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GEODESIC CURVES ON SHIMURA SURFACES
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Dedicated to the memory of Colin Maclachlan

Abstract. We parametrize the commensurability classes of curves
on Shimura surfaces that are totally geodesic, i.e., the commensu-
rability classes of so-called C-Fuchsian subgroups. In particular, if
a Shimura surface contains one commensurability class of totally
geodesic curves, it contains infinitely many.

1. Introduction

A Shimura surface is the quotient of either the product H2×H2 of two
hyperbolic planes or the unit ball H2

C in C2 by an irreducible arithmetic
lattice. Examples include the normal quasiprojective varieties associated
with the Hilbert and Picard modular groups, along with the solutions to
many moduli problems for principally polarized abelian varieties. Special
amongst the immersed projective algebraic curves on these surfaces are
those which are geodesic for the metric descending from the universal cov-
ering. In this paper, we completely classify the geodesic curves on Shimura
surfaces up to commensurability. A consequence of this classification is
the following.
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Theorem 1.1. Let S be a Shimura surface. If S contains one geodesic
curve, then it contains infinitely many that are pairwise incommensurable.

More specifically, we give a parametrization of the commensurability
classes of geodesic curves that appear on a given Shimura surface. We note
that there are indeed situations, for both H2×H2 and H2

C, where there are
no such curves. See Theorem 3.1 and Theorem 4.1 for the precise state-
ments. We also note that this problem is equivalent to parametrizing the
commensurability classes of what are often called C-Fuchsian subgroups
of π1(S).

The parametrization we give is via quaternion algebras over number
fields. Briefly, this is the correct way to parametrize commensurability
classes of arithmetic Fuchsian groups because the subalgebra of M2(R)
generated by a finite covolume Fuchsian group in SL2(R) is a quater-
nion algebra (see [9, §3.2]). When the Fuchsian group is arithmetic, this
quaternion algebra (along with the number field over which it is defined)
is a complete commensurability invariant [9, §8.4].

These results originally appeared in a 2012 preprint [4], where we ap-
plied Theorem 1.1 to prove a result on generating fundamental groups of
Shimura surfaces using supports of divisors made up of geodesic curves.
That application can be strengthened using very recent work of Martin
Möller and Domingo Toledo [13] or Vincent Koziarz and Julien Maubon
[7]. Since the classification of geodesic curves is of independent interest,
we decided to write the present note.

We now make some historical remarks. Such parametrizations are
known for other classes of arithmetic lattices. The first result of this kind
was the parametrization of Fuchsian subgroups of arithmetic Kleinian
groups by Colin Maclachlan and A. W. Reid [10]. Jeffrey S. Meyer pa-
rameterized commensurability classes of geodesic hyperbolic submanifolds
of certain arithmetic hyperbolic n-manifolds [12]. Very recently, Jouni
Parkkonen and Frédéric Paulin gave a classification for Picard modu-
lar groups [15]. This is a special case of our work, but Parkkonen and
Paulin state the classification in slightly different language; we describe
the equivalence between the two, which follows from elementary quater-
nion algebra arithmetic, at the end of §4. Finally, recent work of the
second author with Benjamin Linowitz studies the generalization of this
problem to arbitrary products of hyperbolic 2- and 3-spaces [8], showing
that the dichotomy “infinitely many commensurability classes or none at
all” does not hold more generally.

The paper is organized as follows. In §2, we give some general facts
on lattices in Lie groups and apply them to the cases of interest in this
paper. In §3, we give the classification for H2 × H2. In §4, we give the
classification for H2

C.
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2. Generalities on Lattices

Let G be a semisimple Lie group with finite center and associated sym-
metric space X of noncompact type. Then X is called Hermitian sym-
metric when it carries a G-invariant complex structure [6, Ch. VIII]. The
quotient of X by any cocompact (nonuniform, respectively) lattice Γ in G
is a projective (quasiprojective, respectively) algebraic variety [1]. Sup-
pose H is a semisimple Lie subgroup of G with finite center and associated
symmetric space Y . There is then a totally geodesic embedding Y → X,
and the totally geodesic subspaces of Γ\X arise from the subgroups H of
this kind such that Γ ∩H is a lattice in H; see [14, §1.4].

When Γ is an arithmetic subgroup of G (see [14, §3.6] for definitions),
it follows that Γ ∩ H is an arithmetic subgroup of H. More precisely,
suppose K0 is a number field and that G is a K0-algebraic group such
that G(R⊗QK0) modulo compact factors is isomorphic to G. Let Γ be an
arithmetic lattice commensurable with the lattice of K0-integral points of
G. Then connected totally geodesic submanifolds of Γ\X are determined
by semisimple F -algebraic subgroups of G for certain F ⊆ K0.

The cases of interest here are where G is either SL2(R) × SL2(R) or
SU(2, 1). The respective hermitian symmetric domains are the product
H2 ×H2 of two hyperbolic planes or the complex hyperbolic plane H2

C.
Therefore, the possible holomorphically embedded totally geodesic sub-
manifolds are Fuchsian curves, that is, quotients of H2 by cocompact
arithmetic subgroups of SL2(R). These lattices are often called arith-
metic Fuchsian groups. See [18] and [9] for an account of the basic theory
of arithmetic Fuchsian groups.

We recall the construction of lattices in SL2(R) and SL2(R)× SL2(R)
in §3 and consider SU(2, 1) in §4.

3. Lattices Acting on H2 and H2 ×H2

We recall from [3, §3] the construction of irreducible arithmetic lattices
acting on products of hyperbolic planes. Let H2 be the hyperbolic plane
and G (X, respectively) be the product of n copies of SL2(R) (H2, respec-
tively). Suppose that K is a totally real number field and A a quaternion
algebra over K that is ramified at exactly n archimedean places of K.
Then there is an algebra surjection π : A⊗K R → M2(R)n whose kernel is
a product of [K : Q] − n copies of the Hamilton quaternion algebra over
R.

Let O be an order of A and let O1 be the multiplicative subgroup of
elements with reduced norm one in O. Then π(O1) is an irreducible lattice
in SL2(R)n. An irreducible lattice Γ < SL2(R)n is arithmetic when it is
commensurable with a group π(O1) constructed in the above way. Two
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arithmetic lattices Γ are commensurable if and only if they have the same
associated totally real field k and quaternion algebra, modulo the action
of Aut(k/Q) [9, Theorem 8.4.7]. An arithmetic lattice Γ is cocompact if
and only if A ̸∼= M2(K).

When n = 1, such Γ are arithmetic Fuchsian groups. When n = 2, a
lattice Γ < G is irreducible if its projection onto any factor is dense in
the analytic topology. A lattice fails to be irreducible in this case if and
only if there is a finite index subgroup that is the direct product of two
Fuchsian groups. All irreducible lattices in G are arithmetic by G. A.
Margulis’s Arithmeticity Theorem [11, p. 2].

Theorem 3.1. Let Γ ⊂ SL2(R)×SL2(R) be an irreducible lattice defined
via the quaternion algebra A over the totally real number field K. Then,
there is a one-to-one correspondence between

(1) commensurability classes of arithmetic Fuchsian subgroups of Γ
and

(2) degree two subfields K0 ⊂ K and Aut(K0/Q)-isomorphism classes
of K0-subalgebras B ⊂ A such that A = B ⊗K0 K.

Thus, Γ contains infinitely many commensurability classes of arithmetic
Fuchsian subgroups if and only if it contains one arithmetic Fuchsian
subgroup.

Proof. We analyze the possible simple subalgebras of A. We first argue
that a subalgebra as in (2) always produces an arithmetic Fuchsian sub-
group of Γ. This is equivalent to showing that every such subalgebra splits
at exactly one real place of K0. This follows immediately from analyzing
the possibly splitting behavior of quaternion algebras under tensor prod-
ucts. Indeed, at real place of K0 at which B is isomorphic to Hamilton’s
quaternions (M2(R), respectively) cannot extend to a real place of K at
which A is isomorphic to M2(R) (Hamilton’s quaternions, respectively),
since Hamilton’s quaternions do not embed in M2(R) and vice versa.

Conversely, let Σ be an arithmetic Fuchsian group with associated to-
tally real field K0 and K0-quaternion algebra B, and suppose that Σ is a
Fuchsian subgroup of Γ. The inclusion of Σ into Γ induces an embedding
of algebras B → A. Indeed, consider

Σ ⊂ Γ ⊂ A,

where we can assume that Γ ⊂ A possibly after passing to a subgroup
of finite index, which has no effect on the commensurability classes of
arithmetic Fuchsian subgroups. If K0 is the invariant trace field of Σ (see
[9], [10]), then the K0-subalgebra of A generated by Σ is K0-isomorphic to
B. It follows immediately that A = B⊗K0 K, so we must show that K0 is
a quadratic subfield of K. However, B splits at exactly one infinite place
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of K0 since it is the quaternion algebra associated with an arithmetic
Fuchsian group. Then the number of real places of K at which B ⊗K0 K
splits is [K : K0], which is 2 by assumption on Γ, so K0 is a quadratic
subfield of K. Therefore, Fuchsian subgroups of Γ arise from subalgebras
as in (2).

The last statement of the theorem can be seen as follows. Let B′ be
another quaternion algebra over K0 such that the places of K0 that ramify
in exactly one of B or B′ do not split in K. Then B⊗K0 K

∼= B′ ⊗K0 K,
so B′ defines another arithmetic Fuchsian subgroup of Γ. Taking B′, not
Aut(K0/Q)-conjugate to B implies that the associated arithmetic Fuch-
sian subgroups form a new commensurability class in Γ. The Chebotarev
density theorem implies that there are infinitely many primes of K0 that
do not split in K; hence, there are infinitely many distinct choices of B′

that produce distinct commensurability classes. �

Example 3.2. To build arithmetic subgroups of SL2(R) × SL2(R) con-
taining no arithmetic Fuchsian subgroups, take K a totally real field with
odd degree over Q and take a K-quaternion algebra unramified at ex-
actly two real places. Then K contains no quadratic subfields, hence no
arithmetic Fuchsian subgroups.

Example 3.3. We now describe how to parametrize the Fuchsian sub-
groups of Hilbert modular groups. Let d be a square-free positive integer,
K = Q(

√
d), and OK be the ring of integers in K. Then the Hilbert mod-

ular groups are ΓK = SL2(OK), which are associated with the quaternion
algebra M2(K). The quaternion algebras associated with Fuchsian sub-
groups of ΓK are then quaternion algebras B/Q such that

B ⊗Q K ∼= M2(K)

and B ⊗Q R ∼= M2(R).
We claim that these are precisely the quaternion algebras B over Q

that admit a Hilbert symbol

B =
(

DK ,n
Q

)
,

where DK is the discriminant of K and 0 ̸= n ∈ Z. Recall that this means
B has a Q-basis {1, I, J, IJ} with I2 = DK , J2 = n, and IJ = −JI.

Since DK > 0, we certainly have that B ⊗Q R ∼= M2(R) (see [9,
§2.5]), and so B is associated with a commensurability class of arith-
metic Fuchsian groups. Furthermore, it is direct from the Hilbert symbol
that K ∼= Q(I) embeds in B; hence, B ⊗Q K ∼= M2(K) and B embeds
in M2(K). Conversely, suppose that K embeds in B. Then there is an
element I ∈ B such that I2 = DK . Since B is noncommutative, one
shows that there exists an element J ∈ B∗ such that IJ = −JI. Scaling
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J by an element of Q, we can assume J2 = n ∈ Z, and thus we see that
B has a Hilbert symbol as above.

4. Lattices Acting on H2
C

First, we quickly recall the standard construction of H2
C. See [5, Ch.

3] for further details. Let V be a rank 3 vector space over C and h a
hermitian form on V of signature (2, 1). If V− denotes the subspace of
h-negative vectors, then H2

C is the space P(V−) of h-negative lines. There
is a natural biholomorphism from H2

C with the metric determined by h
to the unit ball in C2 with the Bergman metric.

Totally geodesic holomorphic embeddings of H2 in H2
C arise from rank

2 subspaces of V on which the restriction of h to V has signature (1, 1).
Taking the h-orthogonal complement, it follows that holomorphic totally
geodesic embeddings of H2 into H2

C are in one-to-one correspondence with
h-positive lines in V . See [5, §3.3.1] and [2, §12.2].

There are two constructions of arithmetic subgroups of SU(2, 1). By [2,
Ch. 8] or [13], the only arithmetic lattices in SU(2, 1) that contain totally
geodesic surfaces are those of so-called simple type (also sometimes called
first type). These are defined as follows.

Recall that a CM-pair K/K0 is a totally imaginary quadratic extension
of a totally real number field. Let z 7→ z be the nontrivial automorphism
of K over K0 and h be a hermitian form on K3 such that h is indefinite
at precisely one Gal(K/K0)-conjugate pair of embeddings of K into C. If
O is the integer ring of K, the K0-algebraic group

SU(h) = {x ∈ SL3(K) : txhx = h},

contains the discrete subgroup Γ1
O = SU(h)∩SLr(O). Then Γ1

O projects to
a lattice in SU(2, 1) since h is indefinite above exactly one real embedding
of K0. It is known that the commensurability class of Γ1

O in SU(2, 1)
depends only on K, not the choice of hermitian form (see [16, §1.2]). The
lattice Γ1

O is cocompact if and only if K0 ̸= Q.
Recall that the arithmetic quotients of H2

C that are not of simple
type contain no totally geodesic curves. The following classifies and
parametrizes the possible arithmetic Fuchsian subgroups of arithmetic
lattices in SU(2, 1) of simple type.

Theorem 4.1. Let Γ < SU(2, 1) be an arithmetic lattice of simple type
with associated CM-pair K/K0. Then there is a one-to-one correspon-
dence between

(1) commensurability classes of arithmetic Fuchsian subgroups of Γ
corresponding to totally geodesic projective algebraic curves on
Γ\H2

C and
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(2) Aut(K0/Q)-isomorphism classes of K0-quaternion algebras A that
ramify at all but one infinite place of K0 and at any finite set of
nonarchimedean places that do not split in K/K0.

In particular, any such Γ contains infinitely many distinct commensura-
bility classes of such arithmetic Fuchsian subgroups.

Proof. Assume that h is a hermitian form on V = K3 that is indefinite
above exactly one archimedean place of K0. Let W ∼= K2 ⊂ V be the h
orthogonal complement of a line in V that is h-positive at the archimedean
place of K0 over which h is indefinite, and let hW be the restriction of h to
W . By our earlier discussion of holomorphic embeddings of H2 into H2

C,
the pair (W,hW ) determines a maximal arithmetic Fuchsian subgroup
ΣW of Γ associated with a holomorphic curve on Γ\H2

C, and all such
curves arise in this way. We now proceed to determine the K0-quaternion
algebra associated to this arithmetic Fuchsian group ΣW .

There is a natural homomorphism from ΣW to SL2(K). Furthermore,
the K0-subalgebra B of M2(K) generated by ΣW is four-dimensional and
noncommutative, so it is a quaternion algebra. Since hW is indefinite at
exactly one infinite place of K0 and B embeds into M2(K) (i.e., K splits
B), B must satisfy condition (2) of the theorem.

Conversely, suppose B is a quaternion algebra over K0 satisfying the
conditions in (2). We must show that there is a commensurability class
of arithmetic Fuchsian subgroups of Γ associated with B. Condition (2)
implies that we have an embedding of K into B, so B is a two-dimensional
left vector space over K. The nontrivial automorphism of K over K0

extends to an anti-involution z → z of B over K0.
There is a left K-linear action of B on itself under which z ∈ B acts

on x ∈ B by x 7→ x · z. This embeds B into Mat2(K). Let Tr : B → K
be the composition of this embedding with the trace. Identifying B with
K2, we obtain a hermitian form on K2 by

hB(x, y) = Tr(xy),

for x, y ∈ B.
Now, consider the hermitian form HB on K3 defined as follows. Write

K3 = W ⊕ ℓ, where W is two-dimensional and ℓ is a line. Let the restric-
tion of HB to W be hB , let ℓ be HB-orthogonal to W , and let the HB-norm
of some generator of ℓ be the totally positive number det(h)/det(hB) in
K0. By [17, Ch. 10, Example 1.8(iii)], K3 equipped with HB is isomor-
phic as a hermitian vector space to K3 equipped with h. This realizes
the elements B1 of reduced norm 1 inside SU(h) as the stabilizer of the
subspace W . Then Γ ∩ B is an arithmetic Fuchsian subgroup of Γ with
associated quaternion algebra B. This completes the proof. �
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Example 4.2. In [15], Parkkonen and Paulin recently parameterized the
C-Fuchsian subgroups of the Picard modular groups. Recall that the
Picard modular groups define the commensurability classes of nonuniform
arithmetic lattices in PU(2, 1) and are defined by hermitian forms over
imaginary quadratic fields. In other words, the CM pair is K/Q for some
imaginary quadratic field K.

Theorem 4.1 identifies Fuchsian subgroups of the Picard modular groups
with Q-quaternion algebras A that are unramified at the infinite place of
Q and that ramify at a (possibly empty) set of rational primes that do
not split in K. In particular, K embeds as a subfield of A. Arguing as in
the above example of Hilbert modular groups, we see that A has a Hilbert
symbol of the form

A =
(

DK ,n
Q

)
,

where DK is the discriminant of K and we can assume that n is square-
free. Then A ⊗Q R ∼= M2(R) if and only if n > 0, and we obtain the
classification given in [15].
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