤ n such that X =

∪
{B(ki, ε) :

i ≤ n}. It follows that S = {ki : i ≤ n} ⊆ K is an ε-dense subset of X.
(←) Fix ε > 0 and let U = {B(x, ε) : x ∈ K} be a cover of X. Clearly,

for every y ∈ X\K there exists x ∈ K with y ∈ B(x, ε). Hence, d(x, y) <
ε and K is an ε-dense subset of X. By our hypothesis, there exists a finite
ε-dense set S = {ki : i ≤ n} ⊆ K of X. Since X =

∪
{B(ki, ε) : i ≤ n}, it

follows that {B(ki, ε) : i ≤ n} is a finite subcover of U and X is ε-compact
as required. �

Theorem 2.3 (ZF). A metric space X = (X, d) is compact if and only if
it is almost compact and almost Lebesgue.

Proof. (→) This is obvious.
(←) Fix U an open cover of X and let, by our hypothesis, V = {B(x, δ) :

x ∈ K} be a refinement of U for some δ > 0 and some K ⊆ X. By the
almost compactness of X, it follows that V has a finite subcover W =
{B(xi, δ) : i ≤ n}. For every i ≤ n, fix Ui ∈ U such that B(xi, δ) ⊆ Ui.
Clearly, {Ui : i ≤ n} is a finite subcover of U and X is compact as
required. �

Compact metric spaces possess a kind of “bridge” which allows the pas-
sage from “infinite” to “finite.” This bridge seems to be inconspicuous in
the definition of sequential compactness, but it is apparent in the propo-
sition that “every sequence is almost Cauchy.” This is the reason for the
introduction of the notion of the almost Cauchy sequence which we shall
study in §5. We show in Theorem 5.2 that a metric space is almost Cauchy
if and only if each of its sequences admits an almost Cauchy subsequence.

The following two propositions list some results from [8] and [9].

Proposition 2.4 ([8]). (i) Proposition 2.1(a) holds true in (ZF +
CAC);
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(ii) the statement “every sequentially compact metric space is com-
pact” implies IDI.

Proposition 2.5 ([9]). (i) (ZF) Every countably compact metric
space is Lebesgue;

(ii) (ZF) every totally bounded metric space is sequentially bounded;
(iii) (ZF + CAC) every sequentially bounded metric space is totally

bounded and separable;
(iv) the statement “every sequentially bounded metric space is totally

bounded” implies IDI.

The notion of countably Lebesgue was initiated in [9] where the fol-
lowing result has been established.

Theorem 2.6 ([9]). (a) (ZF) Let X = (X, d) be a metric space. Each
one of the following statements implies the one beneath it.

(i) X is Lebesgue.
(ii) X is countably Lebesgue.
(iii) Every continuous real valued function on X is uniformly contin-

uous.
(iv) The distance of every two disjoint, non-empty closed subsets of X

is strictly positive.
(b) (ZF+ CAC) (i)–(iv) of (a) are equivalent.
(c) The statement, “every countably Lebesgue metric space is Lebesgue”
implies PKW(ℵ0,≥ 2,∞).

Spaces satisfying Theorem 2.6(iii) were initiated by Masahiko Atsuji
in [1]. In the survey article [10] and in [2] and [3], they are called Atsuji
spaces, but in [4], they are called UC spaces. Spaces satisfying Theorem
2.6(iv) were initiated in [11] where they are called normal metric spaces,
but in [13] and [15], they are called Lebesgue. Theorem 2.6(b) indicates
that all these notions are equivalent in ZF + CAC, and Theorem 2.6(c)
shows that the equivalencies cannot be proved in ZF. In Theorem 4.5 we
show that if we restrict to the class of second countable metric spaces and,
in particular, to subspaces of the real line R, then CAC is not needed. In
[9], it is asked if the existence of a normal metric space X = (X, d), which
fails to be a UC space, is consistent with ZF . Hence, if the answer is in
the affirmative, then the space X cannot be second countable.

We give the following theorem here for future reference.

Theorem 2.7 ([14]). (ZF + CAC) Let X = (X, d) be a totally bounded
metric space. Then X is second countable and separable.

The rest of the paper is organized as follows. In §3 we scrutinize the
properties of almost compact metric spaces and study the almost complete
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metric spaces. We show in Corollary 3.5 that a metric space is complete
if and only if it is almost complete. In §4 we study the almost Lebesgue
metric spaces. We show in Theorem 4.2 that a metric space is Lebesgue
if and only if it is almost Lebesgue. Finally, in §5 we study sequentially
bounded metric spaces. We show in Theorem 5.2 that a metric space is
sequentially bounded if and only if it is almost Cauchy and conclude in
Corollary 5.3 that a metric space is sequentially compact if and only if it
is almost Cauchy and almost complete.

3. Almost Compact and Almost Complete
Metric Spaces

The notions of precompact and almost compact metric spaces look
alike and one may be deceived by this similarity and think that they
are equivalent. In the first result in this section we summarize some
properties of almost compact metric spaces and show that precompact ̸=
almost compact.

Proposition 3.1. Let X = (X, d) be a metric space. Then
(i) if X is ε-compact, then every ε -closed subset of X is ε-compact,

but closed subspaces of ε-compact need not be ε-compact;
(ii) X is ε-compact if and only if every ε-dense subset of X has a

finite ε-dense subset;
(iii) if X is almost compact, then X is totally bounded. The converse

fails;
(iv) if X is almost compact, then X is almost Cauchy;
(v) X is precompact if and only if X is totally bounded;
(vi) CAC implies every almost compact metric space is separable;
(vii) if X is compact, then X is almost compact. The converse fails;
(viii) almost compact subsets of X need not be closed;
(ix) subspaces of compact metric spaces need not be almost compact;
(x) precompact metric spaces are almost Cauchy;
(xi) almost Cauchy metric spaces need not be almost compact;
(xii) almost Cauchy metric spaces need not be sequentially compact.

Proof. (i) The first part is straightforward and it is left as a warm up
exercise for the reader.

To see the second part, let X = {0}∪(1/6, 1] carry the usual metric and
ε = 1/5. We claim that X is ε-compact. Indeed, let U = {B(k, ε) : k ∈
K ⊆ X} be a cover of X. Then 0 ∈ B(k1, ε) for some k1 ∈ K. Clearly,
B(k1, ε)∩ (1/6, 1] ̸= ∅ and B = (1/6, 1]\B(k1, ε) is some closed subset of
(1/6, 1]. Since B is compact and U covers B, it follows that there exist
k2, k3, ..., kn ∈ K and n ∈ N such that B ⊆

∪
{B(ki, ε) : i = 2, ..., n}.
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Hence, X =
∪
{B(ki, ε) : i = 1, ..., n} and X is ε-compact as required. On

the other hand, the closed subspace (1/6, 1] of X is not ε-compact as the
open cover V = {B(k, ε) : k ∈ (11/30, 1]} has no finite subcover.

(ii) This follows at once from Proposition 2.2.
(iii) The first part is obvious. For the second assertion, let (0, 1] be

the subspace of R taken with the usual metric. Clearly, (0, 1] is totally
bounded. However, for every ε > 0,

Uε = {B(x, ε) : x ∈ (ε, 1)}

is an open cover of (0, 1] consisting of open balls of radius ε without a
finite subcover. Thus, (0, 1] is totally bounded but not almost compact.

(iv) Fix (xn)n∈N a sequence in X and let ε > 0. By our hypothesis,
there exists an ε/2-dense subset A = {ai : i ≤ k} of X. Without loss
of generality, we may assume that for every i ≤ k, B(ai, ε/2) contains at
least one term of (xn)n∈N. Fix for every i ≤ k, xni

∈ B(ai, ε/2). It is
straightforward to verify that for every n ∈ N, there is i ≤ k such that
xn ∈ B(xni , ε), meaning that (xn)n∈N is almost Cauchy.

(v) This is easy.
(vi) Combine (iii) with Theorem 2.7.
(vii) The first part is straightforward. To see the second part, let

Y = {1/n : n ∈ N} carry the usual metric. Clearly, Y is not complete.
However, the sequence (1/n)n∈N being convergent is Cauchy. Hence, for
every k ∈ N, there is n0 ∈ N such that for all n ≥ n0, 1/n ∈ B(1/n0, 1/k).
Thus, there are only finitely many members of Y left out of B(1/n0, 1/k).
So, we need finitely many open balls of radius 1/k to cover Y . Thus, Y
is almost compact but not complete, hence not compact also.

(viii) Observe that the subspace Y = {1/n : n ∈ N} of R with the
usual metric is almost compact and almost Cauchy but not closed and
sequentially compact.

(ix) and (xii) In view of the proof of (iii), the subspace (0, 1] of the
compact space [0, 1] with the usual metric fails to be almost compact.

(x) This can be proved as in (iii).
(xi) By (ix), the subspace (0, 1] of R is not almost compact. However,

in view of (x), being totally bounded, it is almost Cauchy. �

Remark 3.2. (i) We remark here that the open cover U = {{1/n} : n ∈
N} of the metric space Y given in the proof of Proposition 3.1(vii) has no
Lebesgue number. To see this, fix δ > 0 and let n0 ∈ N satisfy 2/n0 < δ.
Clearly, B(1/n0, 1/n0) = {1/n : n ≥ n0} has diameter less that δ, but it
is included in no member of U . Thus, U has no Lebesgue number. Hence,
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Y is almost compact but not Lebesgue. Clearly, Y can be replaced by
the range of any non-convergent, one-to-one Cauchy sequence.

(ii) A Lebesgue metric space need not be totally bounded. Indeed, any
infinite set with the discrete metric is trivially Lebesgue but not totally
bounded.

(iii) A totally bounded metric space need not be countably Lebesgue.
Indeed, the subspace (0, 1) of R is totally bounded but not countably
Lebesgue. Indeed, U = {Un : n ∈ N} where, for every n ∈ N, Un

= (1/n, 1) is an open cover of (0, 1) without a Lebesgue number. (For
every δ > 0, (0, δ) is a set of diameter δ, and it is not included in some
member of U .)

Our next result shows that a subsequence of an almost Cauchy sequence
is almost Cauchy.

Proposition 3.3. Let X = (X, d) be a metric space and (xn)n∈N be an
almost Cauchy sequence in X. Then every subsequence of (xn)n∈N is
almost Cauchy.

Proof. Fix an almost Cauchy sequence (xn)n∈N in X and let (xkn
)n∈N

be a subsequence of (xn)n∈N. Since (xn)n∈N is almost Cauchy, it follows
that for every ε > 0 there exists G ∈ [N]<ω such that for all n ∈ N, xn ∈∪
{B(xv, ε/2) : v ∈ G}. For every v ∈ G with B(xv, ε/2) containing terms

of (xkn)n∈N, fix nv ∈ N such that xknv
∈ B(xv, ε/2). It is straightforward

to see that for all n ∈ N, xkn ∈
∪
{B(xknv

, ε) : v ∈ G}, meaning that
(xkn)n∈N is almost Cauchy. �
Theorem 3.4. Let X = (X, d) be a metric space and (xn)n∈N be an
almost Cauchy sequence in X. Then (xn)n∈N has a Cauchy subsequence.

Proof. Fix an almost Cauchy sequence (xn)n∈N of points of X. If some
term of (xn)n∈N repeats infinitely often, then (xn)n∈N has a constant
subsequence and the conclusion follows. So, without loss of generality,
we may assume that (xn)n∈N is one-to-one. For our convenience, for the
rest of the proof we shall identify subsequences of (xn)n∈N with their
range. Let Y0 = (xn)n∈N. Clearly, the set W = [Y0]

<ω of all finite subsets
of Y0 is well orderable. Via a straightforward induction, we construct a
Cauchy subsequence (xkn)n∈N of (xn)n∈N and a family of almost Cauchy
subsequences {Yn : n ∈ N} of (xn)n∈N such that for all n ∈ N, Yn is a
subsequence of Yn−1, the diameter of Yn is less than 1/n, and xkn ∈ Yn

as follows:
For n = 1, we observe, in view of our hypothesis, that Y0 can be covered

by finitely many open balls of radius 1/2. Let F1 be the first element of
W such that ∪

{B(x, 1/2) : x ∈ F1} ⊇ Y0.
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Since Y0 is infinite, it follows that for some m ∈ N, xm ∈ F1, and infinitely
many terms of (xn)n∈N are included in B(xm, 1/2). Let k1 be the first
such m ∈ N and put Y1 = B(xk1 , 1) ∩ Y0. By Proposition 3.3, Y1 is an
almost Cauchy subsequence of Y0.

Assume that k1 < k2 < ... < kn have been constructed subject to our
induction hypotheses. Since Yn is an almost Cauchy sequence, it follows
that Un = Yn\{xi : i ≤ kn} is also an almost Cauchy sequence. Thus, Un

can be covered by finitely many open balls of radius 1/2(n+1). Let Fn+1

be the first element of W such that∪
{B(x, 1/2(n+ 1)) : x ∈ Fn+1} ⊇ Un.

Since Un is infinite, it follows that for some m ∈ N, xm ∈ F , and
B(xm, 1/2(n + 1)) includes infinitely many terms of Un. Let kn+1 be
the first such m ∈ N and put Yn+1 = B(xkn+1 , 1/2(n+ 1)) ∩ Yn. Clearly,
kn+1 > kn, and by Proposition 3.3, Yn+1 is an almost Cauchy sequence
in X having diameter less than 1/n, terminating the induction.

To see that (xkn)n∈N is a Cauchy sequence, fix ε > 0 and let n0 ∈ N
satisfy 1/n0 < ε. Clearly, for every n,m ≥ n0, xkn , xkm ∈ Yn0 , meaning
that d(xkn , xkm) < 1/n0 < ε. �

Corollary 3.5. A metric space X = (X, d) is complete if and only if it
is almost complete.

Proof. (→) Fix an almost Cauchy sequence (xn)n∈N in X. By Theorem
3.4, (xn)n∈N has a Cauchy subsequence (xkn)n∈N, and by the completeness
of X, (xkn)n∈N converges to some point x ∈ X. Thus, x is a limit point
of (xn)n∈N and X is almost complete as required.

(←) Fix a Cauchy sequence (xn)n∈N in X. Clearly, (xn)n∈N is almost
Cauchy. Hence, by our hypothesis, some subsequence (xkn)n∈N of (xn)n∈N
converges to some point x ∈ X. Since (xn)n∈N is a Cauchy sequence, it
follows that (xn)n∈N converges to x. Thus, X is complete as required. �

By propositions 3.1 and 2.1, it follows in ZFC that
• every complete and almost compact metric space is compact.

Similarly, in ZFC,
• every sequentially compact metric space is almost compact and,
• every countably compact metric space is almost compact.

We show next that none of the above mentioned propositions holds in
ZF.

Theorem 3.6. (i) The statement, “Every complete and almost com-
pact metric space is countably compact” implies CACfin.
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(ii) The statement, “Every sequentially compact metric space is almost
compact” implies IDI.

(iii) The statement, “Every countably compact metric space is almost
compact” implies IWDI.

Proof. (i) Assume the contrary and let A = {Xn : n ∈ N} be a disjoint
family of finite non-empty sets such that no infinite subfamily of {Xn :
n ∈ N} has a choice set. Consider the following metric d on Y =

∪
{Xn :

n ∈ N} given by

(3.1) d(x, y) =

{
0, if x = y,

max{1/n, 1/m}, if x ∈ Xn and y ∈ Xm.

Claim 1. Y is complete.

Proof. Fix (xn)n∈N a Cauchy sequence in Y. Since A has no partial
choice, it follows that {n ∈ N : xm ∈ Xn for some m ∈ N} is finite
(otherwise, a partial choice set for A can be defined). Hence, there exists
n0 ∈ N such that Xn0 includes infinitely many terms of (xn)n∈N. Since
Xn0 is finite, it follows that for some x ∈ Xn0 , infinitely many terms
of (xn)n∈N equal x. Hence, (xn)n∈N has a convergent subsequence to x.
Thus, limn→∞xn = x ((xn)n∈N is Cauchy) and Y is complete, finishing
the proof of Claim 1.

Claim 2. Y is almost compact.

Proof. Fix n ∈ N and let U = {B(x, 1/n) : x ∈ X ⊆ Y } be an open
cover of Y. Let k ≥ n be such that Xk ∩X ̸= ∅ (if X ⊆

∪
{Xi : i ∈ n},

then
∪
U ⊆

∪
{Xi : i ∈ n} and U is not a cover of Y ) and fix x ∈ Xk ∩X.

Clearly,
∪
{Xi : i > k} ⊆ B(x, 1/n). Since

∪
{Xi : i ≤ k} is finite, it

follows that finitely many members of U are needed to cover
∪
{Xi : i ≤

k}. Hence, U has a finite subcover and Y is weakly bounded, finishing
the proof of Claim 2.

By our hypothesis and claims 1 and 2, Y is countably compact. How-
ever, since the metric d produces the discrete topology on Y (for every
n ∈ N and x ∈ Xn, B(x, 1/n+1) = {x}), it follows that A is a countable
open cover of Y having no finite subcover. Thus, Y is not countably
compact and this leads to a contradiction.

(ii) and (iii) Assume the contrary and fix a Dedekind-finite set X
(weakly Dedekind-finite set X, respectively). Clearly, X with the dis-
crete metric is sequentially compact (countably compact, respectively).
Since the open cover U = {B(x, 1) : x ∈ X} = {{x} : x ∈ X} of X has no
finite subcover, it follows that X is not almost compact and this leads to
a contradiction. �
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4. Lebesgue Metric Spaces

Theorem 4.1 (ZF). Every countably Lebesgue metric space is complete.

Proof. Let X = (X, d) be a countably Lebesgue metric space. We show
that X is complete. Assume the contrary and fix a non-convergent Cauchy
sequence (xn)n∈N in X. For every n ∈ N, let An = {xm : m ≥ n}. We
observe that each An is a closed subset of X and

∩
{An : n ∈ N} = ∅

because otherwise (xn)n∈N will converge to some point in X. It follows
that U = {Ac

n : n ∈ N} is a countable open cover of X. Thus, by our
hypothesis, U has a Lebesgue number δ > 0. Since (xn)n∈N is Cauchy, it
follows that there exists n0 ∈ N such that for all n,m ≥ n0, d(xn, xm) <
δ/2. Hence, δ(An0) < δ and, consequently, An0 ⊆ Ac

k = {xm : m <
k} for some k ∈ N. This is a contradiction, finishing the proof of the
theorem. �

Next we show that Lebesgue = almost Lebesgue in ZF.

Theorem 4.2 (ZF). Let X = (X, d) be a metric space. Then X is
Lebesgue if and only if it is almost Lebesgue.

Proof. (i) (→) Fix an open cover U of X, and by our hypothesis, let
2δ > 0 be a Lebesgue number for U . Then V = {B(x, δ) : x ∈ X} is a
refinement of U and X is almost Lebesgue.

(←) Fix an open cover U of X, and let W = {B(x, εx/6) : x ∈ X},
where for every x ∈ X,

(4.1) εx = sup{t > 0 : B(x, t) ⊆ U for some U ∈ U}.
By replacing U if necessary with an open refinement of sets of diameter
< 1, we may assume that for every x ∈ X, εx ∈ R. Clearly, W is an
open cover of X. By our hypothesis, let V = {B(x, δ) : x ∈ K ⊆ X}
be a refinement of W for some δ > 0. We claim that δ is a Lebesgue
number for U . To see this, fix y ∈ X. We show that B(y, δ) ⊆ U for some
U ∈ U . Fix x ∈ K ∩ B(y, δ). Since V is a refinement of W, it follows
that B(x, δ) ⊆ B(s, εs/6) ⊆ B(s, εs) ⊆ U for some s ∈ X and U ∈ U . Fix
p ∈ B(y, δ). We have

d(p, s) ≤ d(p, y) + d(y, x) + d(x, s) < 2δ + εs/6

≤ 2εs/6 + εs/6 = εs/2 < εs.
(4.2)

Hence, B(y, δ) ⊆ B(s, εs) ⊆ U and δ is a Lebesgue number for U as
required. �

Clearly, a metric space X = (X, d) is compact if and only if for every
basic open cover U = {B(xi, εi) : i ∈ I, xi ∈ X, εi > 0} of X there
exists i0, i1, ..., in ∈ I such that V = {B(xij , εij ) : j ≤ n} is a cover of
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X. Clearly, ε = min{εij : j ≤ n} > 0. Hence, the proof of the next
proposition is complete.

Proposition 4.3. A metric space X = (X, d) is compact if and only if
for every basic open cover U of X there exists ε > 0 and a finite subcover
V of U such that for every V ∈ V, δ(V ) > 2ε.

Next we show that if in Proposition 4.3 we drop the requirement that
the subcover V of U be finite, then the resulting theorem characterizes
the Lebesgue metric spaces.

Theorem 4.4. A metric space X = (X, d) is Lebesgue if and only if for
every basic open cover U of X, there exists ε > 0 and a subcover V of U
such that for every V ∈ V, δ(V ) > 2ε.

Proof. (→) Fix an open cover U of X consisting of open balls. By our
hypothesis and Theorem 4.2, there exists δ > 0 and a δ-dense subset K of
X such that W = {B(x, δ) : x ∈ K} is a refinement of U . Clearly, ε = δ
and V = {U ∈ U : B(x, δ) ⊆ U for some x ∈ K} satisfy for every V ∈ V,
δ(V ) > 2ε.

(←) Fix an open cover U of X, and let W = {B(x, εx/6) : x ∈ X},
where for every x ∈ X, εx is given by (4.1). Let δ > 0, and let V ⊆ W be
a subcover of U such that for every V ∈ V, δ(V ) > 2δ. We claim that δ
is a Lebesgue number for the cover U . To see this, fix y ∈ X. We show
that B(y, δ) ⊆ U for some U ∈ U . Fix V ∈ V with y ∈ V = B(x, εx/6)
for some x ∈ X. Clearly, there exists U ∈ U such that

(4.3) V ⊆ B(x, 5εx/6) ⊆ U .

For every p ∈ B(y, δ), we have

(4.4) d(p, x) ≤ d(p, y) + d(y, x) < δ + εx/6.

Since εx/3 = δ(V ) > 2δ, we get that δ < εx/6. Hence, from the latter
inequality and (4.4), it follows that d(p, x) < εx/3. Therefore, B(y, δ) ⊆
B(x, εx/3) and, in view of (4.3), it follows that B(y, δ) ⊆ B(x, εx/3) ⊆
B(x, 5εx/6) ⊆ U . Thus, δ is a Lebesgue number for U as required. �

Our next result shows that if we restrict to second countable metric
spaces, then Lebesgue = almost Lebesgue = countably Lebesgue = UC
= normal. In particular, the latter notions are equivalent for subspaces
of the real line.

Theorem 4.5 (ZF). Let X = (X, d) be a second countable metric space.
Then the following are equivalent:

(i) X is Lebesgue;
(ii) X is countably Lebesgue;
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(iii) every countable open cover U of X has a refinement V = {B(x, δ) :
x ∈ K ⊆ X} for some δ > 0;

(iv) every continuous real valued function on X is uniformly continu-
ous;

(v) X is normal.

Proof. Fix a countable base B = {Bn : n ∈ N} for X.
(i) → (ii) and (ii) → (iii) These are straightforward.
(ii) → (i) Fix an open cover U of X. Clearly, W = {B ∈ B : B ⊆ U

for some U ∈ U} is a countable open refinement of U . Hence, by our
hypothesis, W has a Lebesgue number δ > 0. It is straightforward to see
that δ is a Lebesgue number for U and X is Lebesgue as required.

(iii)→ (i) Fix an open cover U of X. For every x ∈ X, let εx be given by
(4.1) and let Bx be the first member of B such that x ∈ Bx ⊆ B(x, εx/6).
Clearly, W = {Bx : x ∈ X} is a countable open cover of X. By our
hypothesis, let V = {B(x, δ) : x ∈ K ⊆ X} be a refinement for the cover
W for some δ > 0. We show that for every y ∈ X, there is a U ∈ U
such that B(y, δ) ⊆ U . Fix x ∈ K ∩ B(y, δ). Since V is a refinement of
W, it follows that there exists s ∈ X with B(x, δ) ⊆ Bs ⊆ B(s, εs/6) ⊆
B(s, εs) ⊆ U for some U ∈ U . Using (4.2) we can show that B(y, δ) ⊆ U .
Thus, δ is a Lebesgue number of U and X is Lebesgue.

(i) → (iv) → (v) This follows from Theorem 2.6.
(v) → (i) Assume, aiming for a contradiction, that X is not Lebesgue

and let U be an open cover of X without a Lebesgue number. Clearly, for
every n ∈ N, the set

An = {x ∈ X : ∀U ∈ U , B(x, 1/n) " U}
is non-empty. Let K =

∩
{An : n ∈ N}.

Claim. K = ∅.
Proof. Assume the contrary and fix x ∈ K. Since U is a cover of

X, it follows that x ∈ U for some U ∈ U . Since U is open, we see that
B(x, 1/n) ⊆ U for some n ∈ N. Since x ∈ A2n, it follows that B(x, 1/2n)∩
A2n ̸= ∅. Fix z ∈ B(x, 1/2n) ∩ A2n. We claim that B(z, 1/2n) ⊆
B(x, 1/n) ⊆ U . Indeed, if y ∈ B(z, 1/2n), then by the triangle inequality,
we have d(x, y) ≤ d(x, z) + d(z, y) < 1/2n + 1/2n = 1/n, meaning that
y ∈ B(x, 1/n). Thus, z /∈ A2n, and we have arrived at a contradiction.

By the claim, the family A = {An : n ∈ N} has an infinite strictly
decreasing subfamily C. Without loss of generality, we may assume that
A = C. For every n ∈ N, put Yn = An\An+1. It is easy to see that for
every n ∈ N,

(4.5) An\An+1 ̸= ∅.
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Clearly, for every subspace Y of X, the restriction BY of the base B to Y,
i.e., BY = {Bn ∩ Y : n ∈ N}, is a countable base for Y. Hence, the well
ordering of B can be used to define a well ordering on BY . In the sequel
we shall assume that whenever a subspace Y of X is given, a well ordering
of BY is also given. Since {{x} : x ∈Iso(Y )} ⊆ BY , we can assume that a
well ordering of Iso(Y ) is also given. We consider the following two cases.

Case 1. ∀∞n ∈ N (for all but finitely many n ∈ N), Yn is discrete. For our
convenience, we assume that for all n ∈ N, Yn is discrete. In this case, for
every n ∈ N, Yn =Iso(Yn). Hence, A1 =

∪
{Yn : n ∈ N}, being a countable

union of countable sets is countable. Fix an enumeration {ai : i ∈ ω} of
A1 and for every n ∈ N, let, by (4.5), xn ∈ An\ An+1 and

Ln = B(xn, 1/n) ∩A1\{xn}.
We consider the following subcases.
Case 1.1. ∃∞n ∈ N (there are infinitely many n ∈ N), such that

Ln ̸= ∅. Let k1 = min{m ∈ N : Lm ̸= ∅}, and for n = v + 1, let
kn = min{m ∈ N : m > kv and Lm ̸= ∅}. For our convenience, assume
that for every n ∈ N, kn = n. For every n ∈ N, let yn be the first member
of A1 which lies in Ln. We claim that (yn)n∈N has no limit point. Indeed,
if y is a limit point of (yn)n∈N, then it can be easily seen that y is also a
limit point of (xn)n∈N. Hence, y ∈ K ̸= ∅, and this is a contradiction.

We construct, via an easy induction, two disjoint closed sets H = {xkn :
n ∈ N} and F = {ykn : n ∈ N} of X with d(H,F ) = 0 contradicting the
fact that X is normal.

For n = 1, let k1 = 1.
For n = v + 1, we let

kn = min{m ∈ N : ym /∈ {yki , xki : i ≤ v}}.
Since no term of (yn)n∈N repeats infinitely often and {yki , xki : i ≤ v} is
a finite set, it follows that kn is well defined, terminating the induction.

It is straightforward to verify H and F are closed and disjoint. Since
for every n ∈ N, limn→∞d(ykn , xkn) = 0, it follows that d(H,F ) = 0.
Hence, H and F are as required.

Case 1.2. ∀∞n ∈ N, Ln = ∅. For our convenience, we assume that
for all n ∈ N, Ln = ∅. We construct inductively a disjointed sequence
(Cn)n∈N of closed sets of X such that for every n ∈ N, 0 < d(xn, Cn) < 2/n

and Cn is contained in A1
c
.

For n = 1, we observe that B(x1, 1)∩A1
c ̸= ∅. If not, then B(x1, 1) =

{x1}, and since U is an open cover of X, x1 ∈ U for some U ∈ U , meaning
that x1 /∈ A1, and this leads to a contradiction. Let B be the first member
of B such that B ⊆ B(x1, 1) ∩ A1

c
, B ⊆ B(x, r) for some x ∈ B , and

0 < r < 1/2, and put C1 = B.
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For n = v+1, as in the n = 1 case, B(xn, 1/n)∩A1
c ̸= ∅. Let B be the

first member of B such that B ⊆ B(xn, 1/n) ∩A1
c
, B ⊆ B(x, r) for some

x ∈ B , and 0 < r < 1/2n, and put Cn = B. Clearly, 0 < d(xn, Cn) <
2/n, terminating the induction.

We claim that the disjoint sets H = {xn : n ∈ N} and F =
∪
{Cn : n ∈

N} are closed. That H is closed is evident. (If x is a limit point of H,
then x ∈ K, contradicting the fact that K = ∅). To see that F is closed,
we assume the contrary and fix x ∈ F\F . Clearly, every neighborhood
V of x meets infinitely many members of {Cn : n ∈ N}. If not, then
x ∈ Cn ⊆ F , and this leads to a contradiction.

Let ε > 0 and pick n0 ∈ N with 1/n0 < ε/8. Let m > n0 such
that Cm ∩ B(x, ε/4) ̸= ∅. Fix y ∈ Cm ∩ B(x, ε/4) and t ∈ Cm with
d(xm, t) < 2/m+ ε/8. We have

d(xm, x) < d(xm, t) + d(t, y) + d(x, y) < 2/m+ ε/8 + 1/m+ ε/4

= 3/m+ 3ε/8 < 6ε/8 < ε.
Hence, xm ∈ B(x, ε) for all m > n0 such that Cm ∩B(x, ε/4) ̸= ∅. Since
there are infinitely many such m ∈ N, it follows that x is a limit point of
H and this leads to a contradiction. Hence, F is closed as required.

Since F and H are non-empty closed disjoint subsets of X with d(F,H)
= 0, it follows that X is not normal and this leads to a contradiction.
Hence, Case 1.2 and, consequently, Case 1, cannot be the case.

Case 2. ∃∞n ∈ N, Yn has a limit point. Fix a strictly increasing sequence
of natural numbers (kn)n∈N such that ∀∞n ∈ N, Ykn has a limit point.
Fix for every n ∈ N a limit point an of Ykn and a point bn ∈ B(an, 1/kn)∩
Ykn\{an}. Since Ykn ∩ Ykm = ∅ for all m,n ∈ N where m ̸= n, it follows
that the sets H = {an : n ∈ N} and F = {bn : n ∈ N} are non-empty
and disjoint. Arguing as in Case 1, we can show that they are also closed
subsets of X. Clearly, d(H,F ) = 0, meaning that X is not normal, and
this leads to a contradiction. So, Case 2 cannot be the case.

Cases 1 and 2 lead to a contradiction. Thus, X is Lebesgue and the
proof of the theorem is complete. �
Remark 4.6. (i) We remark here that if X = (X, d) is a separable metric
space, then X is second countable. Hence, the conclusion of Theorem 4.5
holds true for separable metric spaces.

(ii) Clearly, the assumption that X is second countable is not needed
for the proof of (i) → (ii) in Theorem 4.5. However, in view of Theorem
2.6, second countability is needed for the proof of the converse. Also,
second countability is not needed for the proof of (ii) → (iii). We do not
know whether, in ZF or in ZFC, second countability is needed for the proof
of (iii) → (ii) of Theorem 4.5.
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(iii) We observe, in view of Theorem 2.6(a) and Theorem 4.5, that if
X is countably Lebesgue but not Lebesgue, then X cannot be second
countable, hence separable also.

Theorem 4.7 (ZF). Let X = (X, d) be a separable metric space. Then,
for every countable open cover U of X, there exists δ > 0 and a subset K
of X such that V = {B(x, δ) : x ∈ K} is a refinement of U if and only if
for every countable open cover U of X, there exists δ > 0 and a countable
subset H of X such that V = {B(x, δ) : x ∈ H} is a refinement of U .

Proof. Fix D = {dn : n ∈ N} a countable dense subset of X.
(←) This is straightforward.
(→) Fix U a countable open cover of X. By our hypothesis and

Theorem 4.5, U has a Lebesgue number 4δ for some δ > 0. Clearly,
V = {B(x, 2δ) : x ∈ X} is a refinement of U .

For every x ∈ X, let nx = min{n ∈ N : dn ∈ B(x, δ)}. It is easy
to see that x ∈ B(dnx , δ) ⊆ B(x, 2δ) ⊆ U for some U ∈ U . Hence,
W = {B(dnx , δ) : x ∈ X} is a countable refinement of U . �

Corollary 4.8 (ZF). Let X = (X, d) be a metric space. The following
are equivalent.

(i) X is compact.
(ii) X is Lebesgue and totally bounded.
(iii) X is almost compact and countably compact.
(iv) X is almost compact and almost Lebesgue.

Proof. (i) ↔ (ii) Proposition 2.1.
(i) → (iii), (iv) → (ii), and (i) → (iv) are straightforward.
(iii) → (ii) This follows from Theorem 4.2 and Proposition 3.1. �

5. Sequentially Bounded and Almost Cauchy
Metric Spaces

Our first result in this section is straightforward and the proof is left
for the reader as an easy exercise.

Theorem 5.1 (ZF). Let X = (X, d) be a metric space. The following are
equivalent.

(i) X is almost Cauchy.
(ii) Each countable subspace of X is almost compact.
(iii) Each countable subspace of X is totally bounded.

Next we give a characterization of the property of almost Cauchy which
points to compactness if we read “every open cover” as “every sequence”
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and “finite subcover” as “almost Cauchy subsequence.” We also show that
each statement in Theorem 5.1 is equivalent to the proposition that X is
sequentially bounded.

Theorem 5.2 (ZF). Let X = (X, d) be a metric space. The following are
equivalent.

(i) X is sequentially bounded.
(ii) For every sequence (xn)n∈N of X and for every ε > 0, there exists

nε ∈ N such that for infinitely many n ∈ N, xn ∈ B(xnε , ε).
(iii) X is almost Cauchy.
(iv) Every sequence in X admits an almost Cauchy subsequence.

Proof. (i) → (ii) This is straightforward.
(ii) → (iii) If the sequence (xn)n∈N is not almost Cauchy, then there is

an ε0 > 0 such that the cover {B(xn, 0) : n ∈ N} of {xn : n ∈ N} does
not have a finite subcover. Define the subsequence (xnk

)k∈N recursively
by n1 = 1 and nk+1 = the least j ∈ N such that j > nk and xnj /∈
B(xn1 , ε0) ∪ B(xn1 , ε0) ∪ ... ∪ B(xnk

, ε0). Then (xnk
)k∈N and ε0 provide

a counterexample for (ii).
(iii) → (iv) This is straightforward.
(iv) → (i) Fix a sequence (xn)n∈N of points of X. By our hypothesis,

(xn)n∈N has an almost Cauchy subsequence (xkn)n∈N. Hence, by Theorem
3.4, (xkn)n∈N, and consequently, (xn)n∈N have a Cauchy subsequence.
Thus, X is totally bounded as required. �

Corollary 5.3. A metric space is sequentially compact if and only if it
is almost Cauchy and almost complete.

Proof. Fix a metric space X = (X, d). By Proposition 3.1, X is sequen-
tially compact if and only if it is complete and sequentially bounded if and
only if X is, by Theorem 5.2, almost complete and almost Cauchy. �

Corollary 5.4. (i) (ZF + CAC) A metric space is totally bounded if
and only if each of its countable subspaces is totally bounded.

(ii) The statement, “Every metric space X = (X, d) such that each
of its countable subspaces is totally bounded, is totally bounded”
implies IDI.

Proof. (i) (→) This is straightforward and CAC is not needed.
(←) Fix X = (X, d) a metric space such that each of its countable

subspaces is totally bounded. By theorems 5.1 and 5.2, X is sequentially
bounded. Hence, by Proposition 2.5, X is totally bounded.

(ii) This follows at once from theorems 5.1 and 5.2 and Proposition
2.5. However, a direct proof is easier. If X is a Dedekind-finite set and
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d is the discrete metric on X, then each of the countable subspaces of X
being finite is totally bounded. Hence, by our hypothesis, X is totally
bounded, and this leads to a contradiction. �

Remark 5.5. (i) Metric spaces X = (X, d) satisfying Theorem 5.2(ii),
i.e., for every sequence (xn)n∈N in X and for every ε > 0, there exists
nε ∈ N such that for infinitely many n ∈ N, xn ∈ B(xnε , ε) are called
cofinally Cauchy in [9]. It has been proved in [9] that the classes of
cofinally Cauchy and sequentially bounded metric spaces coincide in ZF
with the class of all pseudo Cauchy metric spaces, i.e., spaces in which
every sequence (xn)n∈N satisfies

• for each ε > 0 and for each n0 ∈ N, there exist n,m ∈ N, n,m ≥
n0, and n ̸= m with d(xn, xm) < ε.

Hence, in view of Theorem 5.2,

• sequentially bounded = cofinally Cauchy = almost Cauchy =
pseudo Cauchy.

Earlier, Gerald Beer [5] proved that Theorem 5.2(ii) was equivalent in
ZFC to total boundedness.

(ii) We observe that

(1) Complete 9 sequentially bounded and sequentially bounded 9
complete. (R with the usual metric is complete but not sequen-
tially bounded, and the subspace (0, 1) of R is sequentially bounded
but not complete.)

(2) Lebesgue 9 totally bounded and totally bounded 9 Lebesgue.
(Any infinite set with the discrete metric is Lebesgue but not
totally bounded, and the subspace (0, 1) of R is totally bounded
but not Lebesgue.)

(3) Countably Lebesgue 9 sequentially bounded and sequentially
bounded 9 countably Lebesgue. (N with the discrete metric
is countably Lebesgue but not sequentially bounded, and the
subspace (0, 1) of R is sequentially bounded but not countably
Lebesgue.) Since sequentially compact → sequentially bounded,
it follows that countably Lebesgue 9 sequentially compact also.

(4) Sequentially compact 9 countably Lebesgue in ZF. In the basic
Cohen model M1 in [6], the set A of all added Cohen reals is a
Dedekind finite, dense subset of R avoiding Q. Hence, the sub-
space Y = (0, 1) ∩ A is sequentially compact as every sequence
of A has finite range. However, Y is not countably Lebesgue be-
cause the open cover U = {(1/n + 1, 1/n) ∩ A : n ∈ N} has no
Lebesgue number.



92 K. KEREMEDIS

(5) In view of Proposition 2.5 and Theorem 5.2, it is consistent with
ZF that the existence of a non-totally bounded metric space X =
(X, d) such that each countable subspace of X is totally bounded.

(6) The conclusion of Corollary 5.4(i) does not hold for almost com-
pact metric spaces. Indeed, X = [0, 1] as a subspace of R with the
usual metric is almost compact but, in view of the proof of Propo-
sition 3.1(iii), Y = (0, 1] ∩ Q is a non-almost compact countable
subspace of X.

The following diagram summarizes the ZF implications and nonimpli-
cations of the properties of metric spaces studied in this paper.

Lebesgue
almost Lebesgue

9
8

almost compact
̸↑̸↓

sequentially compact

↓ ̸↑
̸↙
̸↖
̸↘

↓ ̸↑

countably Lebesgue 9
8 totally bounded

↓ ↓ ̸↑

complete
almost complete

9
8

sequentially bounded
pseudo Cauchy
cofinally Cauchy
almost Cauchy

Diagram 2.
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