http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

A MONOTONICALLY RETRACTABLE REALCOMPACT SPACE WHICH IS NOT LINDELÖF

by

Masami Sakai

Electronically published on August 22, 2017

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on August 22, 2017

A MONOTONICALLY RETRACTABLE REALCOMPACT SPACE WHICH IS NOT LINDELÖF

MASAMI SAKAI

ABSTRACT. We construct a monotonically retractable realcompact space which is not Lindelöf. This answers a question posed by R. Rojas-Hernández in *Function spaces and D-property* [Topology Proc. **43** (2014)].

1. INTRODUCTION

Throughout this paper, all spaces are assumed to be Tychonoff. For a set S, $[S]^{\leq \omega}$ stands for the set of countable subsets in S. A space having a countable network is said to be *cosmic*, where a family \mathcal{N} of subsets of a space X is said to be a *network* for X if for any $x \in X$ and any neighborhood U of x, there exists some $N \in \mathcal{N}$ such that $x \in N \subset U$.

For a space X, let $C_p(X)$ be the space of all real-valued continuous functions of X with the topology of pointwise convergence. For each $n \in \mathbb{N}$, let $C_{p,n}(X)$ be the *n*-times iterated function space of X. G. A. Sokolov ([9], [10]) proved that $C_{p,n}(K)$ of a Corson compact space K is Lindelöf for each $n \in \mathbb{N}$. Motivated by Sokolov's result, Vladimir V. Tkachuk introduced the following.

Definition 1.1 ([11]). A space X is Sokolov if for any sequence $\{F_n : n \in \mathbb{N}\}$ with F_n closed in X^n , there exists a continuous map $f : X \to X$ such that f(X) is cosmic and $f^n(F_n) \subset F_n$ for each $n \in \mathbb{N}$.

A Corson compact space is Sokolov, and all the spaces $C_{p,n}(X)$ are Lindelöf for a Sokolov space X with an additional condition [11, Theorem 2.1]. A Sokolov space is collectionwise normal, ω -monolithic (i.e., the

²⁰¹⁰ Mathematics Subject Classification. 54D20.

Key words and phrases. Lindelöf, monotonically retractable, realcompact, Sokolov. The author was supported by JSPS KAKENHI Grant Number 25400213. ©2017 Topology Proceedings.

M. SAKAI

closure of each countable subset is cosmic), and the cardinality of each closed discrete subspace of a Sokolov space is countable [11, Proposition 2.2]. And Tkachuk asked the following question.

Question 1.2 ([11, Problem 3.9]). Must every Sokolov realcompact space be Lindelöf?

To study the D-property of function spaces $C_p(X)$, R. Rojas-Hernández introduced the class of monotonically retractable spaces.

Definition 1.3 ([5]). A space X is monotonically retractable if we can assign to any $A \in [X]^{\leq \omega}$ a set $K(A) \subset X$, a continuous retraction r_A : $X \to K(A)$, and a countable family $\mathcal{N}(A)$ of subsets of X such that

- (r1) $A \subset K(A)$;
- (r2) if W is an open subset in K(A), then $r_A^{-1}(W) = \bigcup \mathcal{N}$ for some $\mathcal{N} \subset \mathcal{N}(A);$
- (r3) if $A, B \in [X]^{\leq \omega}$ and $A \subset B$, then $\mathcal{N}(A) \subset \mathcal{N}(B)$; (r4) if $A_n \in [X]^{\leq \omega}$ for each $n \in \omega$, $A_n \subset A_{n+1}$, and $A = \bigcup \{A_n : n \in U\}$ ω , then $\mathcal{N}(A) = \bigcup \{\mathcal{N}(A_n) : n \in \omega\}.$

Obviously each cosmic space is monotonically retractable, in particular, so is each countable space. Rojas-Hernández [5] proved that $C_p(X)$ of a monotonically retractable space X is a Lindelöf space with the Dproperty. Moreover, a monotonically retractable space is Sokolov [6, Corollary 4.9]. Hence, Rojas-Hernández asked the next question.

Question 1.4 ([5, Question 4.4]). Suppose that X is a monotonically retractable realcompact space. Must X be Lindelöf?

We show that the answer to this question is in the negative.

2. An Example

Lemma 2.1 ([1, Theorem 8.17, Corollary 8.15]). The following statements hold.

- (1) If a space Y is hereditarily realcompact and there exists a continuous map $\tau: X \to Y$ such that $\tau^{-1}(y)$ is compact for each $y \in Y$, then X is realcompact.
- (2) If a space X is realcompact and each point of X is a G_{δ} -set, then X is hereditarily realcompact.

Our example considered here is the same as in [8].

Proposition 2.2. There exists a monotonically retractable, hereditarily realcompact space X which is not Lindelöf.

96

Proof. Fix any second countable space Y with $|Y| = \omega_1$ and let $Z = Y \times \omega_1$. For each $\alpha < \omega_1$, we define Z_α , r_α , \mathcal{B}_α , and \mathcal{N}_α . Let $Z_\alpha = Y \times [0, \alpha]$. We define a map $r_\alpha : Z \to Z_\alpha$ as follows: for each $(y, \beta) \in Z$, $r_\alpha((y, \beta)) = (y, \beta)$ if $\beta \leq \alpha$; $r_\alpha((y, \beta)) = (y, \alpha)$ if $\beta > \alpha$. Then r_α is a continuous retraction. Let \mathcal{B}_Y be a countable base for Y, and let

$$\mathcal{B}_{\alpha} = \{ B \times (\beta, \gamma] : B \in \mathcal{B}_Y, \beta < \gamma \le \alpha \}.$$

Then \mathcal{B}_{α} is a countable base for Z_{α} and $\alpha < \alpha'$ implies $\mathcal{B}_{\alpha} \subset \mathcal{B}_{\alpha'}$. Let

$$\mathcal{N}_{\alpha} = \{ r_{\alpha}^{-1}(B) : B \in \mathcal{B}_{\alpha} \}$$

By the definition of \mathcal{B}_{α} ,

$$\mathcal{N}_{\alpha} = \{ B \times (\beta, \gamma] : B \in \mathcal{B}_{Y}, \beta < \gamma < \alpha \} \cup \{ B \times (\beta, \omega_{1}) : B \in \mathcal{B}_{Y}, \beta < \alpha \}.$$

Then \mathcal{N}_{α} is a countable open cover of Z and satisfies the following:

- (a) if W is an open set in Z_{α} , then $r_{\alpha}^{-1}(W) = \bigcup \mathcal{N}$ for some $\mathcal{N} \subset \mathcal{N}_{\alpha}$;
- (b) if $\alpha \leq \alpha'$, then $\mathcal{N}_{\alpha} \subset \mathcal{N}_{\alpha'}$;
- (c) if $\alpha_n < \omega_1$ for each $n \in \omega$, $\alpha_n \le \alpha_{n+1}$, and $\alpha = \sup\{\alpha_n : n \in \omega\}$, then $\mathcal{N}_{\alpha} = \bigcup\{\mathcal{N}_{\alpha_n} : n \in \omega\}$.

Conditions (a) and (b) can be easily checked. We observe (c). If $\alpha = \alpha_n$ for some $n \in \omega$, then the conclusion obviously holds. Assume $\alpha_n < \alpha$ for each $n \in \omega$. Let $N \in \mathcal{N}_{\alpha}$. If N is of the form $N = B \times (\beta, \gamma]$, where $B \in \mathcal{B}_Y$ and $\beta < \gamma < \alpha$, take an $n \in \omega$ with $\gamma < \alpha_n < \alpha$, then we have $N \in \mathcal{N}_{\alpha_n}$. If N is of the form $N = B \times (\beta, \omega_1)$, where $B \in \mathcal{B}_Y$ and $\beta < \alpha$, take an $n \in \omega$ with $\beta < \alpha_n < \alpha$, then we have $N \in \mathcal{N}_{\alpha_n}$.

Now fix an onto map $\varphi: Y \to \omega_1$. Let

$$X = \{(y, \alpha) \in Z : \alpha \le \varphi(y)\}.$$

By Lemma 2.1, X is hereditarily realcompact. However, it is not Lindelöf because ω_1 is a continuous image of X. We see that X is monotonically retractable. Let $A \in [X]^{\leq \omega}$, and if $A = \{(y_n, \alpha_n) \in X : n \in \omega\}$, we put $\alpha(A) = \sup\{\alpha_n : n \in \omega\}$. We define $K(A), r_A$, and $\mathcal{N}(A)$ naturally. Let $K(A) = X \cap Z_{\alpha(A)}$. Obviously, $A \subset K(A)$ (condition (r1)) holds. Recall the retraction $r_{\alpha(A)} : Z \to Z_{\alpha(A)}$. By the definitions of $r_{\alpha(A)}$ and X, the inclusion $r_{\alpha(A)}(X) \subset K(A)$ can be easily checked. Hence, the restricted map $r_A = r_{\alpha(A)} \upharpoonright X : X \to K(A)$ is a retraction. Let

$$\mathcal{N}(A) = \{ X \cap N : N \in \mathcal{N}_{\alpha(A)} \}.$$

This family is a countable open cover of X. We examine condition (r2). Let W be an open set in K(A), and take an open set W' in $Z_{\alpha(A)}$ such that $W = K(A) \cap W'$. By (a), $r_{\alpha(A)}^{-1}(W') = \bigcup \mathcal{N}$ for some $\mathcal{N} \subset \mathcal{N}_{\alpha(A)}$. Hence,

$$r_A^{-1}(W) = X \cap r_{\alpha(A)}^{-1}(W') = X \cap \left(\bigcup \mathcal{N}\right) = \bigcup \{X \cap N : N \in \mathcal{N}\}.$$

M. SAKAI

Condition (r3) easily follows from (b). Finally, we examine condition (r4). Suppose $A_n \in [X]^{\leq \omega}$ for each $n \in \omega$, $A_n \subset A_{n+1}$, and $A = \bigcup \{A_n : n \in \omega\}$. Then $\alpha(A) = \sup \{\alpha(A_n) : n \in \omega\}$ holds. By (c), we have $\mathcal{N}_{\alpha(A)} = \bigcup \{\mathcal{N}_{\alpha(A_n)} : n \in \omega\}$. This implies $\mathcal{N}(A) = \bigcup \{\mathcal{N}(A_n) : n \in \omega\}$. Thus, X is monotonically retractable.

Tkachuk [11, Corollary 2.13] proved that every compact Sokolov space X is Fréchet-Urysohn and $C_p(X)$ is Lindelöf. We give a slight improvement of Tkachuk's result. For a point $x \in X$, a family \mathcal{P} of subsets of X is said to be a π -network at x if every neighborhood of x contains some member of \mathcal{P} . According to Gary Gruenhage and Paul J. Szeptycki [2], a space X is said to be Fréchet-Urysohn for finite sets if for every point $x \in X$ and a π -network \mathcal{P} at x consisting of non-empty finite subsets of X, there exists a sequence $\{P_n : n \in \omega\} \subset \mathcal{P}$ converging to x (i.e., every neighborhood of x contains P_n for all but finitely many $n \in \omega$). This notion was first studied systematically by E. A. Reznichenko and O. V. Sipacheva [4]. A space X is said to have countable supertightness [3] if for every point $x \in X$ and a π -network \mathcal{P} at x consisting of non-empty finite subsets of X, there exists a countable subfamily $\mathcal{Q} \subset \mathcal{P}$ such that \mathcal{Q} is a π -network at x.

Proposition 2.3. Every compact Sokolov space is Fréchet-Urysohn for finite sets.

Proof. Let K be a compact Sokolov space, and let \mathcal{P} be a π -network at $x \in X$ consisting of non-empty finite subsets of X. Since $C_p(X)$ is Lindelöf [11, Corollary 2.13], X has countable supertightness [7]. Take a countable subfamily $\mathcal{Q} \subset \mathcal{P}$ such that \mathcal{Q} is a π -network at x. Since K is ω -monolithic [11, Proposition 2.2], $\bigcup \mathcal{Q}$ is a compact cosmic space, so $\bigcup \mathcal{Q}$ is metrizable. Hence, \mathcal{Q} contains a sequence converging to x. \Box

Remark 2.4. Tkachuk asked in [11, Problem 3.15]: Is it true that any Sokolov space has a point-countable π -base? The answer to this question is in the negative. Let G be a countable topological group which is not metrizable. Since G is countable, it is monotonically retractable (hence, Sokolov). If G has a point-countable π -base \mathcal{B} , then \mathcal{B} is countable and $\{B \cdot B^{-1} : B \in \mathcal{B}\}$ is a countable neighborhood base at the identity $e \in G$, so G must be metrizable.

References

 Leonard Gillman and Meyer Jerison, *Rings of Continuous Functions*. Reprint of the 1960 edition. Graduate Texts in Mathematics, No. 43. New York-Heidelberg: Springer-Verlag, 1976.

- [2] Gary Gruenhage and Paul J. Szeptycki, Fréchet-Urysohn for finite sets, Topology Appl. 151 (2005), no. 1-3, 238–259.
- [3] Jan van Mill and Charles F. Mills, On the character of supercompact spaces, Topology Proc. 3 (1978), no. 1, 227–236 (1979).
- [4] E. A. Reznichenko and O. V. Sipacheva, Properties of Fréchet-Uryson type in topological spaces, groups and locally convex spaces, translation in Moscow Univ. Math. Bull. 54 (1999), no. 3, 33–38.
- [5] R. Rojas-Hernández, Function spaces and D-property, Topology Proc. 43 (2014), 301–317.
- [6] R. Rojas-Hernández and V. V. Tkachuk, A monotone version of the Sokolov property and monotone retractability in function spaces, J. Math. Anal. Appl. 412 (2014), no. 1, 125–137.
- [7] Masami Sakai, On supertightness and function spaces, Comment. Math. Univ. Carolin. 29 (1988), no. 2, 249–251.
- [8] Masami Sakai, A realcompact non-Lindelöf space X such that C_p(X) is Lindelöf, Questions Answers Gen. Topology 11 (1993), no. 1, 123–126.
- [9] G. A. Sokolov, Lindelöf spaces of continuous functions (Russian), Mat. Zametki 39 (1986), no. 6, 887–894, 943.
- [10] G. A. Sokolov, Lindelöf property and the iterated continuous function spaces, Fund. Math. 143 (1993), no. 1, 87–95.
- [11] Vladimir V. Tkachuk, A nice class extracted from C_p-theory, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 503–513.

Department of Mathematics; Kanagawa University; Hiratsuka 259-1293, Japan

E-mail address: sakaim01@kanagawa-u.ac.jp