
Volume 52, 2018

Pages 95–99

http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

A Monotonically Retractable
Realcompact Space Which Is Not Lindelöf
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A MONOTONICALLY RETRACTABLE REALCOMPACT
SPACE WHICH IS NOT LINDELÖF

MASAMI SAKAI

Abstract. We construct a monotonically retractable realcompact
space which is not Lindelöf. This answers a question posed by
R. Rojas-Hernández in Function spaces and D-property [Topology
Proc. 43 (2014)].

1. Introduction

Throughout this paper, all spaces are assumed to be Tychonoff. For a
set S, [S]≤ω stands for the set of countable subsets in S. A space having
a countable network is said to be cosmic, where a family N of subsets
of a space X is said to be a network for X if for any x ∈ X and any
neighborhood U of x, there exists some N ∈ N such that x ∈ N ⊂ U .

For a space X, let Cp(X) be the space of all real-valued continuous
functions of X with the topology of pointwise convergence. For each
n ∈ N, let Cp,n(X) be the n-times iterated function space of X. G. A.
Sokolov ([9], [10]) proved that Cp,n(K) of a Corson compact space K
is Lindelöf for each n ∈ N. Motivated by Sokolov’s result, Vladimir V.
Tkachuk introduced the following.

Definition 1.1 ([11]). A space X is Sokolov if for any sequence {Fn :
n ∈ N} with Fn closed in Xn, there exists a continuous map f : X → X
such that f(X) is cosmic and fn(Fn) ⊂ Fn for each n ∈ N.

A Corson compact space is Sokolov, and all the spaces Cp,n(X) are
Lindelöf for a Sokolov space X with an additional condition [11, Theorem
2.1]. A Sokolov space is collectionwise normal, ω-monolithic (i.e., the
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closure of each countable subset is cosmic), and the cardinality of each
closed discrete subspace of a Sokolov space is countable [11, Proposition
2.2]. And Tkachuk asked the following question.

Question 1.2 ([11, Problem 3.9]). Must every Sokolov realcompact space
be Lindelöf?

To study the D-property of function spaces Cp(X), R. Rojas-Hernández
introduced the class of monotonically retractable spaces.

Definition 1.3 ([5]). A space X is monotonically retractable if we can
assign to any A ∈ [X]≤ω a set K(A) ⊂ X, a continuous retraction rA :
X → K(A), and a countable family N (A) of subsets of X such that

(r1) A ⊂ K(A);
(r2) if W is an open subset in K(A), then r−1

A (W ) =
∪
N for some

N ⊂ N (A);
(r3) if A,B ∈ [X]≤ω and A ⊂ B, then N (A) ⊂ N (B);
(r4) if An ∈ [X]≤ω for each n ∈ ω, An ⊂ An+1, and A =

∪
{An : n ∈

ω}, then N (A) =
∪
{N (An) : n ∈ ω}.

Obviously each cosmic space is monotonically retractable, in particu-
lar, so is each countable space. Rojas-Hernández [5] proved that Cp(X)
of a monotonically retractable space X is a Lindelöf space with the D-
property. Moreover, a monotonically retractable space is Sokolov [6,
Corollary 4.9]. Hence, Rojas-Hernández asked the next question.

Question 1.4 ([5, Question 4.4]). Suppose that X is a monotonically
retractable realcompact space. Must X be Lindelöf?

We show that the answer to this question is in the negative.

2. An Example

Lemma 2.1 ([1, Theorem 8.17, Corollary 8.15]). The following state-
ments hold.

(1) If a space Y is hereditarily realcompact and there exists a contin-
uous map τ : X → Y such that τ−1(y) is compact for each y ∈ Y ,
then X is realcompact.

(2) If a space X is realcompact and each point of X is a Gδ-set, then
X is hereditarily realcompact.

Our example considered here is the same as in [8].

Proposition 2.2. There exists a monotonically retractable, hereditarily
realcompact space X which is not Lindelöf.
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Proof. Fix any second countable space Y with |Y | = ω1 and let Z =
Y × ω1. For each α < ω1, we define Zα, rα, Bα, and Nα. Let Zα =
Y × [0, α]. We define a map rα : Z → Zα as follows: for each (y, β) ∈ Z,
rα((y, β)) = (y, β) if β ≤ α; rα((y, β)) = (y, α) if β > α. Then rα is a
continuous retraction. Let BY be a countable base for Y , and let

Bα = {B × (β, γ] : B ∈ BY , β < γ ≤ α}.
Then Bα is a countable base for Zα and α < α′ implies Bα ⊂ Bα′ . Let

Nα = {r−1
α (B) : B ∈ Bα}.

By the definition of Bα,

Nα = {B × (β, γ] : B ∈ BY , β < γ < α} ∪ {B × (β, ω1) : B ∈ BY , β < α}.
Then Nα is a countable open cover of Z and satisfies the following:

(a) if W is an open set in Zα, then r−1
α (W ) =

∪
N for some N ⊂ Nα;

(b) if α ≤ α′, then Nα ⊂ Nα′ ;
(c) if αn < ω1 for each n ∈ ω, αn ≤ αn+1, and α = sup{αn : n ∈ ω},

then Nα =
∪
{Nαn : n ∈ ω}.

Conditions (a) and (b) can be easily checked. We observe (c). If α = αn

for some n ∈ ω, then the conclusion obviously holds. Assume αn < α for
each n ∈ ω. Let N ∈ Nα. If N is of the form N = B × (β, γ], where
B ∈ BY and β < γ < α, take an n ∈ ω with γ < αn < α, then we have
N ∈ Nαn . If N is of the form N = B× (β, ω1), where B ∈ BY and β < α,
take an n ∈ ω with β < αn < α, then we have N ∈ Nαn .

Now fix an onto map φ : Y → ω1. Let

X = {(y, α) ∈ Z : α ≤ φ(y)}.
By Lemma 2.1, X is hereditarily realcompact. However, it is not Lindelöf
because ω1 is a continuous image of X. We see that X is monotonically
retractable. Let A ∈ [X]≤ω, and if A = {(yn, αn) ∈ X : n ∈ ω}, we put
α(A) = sup{αn : n ∈ ω}. We define K(A), rA, and N (A) naturally. Let
K(A) = X ∩ Zα(A). Obviously, A ⊂ K(A) (condition (r1)) holds. Recall
the retraction rα(A) : Z → Zα(A). By the definitions of rα(A) and X, the
inclusion rα(A)(X) ⊂ K(A) can be easily checked. Hence, the restricted
map rA = rα(A)� X : X → K(A) is a retraction. Let

N (A) = {X ∩N : N ∈ Nα(A)}.
This family is a countable open cover of X. We examine condition (r2).
Let W be an open set in K(A), and take an open set W ′ in Zα(A) such
that W = K(A) ∩ W ′. By (a), r−1

α(A)(W
′) =

∪
N for some N ⊂ Nα(A).

Hence,

r−1
A (W ) = X ∩ r−1

α(A)(W
′) = X ∩

(∪
N
)
=

∪
{X ∩N : N ∈ N}.
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Condition (r3) easily follows from (b). Finally, we examine condition
(r4). Suppose An ∈ [X]≤ω for each n ∈ ω, An ⊂ An+1, and A =

∪
{An :

n ∈ ω}. Then α(A) = sup{α(An) : n ∈ ω} holds. By (c), we have
Nα(A) =

∪
{Nα(An) : n ∈ ω}. This implies N (A) =

∪
{N (An) : n ∈ ω}.

Thus, X is monotonically retractable. �
Tkachuk [11, Corollary 2.13] proved that every compact Sokolov space

X is Fréchet-Urysohn and Cp(X) is Lindelöf. We give a slight improve-
ment of Tkachuk’s result. For a point x ∈ X, a family P of subsets of X
is said to be a π-network at x if every neighborhood of x contains some
member of P. According to Gary Gruenhage and Paul J. Szeptycki [2],
a space X is said to be Fréchet-Urysohn for finite sets if for every point
x ∈ X and a π-network P at x consisting of non-empty finite subsets of
X, there exists a sequence {Pn : n ∈ ω} ⊂ P converging to x (i.e., every
neighborhood of x contains Pn for all but finitely many n ∈ ω). This
notion was first studied systematically by E. A. Reznichenko and O. V.
Sipacheva [4]. A space X is said to have countable supertightness [3] if for
every point x ∈ X and a π-network P at x consisting of non-empty finite
subsets of X, there exists a countable subfamily Q ⊂ P such that Q is a
π-network at x.

Proposition 2.3. Every compact Sokolov space is Fréchet-Urysohn for
finite sets.

Proof. Let K be a compact Sokolov space, and let P be a π-network
at x ∈ X consisting of non-empty finite subsets of X. Since Cp(X) is
Lindelöf [11, Corollary 2.13], X has countable supertightness [7]. Take a
countable subfamily Q ⊂ P such that Q is a π-network at x. Since K
is ω-monolithic [11, Proposition 2.2],

∪
Q is a compact cosmic space, so∪

Q is metrizable. Hence, Q contains a sequence converging to x. �
Remark 2.4. Tkachuk asked in [11, Problem 3.15]: Is it true that any
Sokolov space has a point-countable π-base? The answer to this question
is in the negative. Let G be a countable topological group which is not
metrizable. Since G is countable, it is monotonically retractable (hence,
Sokolov). If G has a point-countable π-base B, then B is countable and
{B ·B−1 : B ∈ B} is a countable neighborhood base at the identity e ∈ G,
so G must be metrizable.
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