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STRONGLY SYMMETRIC COMPACTIFICATIONS

N. ADU, H. BOUSTIQUE, AND G. RICHARDSON

Abstract. Convergence approach spaces, defined by E. Lowen
and R. Lowen [A quasitopos containing CONV and MET as full
subcategories, Internat. J. Math. Math. Sci. 11 (1988)], pos-
sess both quantitative and topological properties. These spaces
are equipped with a structure which provides information as to
whether or not a sequence or filter approximately converges. Paul
Brock and D. C. Kent [Approach spaces, limit tower spaces, and
probabilistic convergence spaces, Appl. Categ. Structures 5 (1997)]
show that the category of convergence approach spaces with con-
tractions as morphisms is isomorphic to the category of limit tower
spaces. Properties of the category of strongly symmetric limit tower
spaces are studied here. In particular, a characterization of the
limit tower spaces which possess a strongly symmetric compactifi-
cation is given. Moreover, one-point strongly symmetric compact-
ifications of limit tower spaces are studied.

1. Introduction and Preliminaries

The category AP of approach spaces was defined by R. Lowen in 1989
[10]. The category AP contains the categories TOP and MET as full sub-
categories and possesses both quantitative and topological-like properties.
In particular, information as to whether a sequence or filter approximately
converges is provided by the approach structure. E. Lowen and R. Lowen
[9] embedded AP in the quasitopos CAP of convergence approach spaces.
These and other results and references can be found in the monograph by
R. Lowen [11].

The framework of the present paper is the category LTS of limit tower
spaces. Paul Brock and D. C. Kent show in [3, Theorem 9] that CAP
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and LTS are isomorphic categories. The primary purpose of our work is
to characterize the objects in LTS which possess a strongly symmetric
compactification.

Let X be a set, F(X) the set of all filters on X, and 2X the power set
of X, and let ẋ denote the filter on X whose base is {{x}}.
Definition 1.1. The pair (X, q) is called a limit space and q a limit
structure on X provided q : F(X) → 2X satisfies

(L1) x ∈ q(ẋ) for each x ∈ X,
(L2) F ⊆ G implies q(F) ⊆ q(G),
(L3) q(F) ∩ q(G) ⊆ q(F ∩ G).

The more intuitive notation F
q−→ x (F q-converges to x) is used in place

of x ∈ q(F). A map f : (X, q) → (Y, p) between two limit spaces is said to
be continuous if f→F

p−→ f(x) whenever F
q−→ x, where f→F denotes the

filter on Y whose base is {f(F ) : F ∈ F}. Let LIM denote the category
consisting of all the limit spaces and continuous maps. Then LIM is a
topological construct in the sense of Jiří Adámek et al. [1]. Define LS(X)
to be the set of all limit structures on X. If p, q ∈ LS(X), p ≤ q means
that F p−→ x whenever F q−→ x. Then (LS(X),≤) is a poset with the largest
(smallest) member the discrete (indiscrete) topology, respectively. Given
qj ∈ LS(X), j ∈ J , q =

∨
j∈J

qj exists, and is defined by F
q−→ x if and only

if for each j ∈ J , F
qj−→ x. Hence, (LS(X),≤) is a complete lattice. A

limit space (X, q) is said to be Hausdorff if each filter on X has at most
one limit, and is called regular provided that clq F

q−→ x whenever F
q−→ x,

where clq F denotes the filter on X whose base is {clq F : F ∈ F}.
Definition 1.2. The pair (X, q̄), where q̄ = (qα), 0 ≤ α ≤ ∞, is a family
of limit structures on X, is called a limit tower space and q̄ a limit tower
on X provided

(LT1) q∞ is the indiscrete topology,
(LT2) 0 ≤ α ≤ β ≤ ∞ implies that qα ≥ qβ ,
(LT3)

∨
β>α

qβ = qα, for each 0 ≤ α < ∞ (right continuity).

A map f : (X, q̄) → (Y, p̄) between two limit tower spaces is called a
contraction whenever f : (X, qα) → (Y, pα) is continuous in LIM for each
0 ≤ α ≤ ∞. Let LTS denote the category of all limit tower spaces and
contraction maps. Given limit towers p̄ and q̄ on X, define q̄ ≤ p̄ to mean
that for each 0 ≤ α ≤ ∞, qα ≤ pα in LS(X).

Definition 1.3. The pair (X, q̄), where q̄ = (qα), 0 ≤ α ≤ ∞, is a family
of limit structures on X, is said to be a generalized limit tower space if it
obeys (LT1) and (LT2).
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A contraction between two generalized limit tower spaces is defined
as in LTS. Let GLTS denote the category consisting of all the general-
ized limit tower spaces and contraction maps. Both GLTS and LTS are
topological constructs in the sense of [1].

Definition 1.4. An object (X, q̄) ∈ |GLTS|, where q̄ = (qα), 0 ≤ α ≤
∞, is called Hausdorff whenever (X, q0) is a Hausdorff limit space and
strongly regular provided that (X, qα) is a regular limit space for each
0 ≤ α ≤ ∞.

The notions of regular and strongly regular limit tower spaces are de-
fined and studied by Brock and Kent [4].

A generalized limit tower space (X, q̄), where q̄ = (qα), 0 ≤ α ≤ ∞,
is said to be compact provided that each ultrafilter on X q0-converges;
equivalently, it follows from axiom LT2 that (X, q̄) is compact if and only
if each ultrafilter on X qα-converges for each 0 ≤ α ≤ ∞. As usual,
((Y, p̄), f) is called a compactification of (X, q̄) in GLTS (LTS) whenever
(Y, p̄) is compact and f : (X, q̄) → (Y, p̄) is a dense embedding in GLTS
(LTS). An embedding f : (X, q̄) → (Y, p̄) is said to be dense whenever
clp0 f(X) = Y .

Definition 1.5. Assume that (X, q̄) ∈ |GLTS|; define the limit tower
structure lq̄ = (lq̄)α, 0 ≤ α ≤ ∞, of q̄ as follows:

(i) (lq̄)∞ is the indiscrete topology on X;

(ii) for 0 ≤ α < ∞, F
(lq̄)α−−−→ x if and only if for each β > α, F

qβ−→ x.

Observe that if (X, q̄) ∈ |GLTS|, then (X, lq̄) ∈ |LTS|. Given (X, q̄) ∈
|GLTS|, let η denote the set of all ultrafilters on X which fail to q0-
converge. Define ⟨G⟩ = {G} for each G ∈ η and X∗ = X ∪ {⟨G⟩ : G ∈ η},
and let j : X → X∗, j(x) = x be the natural injection. For A,B ⊆ X,
A∗ := A ∪ {⟨G⟩ : A ∈ G}, and note that A∗ ∩ B∗ = (A ∩ B)∗ and
(A ∪ B)∗ = A∗ ∪ B∗. Let F∗ denote the filter on X∗ whose base is
{F ∗ : F ∈ F} where F ∈ F(X).

Definition 1.6. Given (X, q̄) ∈ |GLTS|, define p̄ = (pα), 0 ≤ α ≤ ∞, on
X∗ as follows:

(i) p∞ is the indiscrete topology on X∗,
(ii) H

pα−−→ j(x) if and only if H ≥ F∗ for some F
qα−→ x, 0 ≤ α < ∞,

(iii) H
pα−−→ ⟨G⟩ if and only if H ≥ G∗, 0 ≤ α < ∞.

The following two theorems are proved in [2] and are used here.

Theorem 1.7. Let (X, q̄) ∈ |GLTS|(|LTS|). Then ((X∗, p̄), j) defined
above is a compactification of (X, q̄) in GLTS (LTS). Moreover, (X∗, p̄)
is Hausdorff whenever (X, q̄) is Hausdorff.
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An object (X, q̄) ∈ |GLTS| is said to be q0-regular if clq0 F
qα−→ x

whenever F
qα−→ x, where q̄ = (qα), 0 ≤ α ≤ ∞. Note that this definition

is weaker than strong regularity as given in Definition 1.4.

Theorem 1.8. Assume that (X, q̄) ∈ |GLTS| and ((X∗, p̄), j) is the com-
pactification given in Theorem 1.7. Suppose that f : (X, q̄) → (Y, r̄) is
contraction, where (Y, r̄) ∈ |GLTS| is compact and r0-regular. Then there
exists a contraction f∗ : (X∗, p̄) → (Y, r̄) such that f∗ ◦ j = f .

Definition 1.9 ([11]). The pair (X,λ) is called a convergence approach
space provided λ : F(X) → [0,∞]X satisfies the following:

(CAS1) λ(ẋ)(x) = 0 for all x ∈ X,
(CAS2) F ⊆ G implies λ(G) ≤ λ(F),
(CAS3) λ(F ∩ G) = λ(F) ∨ λ(G).

A map f : (X,λ) → (Y, σ) between two convergence approach spaces
is called a contraction if σ(f→F)(f(x)) ≤ λ(F)(x) for each F ∈ F(X) and
x ∈ X. Let CAP denote the category of all convergence approach spaces
and contraction maps. Define G : LTS → CAP by G(X, q̄) = (X,λ) and
G(f) = f , where λ(F)(x) =

∧
{α ∈ L : F

qα−→ x} whenever F ∈ F(X)
and x ∈ X. As mentioned earlier, it is shown in [3, Theorem 9] that
the functor G is an isomorphism from LTS onto CAP. Moreover, given
(X, q̄) ∈ |LTS|, let (X,λ) = G(X, q̄). G. Jäger [5] has constructed a com-
pactification of any (X,λ) ∈ |CAP|. It can be shown that G(X∗, p̄) co-
incides with Jäger’s compactification of (X,λ) in CAP, where ((X∗, p̄), j)
is the compactification of (X, q̄) in LTS given in Theorem 1.7 above.

2. Compactification

Symmetric limit spaces have additional features not possessed by reg-
ular limit spaces. This notion is extended to the category of limit tower
spaces. The primary result of this section is the characterization of
the limit tower spaces possessing a strongly symmetric compactification.
First, some preliminary definitions are given.

Definition 2.1 ([7]). The object (X, q) ∈ |LIM| is called symmetric pro-
vided that

(i) (X, q) is regular and
(ii) F

q−→ z and ż
q−→ x imply that F

q−→ x.
Further, (X, q̄) ∈ |GLTS| is said to be strongly symmetric whenever each
(X, qα) is symmetric for each 0 ≤ α ≤ ∞.

Definition 2.2 ([8]). An object (X, q) ∈ |LIM| is reciprocal if it is induced
by a Cauchy space in the sense of [6]. Moreover, (X, q̄) ∈ |GLTS| is called
strongly reciprocal provided that (X, qα) is reciprocal for each 0 ≤ α ≤ ∞.
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H. H. Keller [6] proved that a limit space is induced by a Cauchy space
(complete Cauchy space) if and only if for each pair of distinct elements
in X, their convergent filters either coincide or are disjoint.

Lemma 2.3. Assume that (X, q̄) ∈ |GLTS| is strongly regular. Then
(X, q̄) is strongly symmetric if and only if it is strongly reciprocal.

Proof. Suppose that (X, q̄) is strongly symmetric and G
qα−→ x, z, for some

0 ≤ α ≤ ∞ and x ̸= z. Then ż ≥ clqα G, and thus ż
qα−→ x. If F qα−→ z,

it follows that F
qα−→ x, and thus F

qα−→ z if and only if F qα−→ x. Hence,
(X, q̄) is strongly reciprocal. Conversely, assume that (X, q̄) is strongly
reciprocal and suppose that for some 0 ≤ α ≤ ∞, F qα−→ z and ż

qα−→ x.
It follows that F

qα−→ z if and only if F qα−→ x, and thus (X, q̄) is strongly
symmetric. �

Given that (X, q) ∈ |LIM|, let rq denote the finest regular limit struc-
ture on X which is coarser than q. Define σq to be the following conver-
gence structure on X:

F
σq−→ x iff ∃ z ∈ X such that F

rq−→ z and ż
rq−→ x.

It is shown [7] that (X,σq) is the finest symmetric convergence space
which is coarser than (X, q); however, σq may not be a limit structure.
Let Lσq denote the finest limit structure on X which is coarser that σq;
that is,

H
Lσq−−→ x iff H ≥

n∩
i=1

Fi, for some Fi
σq−→ x, 1 ≤ i ≤ n.

Let SGLTS (SLTS) denote the full subcategory of GLTS (LTS) whose
objects consist of all the strongly symmetric objects in GLTS (LTS).

Lemma 2.4. The category SLTS is concretely reflective in GLTS, and
for (X, q̄) ∈ |GLTS|, the reflection morphism is given by idX : (X, q̄) →
(X, lLσq̄). Also, (X, lLσq̄) ∈ |SLTS|.

Proof. First, it is shown that for 0 ≤ α ≤ ∞ fixed, (X,Lσqα) is symmet-
ric. Observe that if A ⊆ X, then clLσqα A = clσqα A and since (X,σqα) is

regular, (X,Lσqα) obeys Definition 2.1(i). Next, assume that H
Lσqα−−−→ z

and ż
Lσqα−−−→ x. Then there exist Fi

σqα−−→ z and Gj
σqα−−→ x such that

H ≥
n∩

i=1

Fi and ż ≥
m∩
j=1

Gj . It follows that ż ≥ Gj for some 1 ≤ j ≤ m,

and thus ż
σqα−−→ x. Since (X,σqα) is symmetric, Fi

σqα−−→ x for each
1 ≤ i ≤ n, and thus H

Lσqα−−−→ x. Hence, (X,Lσqα) satisfies Definition
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2.1(ii), and thus (X,Lσqα) is symmetric for each 0 ≤ α ≤ ∞. It follows
by construction that (X,Lσqα) is the finest symmetric limit space which
is coarser than (X, qα), 0 ≤ α ≤ ∞, and hence (X,Lσq̄) ∈ |SGLTS|.

Since (X,Lσq̄) is strongly regular, it follows from [2, Lemma 3.1]
that (X, lLσq̄) ∈ |LTS| is also strongly regular. Moreover, suppose that

H
(lLσq̄)α−−−−−→ z and ż

(lLσq̄)α−−−−−→ x, where 0 ≤ α ≤ ∞. Then for each
β > α, H

Lσqβ−−−→ z and ż
Lσqβ−−−→ x. Since (X,Lσqβ) is a symmetric

limit space, H
Lσqβ−−−→ x for each β > α, and thus H

(lLσq̄)α−−−−−→ x. Hence,
(X, lLσq̄) ∈ |SLTS| and idX : (X, q̄) → (X, lLσq̄) is a morphism in GLTS.
Assume that (Y, r̄) ∈ |SLTS| and f : (X, q̄) → (Y, r̄) is a contraction in
GLTS. Since contractions are preserved under the operations of σ, L, and
l, it follows that f : (X, lLσq̄) → (Y, r̄) is a contraction in SLTS. Hence,
SLTS is concretely reflective in GLTS. �

Let (X, q) ∈ |LIM| and define δq to be the initial structure on X with
respect to the source fj : X → (R, τ), where τ is the usual topology
on the reals and j indexes the set of all bounded, continuous real-valued
functions defined on (X, q). Then δq is a completely regular topology.
The subconstruct of all completely regular topological spaces is concretely
reflective in LIM and, for (X, q) ∈ |LIM|, the reflection morphism is idX :
(X, q) → (X, δq). Further, if (X, q̄) ∈ |GLTS|, define δq̄ = (δqα), 0 ≤ α ≤
∞. Then (X, δq̄) ∈ |GLTS|, and (X, q̄) is said to be strongly completely
regular whenever q̄ = δq̄.

Theorem 2.5 ([7]). Let (X, q) be a compact symmetric limit space; then
q and δq agree on ultrafilter convergence. In particular, clq A = clδq A for
each A ⊆ X.

Theorem 2.6. Assume that (X, q̄) ∈ |GLTS|(|LTS|). Then (X, q̄) has
a strongly symmetric compactification if and only if (X, q̄) is strongly
symmetric and q̄ and δq̄ agree on ultrafilter convergence. Moreover, each
contraction f : (X, q̄) → (Y, r̄) into a compact strongly symmetric object
in GLTS (LTS) can be extended to a contraction on the corresponding
compactification.

Proof. Suppose that ((Y, p̄), f) is a strongly symmetric compactification
of (X, q̄) in LTS. Since the property of being strongly symmetric is hered-
itary, (X, q̄) is strongly symmetric. Moreover, assume that F is an ultra-
filter for which F

δqα−−→ x for some 0 ≤ α ≤ ∞. Since f : (X, δqα) →
(Y, δpα) is continuous, f→F

δpα−−→ f(x), and thus by Theorem 2.1, f→F
pα−−→

f(x). Hence, F qα−→ x, and thus q̄ and δq̄ agree on ultrafilter convergence.
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Conversely, assume that (X, q̄) is strongly symmetric and q̄ and δq̄
agree on ultrafilter convergence. Let ((X∗, p̄), j) denote the compactifica-
tion of (X, q̄) given in Theorem 1.7. According to Lemma 2.4, (X∗, lLσp̄) ∈
|SLTS| and is compact since lLσp̄ ≤ p̄; hence, j : (X, q̄) → (X∗, lLσp̄) is a

contraction. Conversely, suppose that F ∈ F(X) such that j→F
(lLσp̄)α−−−−−→

j(x). Then for each β > α, j→F
(Lσp̄)β−−−−→ j(x). It remains to show that

for each β > α, F
qβ−→ x. Fix β > α; then j→F

(Lσp̄)β−−−−→ j(x) implies that

j→F ≥
n∩

i=1

Hi for some Hi
σpβ−−→ j(x), 1 ≤ i ≤ n. Since j→F ≥

n∩
i=1

Hi,

one can assume that j(X) ∈ Hi for each 1 ≤ i ≤ n.
Fix 1 ≤ i ≤ n and recall that Hi

σpβ−−→ j(x) implies that there exists
y ∈ X∗ such that Hi

rpβ−−→ y and ẏ
rpβ−−→ j(x). First, suppose that y = j(z)

for some z ∈ X. As shown in [12], there exists K
pβ−→ j(z) such that

Hi ≥ clnrpβ
K. Employing the definition of pβ , there exists L

qβ−→ z such
that K ≥ L∗. Then Hi ≥ clnrpβ

K ≥ clnrpβ
L∗ ≥ cln+1

rpβ
j→L ≥ clδpβ

j→L.
Since j(X) ∈ Hi, j←Hi ≥ j←(clδpβ

j→L) = clδqβ L, and thus clδqβ L =

clqβ L
qβ−→ z. Hence, j←Hi

qβ−→ z, and a similar argument shows that
ż = j←(j→(ż))

qβ−→ x. Since (X, q̄) is strongly symmetric, j←Hi
qβ−→ x.

Next, assume that y = ⟨G⟩; then Hi
rpβ−−→ ⟨G⟩ and ⟨Ġ⟩ rpβ−−→ j(x).

It is shown that G
qβ−→ x. Indeed, if G 9 qβx, then since qβ and δqβ

agree on ultrafilter convergence, there exists a bounded, continuous g :
(X, δqβ) → R such that g→G 9 g(x) on R. Since g has a continuous
extension h : (X∗, δpβ) → R, h→(j→G) = g→G 9 g(x) on R. However,
⟨Ġ⟩ rpβ−−→ j(x) implies that h→(⟨Ġ⟩) → h(j(x)) = g(x) on R. This is
contrary to the fact that h(⟨G⟩) = limh→(j→G) = lim g→G ̸= g(x) on
R. Hence, G

qβ−→ x, and thus Hi ≥ clnrpβ
j→G ≥ clδpβ

j→G implies that

j←Hi ≥ clδqβ G = clqβ G
qβ−→ x. Therefore, F ≥

n∩
i=1

j←Hi
qβ−→ x for each

β > α, and thus F
qα−→ x. Hence, j : (X, q̄) → (X∗, lLσp̄) ∈ |SLTS| is a

dense embedding.
According to Theorem 1.2, the contraction f : (X, q̄) → (Y, r̄) can

be extended to a contraction f∗ : (X∗, p̄) → (Y, r̄) with f∗ ◦ j = f .
Due to invariance properties of contractions, f∗ : (X∗, lLσp̄) → (Y, r̄)
is a contraction in LTS. A similar argument holds whenever (X, q̄) ∈
|GLTS|. �

Assuming that (X, q̄) has a strongly symmetric compactification, it is
shown below that the compactification constructed in Theorem 2.6 can
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be obtained by modifying the strongly regular compactification given in
[2, Theorem 3.2] and stated below. The following terminology is needed:
A limit space (X, q) is said to be δ-regular if clδq F

q−→ x whenever F
q−→

x; moreover, (X, q̄) ∈ |GLTS| is called strongly δ-regular whenever each
(X, qα), 0 ≤ α ≤ ∞, is δ-regular.

Definition 2.7. Given (X, q̄) ∈ |GLTS| and (X∗, p̄) of Definition 1.6,
define s̄ = (sα), 0 ≤ α ≤ ∞, on X∗ as follows:

(i) s∞ is the indiscrete topology,
(ii) H

sα−→ j(x) if and only if H ≥ clδpα j→F for some F
qα−→ x,

0 ≤ α ≤ ∞,
(iii) H

sα−→ ⟨G⟩ if and only if H ≥ clδpα j→G, where G ∈ η.
Then (X∗, s̄) ∈ |GLTS| and (X∗, ls̄) ∈ |LTS|.

Theorem 2.8 ([2]). An object (X, q̄) ∈ |GLTS|(|LTS|) has a strongly
regular compactification in GLTS (LTS) if and only if (X, q̄) is strongly
δ-regular. Moreover, if (X, q̄) ∈ |GLTS|(|LTS|) is strongly δ-regular, then
((X∗, s̄), j) (((X∗, ls̄), j)) is a strongly regular compactification in GLTS
(LTS), respectively.

Theorem 2.9. Assume that (X, q̄) has a strongly symmetric compactifi-
cation in GLTS (LTS). Then σs̄ = σp̄ and ((X∗, Lσs̄), j), (((X∗, lLσs̄), j))
is a strongly symmetric compactification of (X, q̄) in GLTS (LTS), respec-
tively.

Proof. It follows from the definition of s̄ that pα ≥ sα ≥ δpα; hence,
σpα ≥ σsα ≥ δpα and δpα = δsα, 0 ≤ α ≤ ∞. Since (X∗, σpα) is a
compact symmetric convergence space, it follows from Theorem 2.5 that
clδpα = clσpα . Therefore, if H

sα−→ j(x), then H ≥ clδpα j→F for some
F

qα−→ x, and thus H ≥ clσpα j→F
σpα−−→ j(x). Likewise, if H sα−→ ⟨G⟩, then

H ≥ clσpα j→G
σpα−−→ ⟨G⟩, and thus sα ≥ σpα. It follows that σpα = σsα,

0 ≤ α ≤ ∞, and hence σp̄ = σs̄. In particular, Lσs̄ = Lσp̄ (lLσs̄ =
lLσp̄). �

A compactification ((Y, r̄), f) of (X, q̄) in GLTS is called strict if H rα−→
y implies that there exists an F ∈ F(X) such that f→F

rα−→ y and H ≥
clrα f→F for each 0 ≤ α ≤ ∞. It is shown below that every strongly
symmetric compactification in GLTS can be modified to give a strict,
strongly symmetric compactification in GLTS. The authors are unable to
extend this result to the category LTS.

Theorem 2.10. Suppose that (X, q̄) ∈ |GLTS| has a strongly symmetric
compactification. Then it possesses a strict, strongly symmetric compact-
ification in GLTS.



STRONGLY SYMMETRIC COMPACTIFICATIONS 131

Proof. Let ((Y, r̄), f) denote a strongly symmetric compactification of
(X, q̄) in GLTS. Define t̄ = (tα), 0 ≤ α ≤ ∞ as

H
tα−→ y iff ∃F ∈ F(X) such that f→F

rα−→ y and H ≥ clrα f→F.

Then (Y, tα) ∈ |LIM|, 0 ≤ α ≤ ∞, and t∞ is the indiscrete structure. If
0 ≤ α ≤ β, then rα ≥ rβ implies that tα ≥ tβ , and thus (Y, t̄) ∈ |GLTS|.
Observe that t̄ ≥ r̄. Next, tα and rα agree on convergence of ultrafilters.
Indeed, assume that H

rα−→ y where H is an ultrafilter, and thus there
exists an ultrafilter F on X such that H ≥ clrα f→F. Then f→F

rα−→ z

for some z ∈ X, and since (Y, rα) is regular, clrα f→F
rα−→ z. Hence,

H
rα−→ y, z and since (Y, rα) is symmetric, y and z possess the same rα-

convergent filters. Then clrα f→F
rα−→ y and H

tα−→ y; therefore, tα and
rα agree on convergence of ultrafilter.

It is shown that (Y, t̄) is strongly regular. Indeed, suppose that H tα−→ y;
then there exists F ∈ F(X) such that f→F

rα−→ y and H ≥ clrα f→F.
Since (Y, rα) is compact and symmetric, clrα H ≥ cl2rα f→F = clrα f→F

rα−→
y. It follows that clrα H

tα−→ y and, since cltα H = clrα H, cltα H
tα−→ y.

Therefore, (Y, t̄) is strongly regular. Observe that ((Y, t), f) is strict. In-
deed, if H

tα−→ y, then there exists F ∈ F(X) such that f→F
rα−→ y

and H ≥ clrα f→F. However, f→F
tα−→ y, and thus H ≥ clrα f→F =

cltα f→F. Hence, ((Y, t̄), f) is a strict, strongly regular compactification
of (X, q̄) in GLTS.

It remains to verify that (Y, t̄) is strongly symmetric. Assume that
H

tα−→ z and ż
tα−→ y; then there exists an F ∈ F(X) such that f→F

rα−→ z

and H ≥ clrα f→F. Since ż
rα−→ y and (Y, rα) is symmetric, f→F

rα−→ y.
It follows that H

tα−→ y, and thus (Y, tα) is symmetric. Hence, ((Y, t̄), f)
is a strict, strongly symmetric compactification of (X, q̄) in GLTS. �

3. One-Point Compactification

Necessary and sufficient conditions for a limit tower space to have a
strongly symmetric compactification are provided in Theorem 2.6. One-
point strongly symmetric compactifications are considered here. First,
one-point symmetric compactifications in LIM are discussed. Let SLIM
denote the full subcategory of LIM consisting of all the symmetric objects
in LIM.

Definition 3.1. An object (X, q) ∈ |LIM| is called locally compact pro-
vided that each convergent filter contains a q-compact subset of X. More-
over, (X, q̄) ∈ |GLTS| is said to be strongly locally compact whenever each
(X, qα) is a locally compact limit space for each 0 ≤ α ≤ ∞.
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It is shown below that local compactness is a necessary condition for
a limit space to have a one-point symmetric compactification. However,
examples exist of symmetric limit spaces which fail to be locally compact
but possess a regular compactification in LIM. Additional assumptions
beyond strong local compactness are needed to guarantee the existence of
a one-point strongly symmetric compactification in GLTS.

Theorem 3.2. Assume that (X, q) ∈ |SLIM| is not compact. Then (X, q)
has a one-point symmetric compactification in LIM if and only if (X, q)
is locally compact and q and δq agree on ultrafilter convergence.

Proof. Suppose that ((Y, p), f) is a one-point symmetric compactification
of (X, q) where Y − f(X) = {b}. Assume that F

q−→ x; then clq F =

clδq F
q−→ x. If F fails to have a q-compact member, then for each F ∈ F

there exists an ultrafilter HF such that clq F ∈ HF and HF fails to q-
converge. It follows that f→HF

p−→ b, and thus b ∈ clp f(clq F ) for each
F ∈ F. Hence, ḃ ≥ clp f

→(clq F)
p−→ f(x). Since (Y, p) is symmetric, b and

f(x) agree on ultrafilter convergence. Hence, for each F ∈ F, HF
q−→ x,

which is a contradiction, and therefore (X, q) is locally compact.
Conversely, assume that (X, q) is locally compact, symmetric, and q

and δq agree on ultrafilter convergence. Denote X̂ = X ∪ {w}, w /∈ X,
and let j : X → X̂, j(x) = x, x ∈ X be the natural injection. Define q̂ as

(i) H
q̂−→ j(x) if and only if j(X) ∈ H and j←H

q−→ x;
(ii) H

q̂−→ w if and only if either H = ẇ or αq(j
←H) = ∅, where

αq(j
←H) denotes the set of all adherence points of j←H.

It easily follows that (X̂, q̂) ∈ |LIM|. Observe that if H
q̂−→ j(x), then

there exists an F
q−→ x such that H ≥ j→F. Since clq F = clδq F

q−→ x and
(X, q) is locally compact, F contains a q-closed, q-compact set A, and it
follows that w /∈ clq̂ j(A). Hence, clq̂ H ≥ clq̂ j

→F = j→(clq F), and thus

clq̂ H
q̂−→ j(x). Next, suppose that H

q̂−→ w. If H = ẇ, then ẇ 9 q̂j(x)

implies that clq̂ H = ẇ
q̂−→ w. Now consider the case that whenever H q̂−→ w

and j←H = G exists, then αq(G) = ∅. It remains to show that clq̂ H
q̂−→ w.

Since ẇ 9 q̂j(x) and q and δq agree on ultrafilter convergence, it follows
that αq(j

← clq̂ H) = αq(clq G) = αδq(clδq G) = αδq(G) = αq(G) = ∅, and

thus clq̂ H
q̂−→ w. Hence, (X̂, q̂) is regular.

It is shown that (X̂, q̂) is symmetric. Assume that H q̂−→ t and ṫ
q̂−→ j(x).

If t = j(z), then H ≥ j→F for some F
q−→ z, and ˙j(z)

q̂−→ j(x) implies that
ż

q−→ x. Hence, F q−→ x and H
q̂−→ j(x). Since ẇ 9 q̂j(x), t = w is not

possible. Next, suppose that H
q̂−→ t and ṫ

q̂−→ w. Then ẇ
q̂−→ t, and thus
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t = w; hence, H q̂−→ w. Therefore, (X̂, q̂) is symmetric, j : (X, q) → (X̂, q̂)

is a dense embedding, and (X̂, q̂) is compact; thus, ((X̂, q̂), j) is a one-
point symmetric compactification of (X, q). �

Let (X, q̄) ∈ |GLTS| be symmetric and assume that (X, q0) is not
compact. Denote A = {F ∈ F(X) : αq0(F) = ∅} and, for each fixed
0 < α < ∞, define Bα = {x ∈ X : G

qα−→ x for some G ∈ A}. Consider
the following axiom:

for every fixed 0 < α < ∞,
(A1) F

qα−→ x for each F ∈ A and x ∈ Bα.

Observe that since (X, qα) is symmetric, assumption (A1) implies that
qα-convergence coincides at all x ∈ Bα. Let Bc

α denote the complement
of Bα in X.

Lemma 3.3. Assume that (X, q̄) ∈ |GLTS| obeys (A1) and possesses
a strongly symmetric compactification and that (X, q0) is not compact.
Then for each fixed 0 < α < ∞,

(i) Ḃα
qα−→ x for each x ∈ Bα,

(ii) no filter qα-converges to both an x ∈ Bα and a z ∈ Bc
α,

(iii) Bα is qα-closed,
(iv) G

qα−→ z ∈ Bc
α implies that Bc

α ∈ clqα G.

Proof. (i) Since (X, qα) is symmetric, it follows from (A1) that for x ∈ Bα,
Ḃα ≥ clqα ẋ

qα−→ x. Hence, Ḃα
qα−→ x for each x ∈ Bα.

(ii) Suppose that K
qα−→ x, z, where x ∈ Bα and z ∈ Bc

α. According to
the symmetry, x and z have the same qα-convergent filters. This implies
that z ∈ Bα, and thus no such K exists.

(iii)–(iv) Verification follows from (i) and (ii). �

Theorem 3.1 shows that if (X, q̄) possesses a one-point strongly sym-
metric compactification in GLTS, then each (X, qα), 0 ≤ α ≤ ∞, must
necessarily be locally compact.

Theorem 3.4. Assume that (X, q̄) ∈ |GLTS| is locally compact but not
compact, satisfies (A1), and possesses a strongly symmetric compactifica-
tion. Then (X, q̄) has a one-point strongly symmetric compactification in
GLTS.

Proof. Denote X̂ = X ∪ {w} where w /∈ X, and let j : X → X̂ be the
natural injection. Define q̂0 on X̂ as in Theorem 3.1:
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H
q̂0−→ j(x) if and only if j(X) ∈ H and j←H

q0−→ x

H
q̂0−→ w if and only if either H = ẇ or αq0(j

←H) = ∅.

It is shown in Theorem 3.2 that ((X̂, q̂0), j) is a one-point symmetric
compactification of (X, q0) in LIM. For each fixed 0 < α < ∞, define q̂α
on X̂ as follows:

(i) for x ∈ X − Bα, H
q̂α−→ j(x) if and only if j(X) ∈ H and

j←H
qα−→ x;

(ii) for x ∈ Bα, H
q̂α−→ j(x), w if and only if either H = ẇ or

j←H
qα−→ x;

(iii) for Bα = ∅, H
q̂α−→ w if and only if either H = ẇ or

αq0(j
←H) = ∅.

Moreover, define q̂∞ to be the indiscrete limit structure on X̂, and denote
¯̂q = (q̂)α, 0 ≤ α ≤ ∞. It easily follows that (X̂, ¯̂q) ∈ |GLTS|.

Fix 0 < α < ∞; it is shown below that (X̂, q̂α) is regular.

Case 1: Bα ̸= ∅ and X −Bα ̸= ∅.
(a): Assume that H

q̂α−→ j(x) where x ∈ X − Bα; then j(X) ∈ H and
F = j←H

qα−→ x. According to Lemma 3.3(iv), X − Bα ∈ clqα F. Choose
F ∈ F such that clqα F ⊆ X−Bα. Suppose that w ∈ clq̂α j(F ); then there

exists a K ∈ F(X) such that F ∈ K and j→K
q̂α−→ w. Moreover, j→K

q̂α−→
j(z) for each z ∈ Bα, and thus K qα−→ z for each z ∈ Bα. This contradicts
the fact that clqα F ⊆ X−Bα. Hence, w /∈ clq̂α j(F ) and j(X) ∈ H implies
H = j→F; thus, j(X) ∈ clq̂α H. Therefore, j←(clq̂α H) = clqα F

qα−→ x,

and it follows that clq̂α H
q̂α−→ j(x).

(b): Suppose that H q̂α−→ j(x) where x ∈ Bα. If H = ẇ, then clq̂α{w} =

j(Bα) ∪ {w}, and thus by Lemma 3.3(i), j←(clq̂α ẇ) = Ḃα
qα−→ x. Hence,

clq̂α ẇ
q̂α−→ j(x). Next, assume that F = j←H exists; then F

qα−→ x and

j←(clq̂α H) = clqα F
qα−→ x. Therefore, clq̂α H

q̂α−→ j(x) whenever x ∈ Bα.

This also covers the case whenever H
q̂α−→ w and Bα ̸= ∅.

Case 2: Bα = ∅.
(a): Assume that H

q̂α−→ j(x) where x ∈ X. Then j(X) ∈ H and
F = j←H

qα−→ x. Since (X, qα) is locally compact, there exists a qα-
compact set A ∈ F. Suppose that U is an ultrafilter on X such that A ∈ U

and j→U
q̂α−→ w. Then, by the definition of q̂α, U fails to q0-converge, and

thus U ∈ A. However, since A is qα-compact, U qα−→ z for some z ∈ A,



STRONGLY SYMMETRIC COMPACTIFICATIONS 135

and thus z ∈ Bα. This contradiction implies that w /∈ clq̂α j(A), and thus

j(X) ∈ clq̂α H. Since j←(clq̂α H) = clqα F
qα−→ x, clq̂α H

q̂α−→ j(x).

(b): Suppose that H
q̂α−→ w. If H = ẇ, then ẇ 9 q̂αj(z) since

j(X) /∈ ẇ, and thus clq̂α ẇ = ẇ
q̂α−→ w. Next, assume that F = j←H

exists; then αq0(F) = ∅. Since q0 and δq0 agree on ultrafilter convergence,
αq0(j

← clq̂0 H) = αq0(clq0 F) = αδq0(clδq0 F) = αδq0(F) = αq0(F) = ∅.
Hence, clq̂α H

q̂α−→ w. It follows that (X̂, ¯̂q) is regular.

It remains to show that (X̂, ¯̂q) is symmetric. Suppose that H
q̂α−→ y1

and ẏ1
q̂α−→ y2. Consider the following cases:
(i) y1 = j(z), z ∈ Bα. It follows that either y2 = j(x) for some

x ∈ Bα or y2 = w, and thus H
q̂α−→ y2.

(ii) y1 = j(z), z ∈ X − Bα. Note that y2 = j(x) for some x ∈
X −Bα. Then j(X) ∈ H and j←H

q̂α−→ z. Also, ż qα−→ x, and
thus j←H

qα−→ x; hence, H qα−→ j(x).
(iii) y1 = w and Bα ̸= ∅. Since H

q̂α−→ w if and only if H q̂α−→ j(z)

for each z ∈ Bα, H q̂α−→ y2 by (i).
(iv) y1 = w and Bα = ∅. Observe that ẇ q̂α−→ j(x) for some x ∈ X

is impossible since Bα = ∅.
It follows that (X̂, q̂α) is symmetric and, by construction, j : (X, qα) →

(X̂, q̂α) is a dense embedding. Therefore, ((X̂, ¯̂q), j) is a one-point strongly
symmetric compactification of (X, q̄) in GLTS. �

Let us conclude with an example illustrating the significance of axiom
(A1). Recall that axiom (A1) requires that if α > 0, then each F ∈ A must
qα-converge to x provided that some G ∈ A qα-converges to x. Property
(A1) is needed to ensure that a one-point compactification is strongly
symmetric.

Example 3.5. Suppose that X = [0, 1) and let Gi denote the filter on X
whose base is {(0, ϵ) : ϵ > 0} ({(1− ϵ, 1) : ϵ > 0}), i = 0, 1. Let τ denote
the usual topology on [0, 1) and define qα as follows:

(i) if 0 ≤ α < 1, F qα−→ x if and only if F τ−→ x, where x > 0, and
F

qα−→ 0 if and only if F = 0̇;
(ii) if 1 ≤ α < ∞, F qα−→ x if and only if F τ−→ x;
(iii) if α = ∞, F qα−→ x if and only if F ≥ Ẋ.

Then (X, q̄) ∈ |LTS| is locally compact and strongly symmetric; ob-
serve that A = {G ∈ F(X) : G ≥ G0∩G1}. Note that Bα = ∅ for 0 < α < 1

and, moreover, since G0 ∈ A and G0
qα−→ 0, Bα = {0} for 1 ≤ α < ∞.



136 N. ADU, H. BOUSTIQUE, AND G. RICHARDSON

However, G1 ∈ A, but G1 9 qα0, 1 ≤ α < ∞, and hence (X, q̄) fails to
satisfy axiom (A1). It easily follows that (X, q̄) fails to possess a one-point
strongly symmetric compactification in GLTS. The modification F

qα−→ 0
if and only if F ≥ G0 ∩ G1 ∩ 0̇ for each 1 ≤ α < ∞ is needed in order to
obtain a one-point symmetric compactification.
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