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REOPENING SEVERAL QUESTIONS CONCERNING
P-CLOSED SPACES

R. M. STEPHENSON, JR.

Abstract. Examples are given to point out gaps or errors in cer-
tain recently published assertions, proofs, and answers to questions
concerning P-closed spaces. In particular, examples are given to
show that it is still unknown if a Urysohn (regular) space in which
every closed subset is Urysohn-closed (regular-closed) must be com-
pact.

1. Introduction and Terminology

All hypothesized spaces are Hausdorff. A space in which any two dis-
tinct points have disjoint closed neighborhoods is called a Urysohn space.
We recall that for a topological property P, a P-space which is a closed
subspace of any P-space in which it can be embedded is called P-closed.
In [13] and [15] proofs were given that every space in which every closed
subset is Hausdorff-closed is compact. Other researchers later raised anal-
ogous questions by asking if every space in which every closed subset is
Urysohn-closed must be compact [2] and if every space in which every
closed subset is regular-closed must be compact [1].

In the recent articles, James E. Joseph and Bhamini M. P. Nayar [12]
and Terrence A. Edwards, et al. [6] present proofs that for P = Hausdorff,
Urysohn, or regular, a P-space in which every closed subset is P-closed
must be compact. In this note we point out, however, that certain spaces
and filter bases provide counterexamples to some of their assertions and
proofs, and, consequently, the latter two questions above are not settled
in their articles. We also review several other assertions, proofs, and
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questions given or considered in [6] and indicate why several of these
questions are still open and a number of the results claimed in [6] are not
true or are in need of clarification or correction.

Some terms used below are the following. For a space X, point p ∈ X,
and filter base F on X, p is called

• an adherent point (a θ-adherent point) of F if every (closed) neigh-
borhood of p and every set in F have nonempty intersection;

• a u-adherent point of F provided that for every open set U con-
taining the closure of some open set containing p and every set
F ∈ F , F ∩ U ̸= ∅;

• an s-adherent point of F provided that for every shrinkable family
V of open neighborhoods of p there exists V ∈ V such that F∩V ̸=
∅ for every set F ∈ F , where the word shrinkable means that for
every V ∈ V there exists W ∈ V with V ⊂ W ;

• or an sw-adherent point of F provided that for every shrinkable
family V of open neighborhoods of p and every set F ∈ F there
exists V ∈ V such that F ∩ V ̸= ∅.

For clarification purposes, throughout this note we use the term “s-adher-
ent point” as defined above to mean “s-adherent point” as defined by Larry
L. Herrington [9], and we use the term “sw-adherent point” as defined
above to mean “s-adherent point” as defined in [12] and [6] since the
authors of [9] and [12] assigned different, nonequivalent meanings to the
same term “s-adherent point.” We will also use this convention for similar
terms, such as “s-adherence” or “sw-adherence” of a filter base and when
stating assertions in [12] or [6]. Since the authors of [12] and [6] stated
that the concept of sw-adherence (which they called “s-adherence”) was
due to Herrington, and they were using some of his results concerning
s-adherence, they may not have intended to change the meaning in his
definition (by reordering some of the quantified expressions in it).

Previously published articles note that for P = Hausdorff, Urysohn, or
regular, a P-space X is P-closed if and only if every filter base F on X has
a θ-, a u-, or an s-adherent point, respectively. These characterizations,
the last two of which were given in [8] and [9], reformulate, in interesting
ways, analogous ones obtained earlier, e.g., in [1], [3], and [10]. We also
recall and mention that for the properties considered here, P-minimal
implies P-closed. Our terminology generally agrees with that in such
articles as [2] and [3].

2. The Examples

The examples below, which may be of some independent interest, pro-
vide further information about properties of different types of adherent
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points in P-closed spaces. In sections 3 and 4 we will note why they
illustrate gaps or errors in some of the assertions and proofs in [12], [11],
and [6].

Example 2.1. There exist a minimal Urysohn space H and an (open)
ultrafilter on H which has two u-adherent points, but no convergent point.

Proof. In [10, Example 4] Horst Herrlich modified a subspace of a space
due to A. Tychonoff [16] in order to show that not every minimal Urysohn
space is regular. For convenience, so that we can later use some statements
in [3] and not re-prove them here, we slightly change the notation in
Herrlich’s example to the following. Let T denote the Tychonoff plank
described as T = {(α, β) : α ≤ ω1 and β ≤ ω0}\{(ω1, ω0)}, where ω0 (ω1)
denotes the first infinite (uncountable) ordinal. Let A denote the quotient
space obtained by identifying, in the product space T ×{−1, 0, 1}, where
T has its usual topology, each point (ω1, β,−1) with (ω1, β, 0) and each
point (α, ω0, 0) with (α, ω0, 1). Finally, let H = A∪ {p, q}, where p and q
are two points not in A, and a subset V of H is defined to be open if and
only if

• V ∩A is open in A, and
• if p ∈ V , then {(α, β,−1) : α0 < α < ω1 and β0 < β ≤ ω0} ⊂ V

for some α0 < ω1 and β0 < ω0, and
• if q ∈ V , then {(α, β, 1) : α0 < α ≤ ω1 and β0 < β < ω0} ⊂ V for

some α0 < ω1 and β0 < ω0.
Next, define F to be the filter base {F (α0, β0) : α0 < ω1 and β0 < ω0},
where for each α0 < ω1 and β0 < ω0, F (α0, β0) = {(α, β, 0) : α0 < α <
ω1, β0 < β < ω0, and α is a nonlimit ordinal}. Finally, let U be any filter
on the set F (0, 0) such that F ⊂ U . We observe that U is an open filter
base on H, and if U is an ultrafilter on F (0, 0), then it is a base for an
ultrafilter on H that is also an open ultrafilter on H since the points in
F (0, 0) are all isolated points of H.

We wish to show that U has both p and q as u-adherent points, but
neither as an adherent point. Using the well-known properties of T , we
note the following.

Let U , V , and W be arbitrary open sets such that p ∈ V ⊂ V ⊂ W and
U ∈ U . Then {(α, β,−1) : α0 < α < ω1 and β0 < β ≤ ω0} ⊂ V for some
α0 < ω1 and β0 < ω0. Hence, {(ω1, β, 0) ≡ (ω1, β,−1) : β0 < β < ω0} ⊂
V , which implies that for some α1 < ω1, {(α, β, 0) : α1 < α and β0 < β <
ω0} ⊂ W . As the latter shows that W contains a member of F , namely
F (α1, β0), and F ⊂ U , it follows that U ∩W ̸= ∅. Thus, p is a u-adherent
point of U .

Let U , V , and W be arbitrary open sets such that q ∈ V ⊂ V ⊂ W and
U ∈ U . Then {(α, β, 1) : α0 < α ≤ ω1 and β0 < β < ω0} ⊂ V for some
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α0 < ω1 and β0 < ω0. Thus, {(α, ω0, 0) ≡ (α, ω0, 1) : α0 < α < ω1} ⊂
V ⊂ W . Since F ⊂ U , then U ∩ F (α, β) ̸= ∅ for all α < ω1 and β < ω0.
Hence, there exist strictly increasing sequences of ordinal numbers {αn}
and {βn}, where each α0 < αn < ω1, βn < ω0, and (αn, βn, 0) ∈ U . Let
limn→∞ αn = γ < ω1. Then (γ, ω0, 0) ∈ W ∩ U , and so the open sets U
and W must satisfy U ∩W ̸= ∅. Thus, q is a u-adherent point of U .

Since p and q have neighborhoods which do not intersect the set F (0, 0),
neither point is an adherent point of F , and F has no adherent point in
H \ {p, q}, so the same is true of U . �
Example 2.2. There exist a Urysohn-closed space S and an (open) ultra-
filter on S which has a unique u-adherent, but no convergent point.

Proof. It follows from some of the above statements and properties of the
Tychonoff plank that the subspace S = {q} ∪ {(α, β, n) : n = 0 or 1}
of the space H and the filter base F can be used to illustrate Example
2.2. �
Example 2.3. There exist a minimal regular space B and an (open)
ultrafilter on B which has two s-adherent points, but no convergent point.

Proof. In [3], Manuel P. Berri and R. H. Sorgenfrey modified a space
due to Tychonoff [16] in order to show that not every minimal regular
space is compact. We slightly modify their notation. Let T be as in
Example 2.1, and let A denote the quotient space obtained by identifying
in the product space T ×Z (where T has its usual topology and Z has the
discrete topology) each point (ω1, β, 2n−1) with (ω1, β, 2n) and each point
(α, ω0, 2n) with (α, ω0, 2n+1), for each n ∈ Z. Finally, let H = A∪{p, q},
where p and q are two points not in A, and a subset V of H is defined to
be open if and only if

• V ∩A is open in A, and
• if p ∈ V , then for some n ∈ Z, T × {m ∈ Z : m ≤ n} ⊂ V , and
• if q ∈ V , then for some n ∈ Z, T × {m ∈ Z : m ≥ n} ⊂ V .

Next, with respect to this space, let F and U be defined as in Example
2.1, and note that as was the case for the space H, if U is an ultrafilter
on F (0, 0), then it is a base for an ultrafilter on B which is also an open
ultrafilter on B.

In order to show that U has both p and q as s-adherent points, but
neither as an adherent point, we will use the terminology given and re-
marks established in statement 2 on page 456 and statement 3 on page
457 in [3], re-stated for B as follows.

We will say that a set V gets into the n-corner if whenever α0 < ω1

and β0 < ω0, there is a point (α, β, n) ∈ V for some α0 < α and β0 < β.
(a) If the open set V gets into the n-corner, then there is an infinite
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sequence {βi} of distinct ordinals < ω0 such that each (ω1, βi, n) ∈ V .
(b) If V1, V2, and V3 are open sets such that V1 gets into the n-corner
and V1 ⊂ V 1 ⊂ V2 ⊂ V 2 ⊂ V3, then V3 gets into the (n − 1)- and
(n+ 1)-corners.

Suppose V is an arbitrary shrinkable family of open neighborhoods of
p. We wish to show that for some V ∈ V, V ∩ U ̸= ∅ for every set U ∈ U .
Choose V1 ∈ V. Then for some integer k,

∪
{T × {n} : n ≤ k} ⊂ V1, so

V1 gets into the n-corner for all n ≤ k. If k ≥ 0, then V1 ⊃ T × {0},
and hence V1 ∩ U ̸= ∅ for every set U ∈ U . Suppose k < 0. Since V is
shrinkable, there exist 2(−k)+2 sets Vi ∈ V where 2 ≤ i ≤ 2(−k)+3 such
that for each i, i = 1, 2, . . . , 2(−k)+2, V i ⊂ Vi+1. By applying statement
(b) −k times, it follows from (a) that there is an infinite sequence {βi} of
distinct ordinals < ω0 such that each (ω1, βi, 0) ∈ V 2(−k)+1. Let U ∈ U
be arbitrary. Then reasoning as in the penultimate paragraph of the proof
of Example 2.1, one can show that V2(−k)+3 ∩ U ̸= ∅. Therefore, p is an
s-adherent point of U .

The proof that q is an s-adherent point of U is similar.
Since p and q have neighborhoods which miss T × {0}, neither is an

adherent point of F , and no other point of B is an adherent point of F ,
so U cannot have an adherent point in the space B. �

Example 2.4. There exist a regular-closed space E and an (open) ultra-
filter U on E such that U has no convergent point, but has a unique
s-adherent point q which is also its only sw-adherent point.

Proof. The subspace E = {q}∪{(α, β, n) : n ≥ 0} of the space B and the
filter base F of Example 2.3 can be used to illustrate Example 2.4. In
[10, Example 2], Herrlich modified an example of Tychonoff [16] to obtain
E, and he used it to provide a negative answer to Berri and Sorgenfrey’s
question in [3]: “Is every regular-closed space minimal regular?” Since F
is free, and every point of E other than q has a neighborhood base consist-
ing of clopen sets, it follows from statements similar to those justifying
the properties of Example 2.3 that E has the stated (open) ultrafilter
properties. �

While it is immediate from the definitions recorded in the previous
section that s-adherence implies sw-adherence, we briefly describe an ex-
ample showing that the converse is not true.

Example 2.5. There exist a regular space X and a regular filter base F
on X which has an sw-adherent point p, but no s-adherent point. (An
open filter base F is called regular if each set in F contains the closure of
some set in F .)
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Proof. Let X be the subspace B \ {q} of the space B in Example 2.3,
and let F = {Fn : n ∈ Z, n ≥ 0}, where each Fn = (T × {m ∈ Z : m ≥
n+ 1}) ∪ {(α, β, n) : α < ω1 and β < ω0}. Note that each Fn is an open
set and Fn ⊃ Fn+1, so F is a regular filter base.

To show that p is an sw-adherent point of F , let V be any shrinkable
family of open neighborhoods of p in X, and consider any Fn ∈ F . By
slightly modifying the paragraph three of the proof in Example 2.3, one
can show that there is a set V ∈ V such that V ∩ Fn ̸= ∅.

To show that p is not an s-adherent point of F , define V = {X \ Fn :
Fn ∈ F}. Then V is a shrinkable family of open neighborhoods of p, and
obviously for any V ∈ V there exists F ∈ F such that V ∩F = ∅. Since F
is free, and all the other points of X have neighborhood bases consisting
of clopen sets, no other point of X is an s-adherent point of F . (For an
alternate proof of this, one can just notice that F has no adherent point
in X, and then appeal to the theorem in [9] that in a regular space any
s-adherent point of a regular filter base is also an adherent point of that
filter base.) �

The next remark will be used in the following sections.

Remark 2.6. On any space which is not regular there exists an ultrafilter
having a unique θ-adherent point, but no convergent point, and on any
space which is not Urysohn there exists an ultrafilter which has two θ-
adherent points, but no convergent point.

3. Why It Is Still Unknown If a Space in Which Every
Closed Subset Is Urysohn-Closed (Regular-Closed)

Must Be Compact

In [12, lemmas 3.2 and 3.3], Joseph and Nayar state that in a Urysohn-
closed (regular-closed) space every open ultrafilter has a single u-adherent
(sw-adherent) point, and they use these lemmas to provide parts of their
proofs of theorems 3.4 and 3.5, which state that a space in which every
closed subset is Urysohn-closed (regular-closed) must be compact. Our
examples 2.1 and 2.3 illustrate that lemmas 3.2 and 3.3 are not true.
In addition, in their proofs of theorems 3.4 and 3.5, they seem to be
asserting without proof that in a Urysohn (regular) space if an ultrafil-
ter has a unique u-adherent (sw-adherent) point, then it is convergent.
Examples 2.2 and 2.4 above illustrate that, at least in a Urysohn-closed
(regular-closed) space, those assertions need not hold. Remark 2.6 points
out a gap in their proof of Lemma 3.1 in [12], the known theorem that
a space in which every closed subset is Hausdorff-closed must be com-
pact. In the last line of their proof they seem to be asserting, without
stating what hypothesis they are invoking, that any ultrafilter on the
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space must have a unique θ-adherent point and therefore must be con-
vergent. Furthermore, in all three of the proofs of Lemma 3.1, Theorem
3.4, and Theorem 3.5, their conclusion that a certain open ultrafilter has
an adherent (u-adherent) [sw-adherent] point does not require or need to
use the hypothesis that besides the entire space, every closed subspace of
the space be P-closed for the appropriate value of P. Another omission
is that in [12] the authors do not mention that the theorem in Lemma 3.1
was obtained previously by M. Katětov [13] and M. Stone [15], or that in
[11] they had provided a virtually identical proof of this same theorem,
although in [11] they did state that they were providing a new proof of
the theorem and that Katětov and Stone had obtained it and provided
different proofs in their respective papers.

4. Additional Related Assertions Needing
Clarification Or Correction

In response to an e-mail message I sent to the authors of [12] and [11],
one of them sent me a copy of [6]. (This occurred after I had submitted
the original version of this note, i.e., the original version of the preceding
three sections, to Topology Proceedings, and it had been accepted for
publication.) In [6] the authors state that they are giving different proofs
of the answers to the three questions presented in [12] (and in [11] for the
first of the three questions), and they present a number of other assertions
concerning P-closed spaces. Unfortunately, these new proofs also contain
gaps or errors, as do some of the assertions. We base this on the details
discussed below.

The two main assertions in [6] used to justify several of the new proofs
in that article are in lemmas 3.1 and 3.2. Lemma 3.1 of [6] states that
in a Hausdorff-closed (Urysohn-closed) [regular-closed] space every open
ultrafilter has a single point of adherence (u-adherence) [sw-adherence].
The second and third statements of this lemma restate [12, lemmas 3.2
and 3.3], which we have shown are not true. Lemma 3.2 of [6] states that if
W is an ultrafilter on any space X and O = {V : V is open in X and V ⊃
W for some W ∈ W}, then O is an open ultrafilter, and adhθW = adhO
(adhuW = adhuO) [adhswW = adhswO], where each prefix adh, adhθ,
. . . denotes the set of adherent, θ-adherent,. . . points of the designated fil-
ter or filter base. But the following example illustrates that its conclusion,
“O is an open ultrafilter,” is not always true.

Example 4.1. To continue Remark 2.6 above, let X be any space con-
taining two points p and q which do not have disjoint closed neighborhoods
(such as the well-known noncompact, minimal Hausdorff space of Urysohn
described, e.g., in [4] and [2, Example 3.14]), let W be any ultrafilter on X
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which contains the family of all closed neighborhoods of p and the family
of all closed neighborhoods of q, and let O be the open filter base defined
as in [6, Lemma 3.2]. Then O has at least two adherent points, p and q,
and hence it is not a base for any open ultrafilter on X. Moreover, W
has no convergent point.

Proof. For any O ∈ O and open neighborhood N of p, N ∈ W and
O ∈ W , so N ∩ O ̸= ∅, and thus N ∩ O ̸= ∅, which shows that p is an
adherent point of O. Similarly, one notes that q is an adherent point of
O. Since X is Hausdorff, W has no adherent point. �

We consider next some specific instances in [6] of the authors’ use
of lemmas 3.1 and 3.2 in providing answers to questions or proofs of
theorems.

Their Theorem 3.3 states that if every closed subset of a Hausdorff
(Urysohn) [regular] space X is Hausdorff-closed (Urysohn-closed) [regular-
closed], then adhθW (adhuW) [adhswW] is a singleton for any ultrafilter
W on X, and thus X is compact. But their proof of Theorem 3.3 begins
with the statements

Let W be an ultrafilter on X and let O be the open ul-
trafilter from Lemma 3.2. Then from lemmas 3.1 and 3.2,
adhθW (adhuW) [adhswW] = adhO (adhuO) [adhswO] =
{x} for some x ∈ X.

However, our examples 4.1, 2.1, and 2.3 show that O may have more
than one adherent (u-adherent) [sw-adherent] point, and we also note
that in their application of lemmas 3.1 and 3.2, the authors did not need
to use the hypothesis that besides X, every other closed subset of X is
Hausdorff-closed (Urysohn-closed) [regular-closed]. Then they conclude
their proof by asserting, without giving any justification, “Therefore W
converges to x, and X is compact.”

The authors also begin the proofs of theorems 3.5 and 3.14 with the
same use of lemmas 3.1 and 3.2 that was made of them for the proof of
Theorem 3.3, and they assert that Theorem 3.5 improves Theorem 3.3,
and Theorem 3.14 affirmatively answers the question of Mike Girou [7]
and J. Vermeer [18]: If every Hausdorff-closed subspace of a Hausdorff-
closed space is minimal Hausdorff, must the space be compact? So this
question is still open. But in the case of Theorem 3.5, it is difficult for
the reader to interpret the statements in it, for the reasons noted next.

Theorem 3.5 states that if every closed subset of a Hausdorff (Urysohn)
[regular] space X is an H-set (a U -set) [an R-set], then adhθW (adhuW)
[adhswW] is a singleton for any ultrafilter W on X, and thus X is compact.
In Definition 3.4 the authors state
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A set A is called an H-set (U -set) [R-set] if every open
filter base Ω on A satisfies A ∩ adhΩ (A ∩ adhuΩ) [A ∩
adhswΩ] ̸= ∅.

In this definition there is no reference to a containing space, so either they
left it out by mistake, or they want the reader to interpret these concepts
to be absolute rather than relative. If the latter is the case, then as a
result of previously derived characterizations by others of P-closed spaces
(referred to in the first section of this note), Theorem 3.5 has the same
meaning as Theorem 3.3 for the cases H-set or U -set and is ambiguous
for the case R-set (since Herrington’s characterization of regular-closed
spaces does not involve sw-adherence). However, later in [6], the authors
state that they are giving a new proof of a result by Vermeer in [18],
which would suggest to the reader that they intend for an H-set to have
the same meaning as the following one assigned to it by Vermeer and
other authors, such as N. V. Velicko [17], R. F. Dickman, Jr., and Jack R.
Porter [5], or Porter and John Thomas [14] (who used the term H-closed
relative to X): A subset A of a space X is said to be an H-set in X (or,
more briefly, an H-set) provided that every cover of A by sets open in
X has a finite subfamily whose closures in X cover A. (It is known, e.g.,
see [18], that this definition is equivalent to the condition that if Ω is any
open filter base on a space X such that O ∩A ̸= ∅ for every O ∈ Ω, then
there is an adherent point x of Ω in the space X such that x ∈ A.) Under
this usual meaning of H-set, the first statement in [6, Theorem 3.5] is not
true, as shown by the following.

Example 4.2. Dickman and Porter [5, p. 410] note that the require-
ment that every closed subset of a space be an H-set is the same as the
requirement that the space be C-compact in the sense of [19], and they
remark that there are noncompact, C-compact spaces, e.g., as first proved
by Giovanni Viglino in [19].

The authors assert in Corollary 3.15, a corollary to Theorem 3.14, that
they are providing a new proof of Vermeer’s result in [18]: A Hausdorff-
closed space in which every H-set is minimal Hausdorff is compact; how-
ever, as noted above, the proofs of theorems 3.3, 3.5, and 3.14 begin
similarly.

We next state two more theorems, [6, theorems 3.7 and 3.8], and give
examples to show that they are not always true. First, some additional
notation given in [6] is needed. For a subset A of a space X, clu(A)
denotes the set of all points x ∈ X such that for every open set U con-
taining a closed neighborhood of x, U ∩ A ̸= ∅, and clsw(A) denotes the
set of all points x ∈ X such that for every shrinkable family S of open
neighborhoods of x and every S ∈ S, S ∩ A ̸= ∅. (Since {V,X} is a
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shrinkable family of open neighborhoods of x for any open neighborhood
V of x, the set clsw(A) could instead have been defined simply to be
A.) Theorems 3.7 and 3.8 (combined) state that if V is any open set
in a Urysohn-closed (regular-closed) space X, then clu(V ) (clsw(V )) is
Urysohn-closed (regular-closed).

Example 4.3. Let S (E) be the Urysohn-closed (regular-closed) space in
our Example 2.2 (Example 2.4), and V = F (0, 0). Then V is an open
subset of S (E), clu(V ) (clsw(V )) equals the set Wu = {q} ∪ (T × {0})
(Wsw = T × {0}), and since T × {0} is obviously a clopen, Tychonoff,
non-compact subspace of Wu (Wsw), the space clu(V ) (clsw(V )) is not
Urysohn-closed (regular-closed).

The authors use theorems 3.7, 3.8, and 3.9 to form part of the proof of
Theorem 3.10; they assert that the proof of Theorem 3.10 provides a new
proof of a theorem of Girou in [7] and a similar result for Urysohn-closed
spaces and regular-closed spaces, and they use theorems 3.3 and 3.9 to
obtain Theorem 3.13. Unfortunately, they do not provide correct proofs
of these theorems.

Finally, we note that each statement in [6, Theorem 3.9] is either not
true or not new. According to this theorem,

A Hausdorff (Urysohn) [regular] space [X] is Hausdorff-
closed (Urysohn-closed) [regular-closed] if and only if for
every open cover Λ of X there is a finite Λ∗ ⊂ Λ such
that {cl(W ) : W ∈ Λ∗} ({clu(W ) : W ∈ Λ∗}) [{clsw(W ) :
W ∈ Λ∗}] covers X.

The first statement is due to Alexandroff and Urysohn, e.g., see [2] or
Engelking’s General Topology. Since clsw(W ) = W for every subset W of
X, the third statement is false, as the stated condition in it is equivalent
to the requirement that the space X be Hausdorff-closed. The example
below shows that the second statement is also false.

Example 4.4. Let S be the Urysohn-closed space in our Example 2.2.
There exists an open cover W of S such that for every finite F ⊂ W,
{clu(W ) : W ∈ F} does not cover S.

Proof. Herrlich remarks in [10, Example 4] that the space B as in our
Example 2.1 is not Hausdorff-closed, and as noted in examples 2.1 and
2.2, neither is S. Since S is not Hausdorff-closed, there is an open cover
W of S such that for every finite F ⊂ W, {W : W ∈ F} does not
cover S. Hence, for every finite F ⊂ W, infinitely many points of S are
not covered by {W : W ∈ F}. Because each point x ∈ S \ {q} has a
neighborhood base of clopen subsets of S, it follows that for every subset
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W of S, clu(W ) ⊂ {q} ∪ W . Thus, for every finite F ⊂ W, infinitely
many points of S are not covered by {clu(W ) : W ∈ F}. �

5. Concluding Remark

It is important to any research community to have correct information
about the status of unsolved problems. Our purpose in writing this note
is to try to provide correct information to the topological community
about the status of such long standing open problems as some of the ones
considered in the articles [12], [6], and [11], and to point out that in those
articles some of the assertions, proofs, and claimed new proofs of known
results contain gaps or errors.
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