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PATCHWORK AND WEB SPACES

MARCEL ERNÉ

Abstract. Patch topologies are obtained by joining a given topol-
ogy with a second topology having the dual specialization order.
They provide a convenient passage from topological spaces to semi-
qospaces (i.e., quasi-ordered sets equipped with a topology, making
principal ideals and filters closed) that have better separation prop-
erties than the original spaces. Web spaces, originally defined by
the existence of neighborhood bases consisting of webs (where a web
around x contains with any y a lower bound of x and y), may be
characterized by the condition that the interior operator preserves
finite unions of saturated sets. More important in the patch game
is that the web spaces are precisely those for which any patch space
determines the original open sets as the upper sets generated by the
patch open sets. Via suitable patch functors, the category of web
spaces is concretely isomorphic to various categories of strongly
convex web semi-qospaces. We apply the patch construction to
semitopological semilattices (as specific web ordered spaces) and
show that the T0 web spaces are exactly the so-called ↓-consistent
subspaces of semitopological semilattices with a compatible topol-
ogy; similar representations are established for web ordered spaces.
A look at regularity axioms for patch spaces concludes the study.
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1. Introduction

Before giving a survey of the intended program, let us fix some order-
theoretical terminology and notation. A quasi-ordered set or qoset is a
pair Q = (X,≤) with a reflexive and transitive relation ≤ on the set X.
The dual relation is denoted by ≥ and the dual qoset (X,≥) by Q̃. If
≤ is antisymmetric, we speak of a (partial) order and an ordered set or
poset. A lower set of Q is a subset Y that coincides with its down-closure
↓Y = ↓QY = {x ∈ X : ∃ y∈Y (x≤y)} . Upper sets and the up-closure ↑Y
are defined dually. The upper sets form the upper Alexandroff topology
αQ, and the lower sets (the complements of the upper sets) form the lower
Alexandroff topology αQ̃. Specifically, ↓x = ↓{x} is the principal ideal
and ↑x = ↑{x} is the principal filter generated by the element x. A sub-
set D of a qoset is (up-)directed or filtered (down-directed), respectively, if
every finite subset of D has an upper or lower bound, respectively, in D;
thus, directed sets and filtered sets are nonempty. A poset is up-complete,
directed complete, or a dcpo if each directed subset has a join, that is, a
least upper bound (supremum). We adopt the convention of calling arbi-
trary up-complete posets domains (in [13], the term domain is reserved for
continuous dcpos, which play only a marginal role in the present paper).
A frame or locale [15] is a complete lattice L enjoying the identity

(d) x ∧
∨
Y =

∨
{x ∧ y : y ∈ Y }

for all x∈L and Y ⊆L (the symbol
∨

denotes joins, the symbol ∧ binary
meets); the dual identity characterizes coframes. An up-complete meet-
semilattice satisfying (d) for all directed sets Y is called meet-continuous.

By a space we always mean a topological space. However, most of the
definitions and results may be extended to the much more general class
of kernel spaces or closure spaces, i.e., sets equipped with a collection of
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subsets closed under arbitrary unions or intersections, respectively. This
idea and its history have been presented more extensively in [4] and [9].

Let (X,S) be a space with S the frame of all open sets (that is, the
topology) and Sc the coframe of all closed sets. The closure of a subset Y
is denoted by clSY and the interior by intSY . A basic link between order
and topology is provided by the specialization order, denoted by ≤S or
merely by ≤, and defined by

x ≤ y ⇔ x ∈ clS{y} ⇔ y ∈
⋂
{U ∈ S : x ∈ U}.

This is an order (i.e., antisymmetric) if and only if the space (X,S) is T0,
but we shall speak of the specialization order also in the non-T0 setting.
The corresponding specialization qoset (X,≤S) is denoted by Σ−(X,S).
This gives rise to a concrete specialization functor Σ− (denoted by Ω in
[13]) from the category of spaces with continuous maps to the category of
quasi-ordered sets with isotone (that is, order preserving) maps. Relative
to the specialization order, the point closures are the principal ideals,
while the core of a point x, the intersection of all neighborhoods of x, is
the principal filter ↑x. The lower sets are the unions of point closures
(or of arbitrary closed sets), and the upper sets are the unions of cores,
but also the saturated sets, i.e., the intersections of open sets. A topology
is closed under arbitrary intersections if and only if it is of the form αQ
for a (unique) qoset Q (see [2]); spaces with that property are referred to
as Alexandroff (discrete) spaces or A-spaces. Restricted to A-spaces, the
specialization functor becomes a concrete categorical isomorphism.

A topology S on a setX is said to be compatible with a quasi-order≤ on
X if Q = (X,≤) is the specialization qoset of (X,S) (in [13], compatibility
has a different meaning). While the finest topology compatible with ≤ is
the (upper) Alexandroff topology αQ, the coarsest one is the weak upper
topology υQ, generated by the complements of principal ideals. In fact,
compatibility of S with ≤ is equivalent to the inclusion υQ ⊆ S ⊆ αQ.
The weak lower topology of a qoset Q is the weak upper topology υQ̃

(elsewhere denoted by ωQ) of the order-dual Q̃.
In §2, we record basic notions and facts concerning quasi-ordered spaces

and introduce some relevant order-theoretical local convexity properties.
Monotone nets and their convergence are basic tools in the theory of
computation and also in topological aspects of order and domain theory.
They provide abstract characterizations of the Scott and Lawson spaces
of arbitrary domains (dcpos) by means of monotone convergence.

In §3, we associate in a systematic manner with any space a collection
of patch spaces; these are quasi-ordered spaces whose order relation is the
specialization order of the original space and whose topology is a patch
topology, that is, the join of the original topology and another topology
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having the dual specialization order. The patch spaces are exactly the
strongly convex semi-qospaces, that is, those quasi-ordered spaces whose
principal ideals and filters are closed and whose open upper sets and open
lower sets together generate the topology. A famous case is the patch
space carrying the join of the original topology and the cocompact topol-
ogy. Here, the patch construction gives rise to an equivalence between the
category of stably compact spaces and the category of compact pospaces
(see [13, VI-5] and [18]). A continuous map between compact pospaces
has the property that preimages of compact sets are compact, so that
the morphism part is unproblematic in that context. We shall find some
interesting extensions to situations with no compactness assumptions or
at most local compactness assumptions.

Of particular relevance are patch spaces that arise from coselections
ζ, assigning to each topology S a subbase ζS of a topology τζS having
the dual specialization order. The join S ζ of S and τζS is then a patch
topology, and Pζ(X,S) = (X,≤S ,S ζ) is a patch space. Of course, such
patch constructions may be regarded as special instances of the passage
between “complemented” bitopological spaces and the associated quasi-
ordered spaces (see, for example, [11], [16], and [18]). In the opposite
direction, we associate with any quasi-ordered space (X,≤, T ) the upper
space (X, T ≤), whose topology consists of all T -open upper sets. We
discuss order-theoretical convexity properties of patch spaces and the right
choice of morphisms to make the above assignments functorial in both
directions, and we determine the largest object classes for which these
functors become mutually inverse isomorphisms.

In §4, we apply the patch construction to so-called web spaces, a par-
ticular class of path-connected spaces introduced in [8]. In such spaces,
each point x has a neighborhood base of webs, containing x and with each
point y a common lower bound of x and y. Surprisingly, web spaces may
be characterized by an infinite distributive law: They are exactly those
spaces for which not only the lattice of open sets but also that of closed
sets is a frame [8]. A crucial role in the patch game is played by ↑-stable
quasi-ordered spaces, in which the upper set generated by any open set
is open, too (spaces with this and the dual property have been called I-
spaces by Hans-Peter A. Künzi [16] and H. A. Priestley [20]). It turns out
that the web spaces are exactly those spaces for which each patch space
is ↑-stable and has the original space as upper space. We find diverse
effective characterizations of web quasi-ordered spaces, i.e., ↑-stable quasi-
ordered spaces with web neighborhood bases at each point. For every
coselection ζ, the patch functor Pζ induces an isomorphism between the
category of web spaces and the category of ζ-convex web semi-qospaces;
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these are ↑-stable web quasi-ordered semi-qospaces (X,≤, T ) whose topol-
ogy is generated by the upper topology T ≤ and its cotopology τζ(T ≤).

In §5, we focus on semitopological semilattices as special instances
of web ordered spaces, and we obtain abstract characterizations of the
involved Scott and Lawson spaces. Then, in §6, we characterize T0 web
spaces and their patch spaces as certain “consistent” subspaces of strongly
convex T1-semitopological semilattices, using an ordered variant of the
Vietoris topology. Finally, in §7, we touch upon situations where the
considered spaces and their patch spaces satisfy higher separation axioms
in form of regularity conditions.

These investigations are continued in a separate paper on core spaces
(alias worldwide web spaces [8]; see also [4] and [6]), an infinitary analogue
of web spaces, and their patch spaces.

For related material on quasi-uniform aspects, refer to Leopoldo Nach-
bin’s pioneering monograph [19] and the work of Peter Fletcher and
William F. Lindgren [11], Künzi [16], and J. D. Lawson [18].

If not otherwise stated, the results in the present paper are derived in a
choice-free set-theoretical framework. That is, we shall not use the Axiom
of Choice (AC) or weaker choice principles like the Ultrafilter Theorem
(UT) not derivable in Zermelo-Fraenkel set theory (ZF), unless necessary.

Most of the functors considered in this paper are concrete; that is,
they are functors between constructs, i.e., concrete categories over sets
(with forgetful functors to the category of sets), and they keep fixed the
underlying set functions of the morphisms. Such functors provide simulta-
neously different aspects of mathematical objects. For more background
concerning these and related categorical topics, refer to [1].

The main reference for definitions and facts in the theory of order and
topology is the monograph [13].

2. Convexity and Monotone Convergence
in Ordered Spaces

By a (quasi-)ordered space, we mean here merely a (quasi-)ordered set
equipped with a topology (no separation axioms required a priori). Some
classical separation axioms extend to the ordered case as follows. Call a
quasi-ordered space a lower semi-qospace if all principal ideals are closed,
an upper semi-qospace if all principal filters are closed, and a semi-qospace
if both conditions are fulfilled; that is, the quasi-order is lower semiclosed,
upper semiclosed, or semiclosed, respectively, in the sense of [13, VI-1]. An
ordered space with a semiclosed order is said to be a semi-pospace or T1-
ordered since it has to be T1 (singletons are closed), and semiclosedness
of the equality relation amounts to the T1 axiom. The coarsest topology
making a qoset Q a semi-qospace is the interval topology ιQ.
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A space equipped with a closed quasi-order ≤ (regarded as a subset
of the square of the space) is referred to as a qospace and as a pospace
in case ≤ is a partial order [13]. Every qospace is a semi-qospace. In a
T2-ordered space, for x 6≤ y there is an open upper set U and a disjoint
open lower set V such that x ∈ U and y ∈ V . An important class
of T2-ordered spaces is that of totally order-disconnected spaces [20] or
totally order-separated spaces [15]; dropping the antisymmetry condition,
we call a quasi-ordered space totally order-separated if, for x 6≤y, there is
a clopen upper set containing x but not y. A Priestley space is a compact
totally order-separated ordered space. Notice that such spaces are zero-
dimensional (i.e., they have a base of clopen sets), but in the absence of
compactness, a totally order-separated or totally disconnected space need
not be zero-dimensional (see [15, II–4]).

A quasi-ordered space is said to be upper regular if, for each open upper
set O and each x in O, there is an open upper set U and a closed upper
set B with x ∈ U ⊆ B ⊆ O. Lower regular spaces are defined dually.
Note the non-invertible implications
compact pospace⇒ upper/lower regular ordered⇒ T2-ordered⇒ pospace.

With a quasi-ordered space (Q, T )=(X,≤, T ), we associate the upper
space U(Q, T ) = (X, T ≤) and the lower space L(Q, T ) = (X, T ≥), where

T ≤ is the topology of all open upper sets,
T ≥ is the topology of all open lower sets.

Note that for lower semi-qospaces (X,≤, T ), the specialization order of
T ≤ is ≤, while for upper semi-qospaces (X,≤, T ), the specialization order
of T ≥ is ≥. (In [13], [16], and [18], T ≤ is denoted by T ] and T ≥ by T [.)

Some order-theoretical convexity properties will play a crucial role in
our study. A subset of a qoset Q is (order) convex if it is the intersection
of an upper and a lower set; equivalently, it contains with any two points
y and z every x with y ≤ x ≤ z. In ordered vector spaces like Rn for
n>1, order convexity is incomparable to geometric convexity. Convex in
the order-theoretical sense are all intervals, i.e., the whole space and all
sets

[ y) = ↑y, ] y) = ↑y \↓y ={x : y<x}, (z ] = ↓z, (z [ = ↓z \↑z ={x : x<z},
[ y, z ] = [ y)∩(z ] , ] y, z ] = ] y)∩(z ] , [ y, z [ = [ y)∩(z [ , ] y, z [ = ] y)∩(z [ .

The converse holds in conditionally complete chains (e.g., in the real chain
R, but not in the rational chain Q).

Now, let us call a quasi-ordered space (Q, T ) = (X,≤, T )

• locally (order) convex if the convex open subsets form a base,
• strongly (order) convex if the topology T is generated by T ≤∪T ≥,
• υ-convex if the topology T is generated by T ≤ ∪ υQ̃.
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We define υ-convexity to mean that the sets U \ ↑F with open upper
sets U and finite sets F form an open base. Since the Latin prefix hyper
is the Greek υπερ for upper, one might speak of order hyperconvexity,
but clearly, this has not much to do with hyperconvexity of metric linear
spaces. The following facts are readily checked (for (3), see [13, VI-1]).

Lemma 2.1. (1) υ-convex quasi-ordered spaces are upper semi-qospaces.
(2) υ-convexity implies strong convexity, which implies local convexity.
(3) Compact qospaces are strongly convex.

Example 2.2. On any qoset Q = (X,≤), an important compatible topol-
ogy is the Scott topology σQ, which consists of all upper sets U that meet
all directed subsets whose least upper bounds are contained in U (y is a
least upper bound of D if D⊆↓z ⇔ y≤ z); the weak Scott topology σ2P
(see [8] and [10]) consists of all upper sets U meeting each directed D with
U ∩

⋂
{↓y : D ⊆ ↓y} 6= ∅; it is always contained in σP , and on domains,

both topologies coincide. The Lawson topology λQ is the join of (i.e., gen-
erated by) the Scott topology and the weak lower topology. As in [13],
ΣQ denotes the Scott space (X,σQ), while ΛQ denotes the quasi-ordered
Lawson space (Q,λQ), which is always an υ-convex semi-qospace, satis-
fying the equations σQ ∨ υQ̃ = λQ and λQ≤ = σQ. Furthermore, we
put ΥQ= (X, υQ) and call it the weak upper space of Q. For Rn, coordi-
natewise ordered, Λ(Rn) = (ΛR)n is the standard Euclidean space, while
Υ(Rn) is distinct from (ΥR)n = (ΣR)n = Σ(Rn) if n>1.

Example 2.3. A poset P with the discrete topology T is always strongly
convex but rarely υ-convex. The topology T ≤ is the Alexandroff topology
αP , whence the topology generated by αP and υP̃ has a subbase con-
sisting of the right half-open intervals [ y, z [ = ↑y \ ↑z. This topology is
discrete on the integers Z, but not on the rationals Q, nor on the reals R.

Example 2.4. Adding a bottom element ⊥ and a top element > to an
infinite antichain A yields a complete latticeL of height 2.

ca A�
�
��

Q
Q
QQ

c



J
JJ

c ` ` `
c>

c
⊥

Q
Q

�
�

Enlarging the cofinite topology on L (which consists of the empty set and
all complements of finite sets) by the singleton {a} for some a ∈ A, one
obtains a topology T making (L, T ) a semi-pospace (but not a pospace)
that is locally convex (for U ∈ T , either U \ {⊥} or U \ {>} is convex
and open); but it cannot be strongly convex, since any open upper set
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containing the point a meets any open lower set containing a in an infinite
set and is certainly not contained in the least neighborhood {a}. This and
Example 2.3 show the irreversibility of the implications in Lemma 2.1(2).

Scott spaces and Lawson spaces of domains may be characterized in
terms of monotone nets, as defined in [13, O-1] (here, the word “monotone”
is synonymous with “isotone”). We say an ordered space T is
(m1) weaklymc-ordered if any monotone net in T having a supremum

converges to it,
(m2) mc-ordered if any monotone net in T has a supremum to which

it converges,
(m3) upper m-determined if an upper set U in T is open whenever all

monotone nets converging to points in U are eventually in U ,
and υmc-ordered if it is an υ-convex semi-pospace satisfying (m2) and
(m3). In the above definitions, monotone nets may be replaced by di-
rected subsets of the space, regarded as nets. For T0 spaces with the
specialization order, (m1) defines the weak monotone convergence spaces
or weak mc-spaces in [6], (m2) themonotone convergence spaces in [13] and
the mc-spaces in [6], and (m3) the m-determined spaces (in [8], monotone
determined spaces); without the monotonicity restriction, the condition
in (m3) characterizes open sets in arbitrary spaces. By definition, the
mc-(ordered) spaces are just the up-complete weak mc-(ordered) spaces.
Furthermore, the mc-spaces coincide with the d-spaces or temperate spaces
in the sense of Oswald Wyler [23], defined by the condition that the closure
of any directed subset is the closure of a unique point.

Proposition 2.5. (1) A strongly convex lower semi-pospace is (weakly)
mc-ordered if and only if its upper space is a (weak) mc-space.

(2) A lower semi-pospace is upper m-determined if and only if its upper
space is m-determined.

(3) A space (X,S) with specialization poset P is a weak mc-space if and
only if S⊆σP .

(4) σ2P is the coarsest topology making P an m-determined space.
(5) Compact semi-pospaces are mc-ordered.

Proof. (1) Let (P, T ) = (X,≤, T ) be a (weakly) mc-ordered lower semi-
pospace; recall that the specialization order of T ≤ is ≤. If D is a directed
subset of P having a supremum x, then D converges to x in (X, T ), a
fortiori in (X, T ≤) (since T ≤ ⊆ T ). Thus, (X, T ≤) is a (weak) mc-space.
Conversely, let (X,≤, T ) be a strongly convex lower semi-pospace whose
upper space is a (weak) mc-space, and let D be a directed subset with
supremum x. Then D converges to x in (X, T ≤) but also in (X, T ≥),
being a subset of any lower set containing x. By strong convexity, D also
converges to x in (X, T ). Hence, (X,≤, T ) is (weakly) mc-ordered.
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(2) and (3) are immediate from the definitions.
(4) was shown in [8].
(5) is well known; see, e.g., [13, Proposition VI-1.3]. �

Corollary 2.6. The Scott spaces of domains are exactly the m-determined
mc-spaces.

A map between quasi-ordered spaces is lower semicontinuous if and
only if preimages of closed lower sets are closed (see §3). Putting all
pieces together, we arrive at the following theorem.

Theorem 2.7. (1) The Lawson spaces of domains are exactly the υmc-
ordered spaces, and their upper spaces are the Scott spaces, that is, the
m-determined mc-spaces.

(2) The Scott functor Σ induces a concrete isomorphism between the
category D of domains with maps preserving directed joins and the cate-
gory MC of m-determined mc-spaces with continuous maps. The inverse
functor is induced by the specialization functor Σ−.

(3) The Lawson functor Λ induces a concrete isomorphism between D
and the category υMC of υmc-ordered spaces with order preserving lower
semicontinuous maps. The inverse functor Λ− forgets the topology.

D

MC υMC

�
�	
Σ
�
��
Σ−

@
@R
Λ

@
@I
Λ−

-�

In Theorem 3.10, we shall generalize the direct passage between Scott
and Lawson spaces to much more general classes of (quasi-ordered) spaces.

3. Patch Spaces and Patch Functors

Spaces violating higher separation axioms may be “improved” by pass-
ing to so-called patch spaces that have better properties and still deter-
mine the original space. The resulting correspondence between spaces and
their ordered counterparts will now be embedded in a general framework.

A cotopology (in [18] a complementary topology) for a topology S is a
topology S ′ (on the same ground set) whose specialization order is dual
to that of S. The join topology T = S ∨ S ′ generated by S ∪ S ′ is then
referred to as a (general) patch topology and (X,≤S , T ) as a patch space
for (X,S). The weak lower topology υQ̃ is the weakest, i.e., coarsest
cotopology for any topology with specialization qoset Q, and the lower
Alexandroff topology αQ̃ is the strongest, i.e., finest cotopology.

By a coselection, we mean a function ζ assigning to each topology S a
subbase ζS of a cotopology τζS. This gives rise to the ζ-patch topology
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S ζ = S ∨ τζS and to the ζ-patch space Pζ(X,S) = (X,≤S ,S ζ). In case
each ζS is already a topology, we speak of a topological coselection.

Example 3.1. An important patch space Pπ(X,S) = (X,≤S ,Sπ) results
from joining S with the cocompact topology τπS, which has as a base the
set πS of all complements of compact saturated subsets of (X,S), and
Sπ is the cocompact patch topology (see, e.g., [13], [14], and [18] for prior
applications to ring theory). The function π is a coselection (since cores
are compact and saturated), but not a topological one.

Similarly, by an upset selection for quasi-ordered sets, we mean a func-
tion ζ assigning to each qoset Q a collection ζQ of upper sets such that
↑y =

⋂
{V ∈ ζQ : y ∈ V } for all y ∈ Q. The topology generated by ζQ is

then compatible, that is, Q is its specialization qoset. In case each ζQ is
a topology, we call ζ a topological upset selection (for quasi-ordered sets).
Any upset selection ζ gives rise to a coselection by putting ζS = ζQ̃ if
Q is the specialization qoset of S. In this way, we obtain patch spaces
Pζ(X,S) = (Q,S ζ), where S ζ is generated by S ∪ ζQ̃.

The extremal topological upset selections are υ and α. An open base
for the weak patch topology Sυ is constituted by the sets U \ ↑F with
U ∈ S and finite subsets F of

⋃
S, while the strong patch topology Sα has

a base consisting of the sets U \ ↑Y with U ∈ S and arbitrary subsets Y .
The strong patch topology coincides with the Skula topology generated by
the open sets and the closed sets of the original topology (see [21]). Let
us list a few intrinsic patch topologies on posets.

(1) The weak patch topology of the weak upper topology is the inter-
val topology.

(2) The weak patch topology of the Scott topology is the Lawson
topology.

(3) The weak patch topology of the upper Alexandroff topology is the
right half-open interval topology with subbasic sets [ y, z [= ↑y \↑z.

(4) The strong patch topology of the weak upper topology is the left
half-open interval topology with subbasic sets ] y, z ] = ↓z \ ↓y.

(5) The strong patch topology of the Scott topology is the finest topol-
ogy making the poset a strongly convex mc-ordered space.

(6) The strong patch topology of the upper Alexandroff topology is
the discrete topology.

(7) The cocompact patch topology of the Scott topology on Rn is the
Euclidean topology, but only for n= 1 does it coincide with the
interval topology (see Example 2.2 and Example 3.6).
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Any topological selection ζ gives rise to a concrete functorial isomor-
phism from the category of qosets with ζ-continuous maps f : P → Q
(satisfying f−1[U ] ∈ ζP for U ∈ ζQ) to the category of spaces with spe-
cialization qoset Q and topology ζQ. The inverse isomorphism is induced
by the specialization functor Σ−. An example is the Scott functor Σ,
restricted to the category D of domains, with inverse Σ−, restricted to
the category MC of m-determined mc-spaces (Theorem 2.7 (2)).

Given a coselection ζ, a space (X,S) is said to be ζ-determined if all
ζ-patch open upper sets are open in the original space, that is, S ζ≤⊆ S.
Since the reverse inclusion is always true, one has then the equality
S ζ≤ = S, so that the original space is, in fact, determined by its ζ-patch
space; in other words, the ζ-determined spaces are just the upper spaces
of their ζ-patch spaces.

Example 3.2. All Alexandroff spaces and all spaces with a linear spe-
cialization order are ζ-determined for any coselection ζ.

Example 3.3. Scott spaces are υ-determined in view of the equations
λP = σP υ and σP = λP ≤.

Example 3.4. Any T1 space is υ-determined because its specialization
order is the identity relation, and υ(X,=) is the cofinite topology, the
coarsest T1 topology on X.

Example 3.5. If the specialization qoset of a space (X,S) is a complete
lattice L with S ⊆ λL̃, then the Ultrafilter Theorem (UT) ensures that
(X,S) is an υ- and σ-determined weak upper space (cf. [10] and [13, III]).
For the proof, consider an ultrafilter F onX. The setD = {y∈X : ↓y∈F}
is down-directed, whence F converges to z=

∧
D in ΣL̃. For x ∈ X,

F converges to x in ΥL ⇔ x ∈ X \ ↓y implies X \ ↓y ∈ F
⇔ ↓y ∈ F implies x ≤ y ⇔ x ≤

∧
D = z.

In particular, F converges to z in ΥL, hence also in ΛL̃. Suppose now F
converges to some x in ΥL, and a set U ∈ S σ≤ ⊆ λL̃ contains x and so z.
Then U must be a member of F , and therefore F converges to x in
(X,S σ≤). This establishes the inclusion S σ≤ ⊆ υL, which, together with
the obvious reverse inclusions υL ⊆ S ⊆ Sυ≤ ⊆ Sσ≤, yields the identity

υL = S = Sυ≤ = Sσ≤.
The completeness assumption is essential, as we shall demonstrate in

Example 3.12, presenting a lattice with the weak upper topology that is
not υ-determined. But, of course, there are also non-complete lattices
whose weak upper spaces are υ-determined.
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Example 3.6. LetL be the conditionally complete lattice Rn. For n>1,
the interval topology ιL = υL υ is much coarser than the Euclidean topol-
ogy λL = σL υ; in fact, ιL is irreducible (any two nonempty open sets in-
tersect), and there are sequences converging to every point of that space.
Nevertheless, like the Scott space ΣL, the weak upper space ΥL is υ-
determined: any ι-open upper set is υ-open. This can be seen as follows.
The sets ⇑u ∪ (L \ ↓z) with ⇑u = {x ∈ L : ∀i (ui < xi)} (u, z ∈ L)
form a base for υL (that conclusion requires a few computations we omit
here). Note that ⇑u is ∧-closed but not ι-open. Given an ι-open upper
set O and a point x ∈ O, pick a basic set W = ⇑u ∪ (L \ ↓z) ∈ υL
and a finite F with x ∈ W \ ↑F ⊆ O. For each w ∈ L \ ↓z, there is a
v ∈ ↓w \ ↑F \ ↓z ⊆W \ ↑F (because R is a chain with no least element);
thus, L\↓z ⊆ ↑(W \ ↑F ) ⊆ O. If x lies in ⇑u, then w∧x ∈ ↓w ∩ ⇑u\↑F
for all w ∈ ⇑u; hence, x ∈ ⇑u ⊆ ↑(W \↑F ) ⊆ O, and so x ∈ W ⊆ O.
Otherwise, x ∈ L \ ↓z ⊆ O. In any case, we conclude that O is υ-open.

Turning to the side of quasi-ordered spaces and considering a coselection
ζ, we call a quasi-ordered space (Q, T ) ζ-convex if its topology is generated
by T ≤ ∪ ζ(T ≤), that is, T ≤ζ = T .

Generally, ζ-convexity implies strong convexity, and υ-convexity im-
plies ζ-convexity. For ζ = α, we have the following lemma.

Lemma 3.7. A quasi-ordered space is an α-convex lower semi-qospace if
and only if it is strongly convex and principal ideals are clopen. Such a
space is totally order-separated and zero-dimensional, and its lower space
is an A-space.

Proof. If (Q, T ) is an α-convex lower semi-qospace, then αQ̃ is contained
in T , hence equal to T ≥; thus, each principal ideal ↓x is not only closed
but also open. For any x∈ O ∈T , there are U ∈ T ≤ and V ∈ αQ̃ = T ≥
with x ∈ U ∩↓x ⊆ U ∩ V ⊆ O, proving strong convexity; furthermore,
not only ↓x but also U is clopen because U is the complement of a lower,
hence open set. Thus, the space is zero-dimensional; and for x 6≤ y, the
complement of ↓y is a clopen upper set containing x but not y.

Conversely, if all principal ideals are clopen, then we have a lower
semi-qospace whose lower sets are open, being unions of principal ideals,
whence T ≥ = αQ̃. And if (Q, T ) is strongly convex, then we obtain
T = T ≤ ∨ T ≥ = T ≤α. �

In general, every strongly convex semi-qospace is a patch space of its
upper space, as T ≥ is a cotopology of T ≤. Conversely, every patch space is
a strongly convex semi-qospace: The principal ideals are the point closures
in the original topology, the principal filters are the point closures in the
cotopology, and the patch topology T = S ∨S ′ is generated by T ≤ ∪T ≥,
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since S ⊆ T ≤ and S ′ ⊆ T ≥. In particular, for any upset selection ζ, the
patch topology T = S ζ generated by S∪ζQ̃ is also generated by T ≤∪ζQ̃.
The following conclusions are now immediate (recall Proposition 2.5).

Proposition 3.8. The patch spaces are the strongly convex semi-qospaces.
If ζ is an upset selection and (X,S) is any space, or if ζ is a coselection
and (X,S) is ζ-determined, then the patch space Pζ(X,S) is ζ-convex.
Hence, weak patch spaces Pυ(X,S) are υ-convex and strong patch spaces
Pα(X,S) are α-convex. The weak patch spaces of (weak) mc-spaces are
exactly the υ-convex (weakly) mc-ordered semi-pospaces.

In the opposite direction, for any coselection ζ, the upper space (X,T ≤)
of a ζ-convex lower semi-qospace (X,≤, T ) is ζ-determined since T ≤ζ =T
entails T ≤ζ≤=T ≤. The argument is a bit subtle: The second ≤ in T ≤ζ≤
refers to the specialization order of T ≤ , and it coincides with the first ≤
if and only if (X,≤, T ) is a lower semi-qospace.

Now, we are going to declare the appropriate morphisms in the re-
spective categories to make Pζ functorial. The most obvious choice is to
take the continuous maps between spaces; these maps are isotone, but
not always continuous as maps between the associated patch spaces.

Example 3.9. For the real line R with the usual linear order ≤, the step
function s : R → R with s(x) = 0 for x ≤ 0 and s(x) = 1 for x > 0 is
isotone and continuous as a map on the Scott space ΣR, but not as a
map on the associated weak patch space ΛR, whose topology is here the
Euclidean topology.

Notice that a map f between quasi-ordered spaces (Q, T ) and (Q′, T ′)
is lower semicontinuous if and only if it is continuous as a map from (Q, T )
to the upper space U(Q′, T ′) (see §2; for the more specific situation of
maps into the reals, cf. [13, O-2]). Hence, an isotone map between quasi-
ordered spaces is lower semicontinuous if and only if it is continuous as a
map between the associated upper spaces (since a map is isotone if and
only if it is α-continuous). Thus, we have a concrete upper space functor
U from the category of quasi-ordered spaces with isotone lower semicon-
tinuous maps as morphisms to the category of topological spaces – and,
indeed, this is even a categorical equivalence, because U is full, faithful,
and onto on objects since arbitrary spaces (X,S) coincide with U(Q,S)
for the specialization qoset Q = (X,≤S). But observe that isomorphic
quasi-ordered spaces in the above category need not be homeomorphic!
Now, one sees that a map between ζ-determined spaces is continuous if
and only if it is isotone (preserves the specialization order) and lower
semicontinuous as a map between the associated ζ-patch spaces. Let us
summarize these thoughts.
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Theorem 3.10. Any coselection ζ gives rise to a concrete patch functor
Pζ from the category of ζ-determined spaces with continuous maps to
the category of quasi-ordered spaces with isotone lower semicontinuous
maps, and Pζ induces an isomorphism onto the category of ζ-convex semi-
qospaces. The inverse isomorphism is induced by the upper space functor
U, sending a semi-qospace (X,≤, T ) to (X, T ≤). Specifically, the weak
patch functor Pυ induces a concrete isomorphism between the category of
υ-determined spaces and the category of υ-convex semi-qospaces.
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A more limited morphism class is formed by so-called proper maps,
whose definition varies in the literature, depending on the context and the
desired results. A (strongly) proper map would be a continuous map for
which preimages of compact sets are compact (automatic for continuous
maps from compact spaces to Hausdorff spaces). A wider convention is to
call a continuous map proper if all preimages of cores are compact. How-
ever, that kind of map is still not general enough to provide the desired
categorical correspondence if one wishes to receive all isotone continuous
maps between the patch spaces.

Example 3.11. Every isotone and continuous real function is continuous
for the Scott topology σR = υR, but if the range has a lower bound b,
then the preimage of the principal filter generated by b (the core of b in
ΣR) is the whole line R, which is not compact (neither in σR nor in λR).

A similar task would be to require that preimages of cores be closed in
the weak lower topology (which amounts to continuity in that topology).
This, together with continuity in the original topology, entails continuity
relative to the weak patch topologies. But the reverse implication fails.

Example 3.12. Consider the following sublattice of the plane R2:

L = {an, bn, cn : n ∈ ω} with

an = (0,−2−n), bn = (2−n, 0), cn = (2−n, 2−n).

Being a sublattice of the distributive lattice R2, L is distributive, too.
Clearly, L is not complete. Indeed, a directed subset can have a join only
if it has a greatest element, and dually. Therefore, the Scott topology σL
coincides with the upper Alexandroff topology αL. The patch topology
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λL = σL υ is discrete and coincides with the interval topology ιL = υL υ,
although σL greatly differs from υL. Define a map f from L to the chain
C = {0, 1} by f(an) = f(bn) = 0, f(cn) = 1.

L

a0

b0

c0
-

��
��

��
��

�1

!!
!!

!!
!!

!!
!�1

((((
((((

(

��
���

���
���

�:

��
�
��

�
��

�
��

�*
-

c
cc̀̀̀̀̀
` `` ` ` c cc�� c��

�

c

c

c 0

c 1

L̃

a0

b0

c0

c
cc̀̀̀̀``` ```cc c

��c
�

�
�

c

c
This map is isotone and trivially continuous for the (discrete) weak

patch topologies and also for the Scott (=Alexandroff) topologies. But
the preimage of the complement {0} of the core ↑1 = {1} is the principal
ideal ↓b0 = {an, bn : n ∈ ω}, which is not open in the weak lower topology,
since it does not contain any neighborhood L \ ↑F of b0 (F finite).

Being an A-space, the Scott space ΣL is ζ-determined for any coselec-
tion ζ. Now, look at the dual lattice L̃ and the cotopology σL̃ of σL = αL.
The Scott space ΣL̃ is an A-space, hence ζ-determined, too, while the
weak lower space ΥL̃ of L is not ζ-determined for any coselection ζ; as
υL̃ ζ = ιL is discrete, (υL̃ ζ)≤ = αL̃ is distinct from υL̃. Compare this
situation with the observation about complete lattices in Example 3.5.

It turns out that the appropriate morphisms for the intended functorial
isomorphism are those continuous maps for which preimages of open sets
in the ζ-cotopology are ζ-patch open. We call them ζ-proper maps.

Corollary 3.13. Let ζ be an arbitrary coselection. Then a map f between
ζ-determined spaces is ζ-proper if and only if it is isotone and continuous
as a map between the associated ζ-patch spaces. The patch functor Pζ
induces an isomorphism between the category of ζ-determined spaces with
ζ-proper maps and the category of ζ-convex semi-qospaces with isotone
continuous maps.

Proof. If f is ζ-proper, then f preserves the specialization order (by conti-
nuity) and is ζ-patch continuous, as preimages of subbasic patch open sets
are patch open. Conversely, if f : (X,≤,S ζ)→ (X,≤′,S ′ ζ) is isotone and
continuous, then U ′ ∈ S ′ implies U ′ ∈ S ′ ζ≤′ ; hence, f−1[U ′] ∈ S ζ≤ = S,
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provided (X,S) is ζ-determined. Thus, the map f : (X,S) → (X ′,S ′) is
continuous, ζ-patch continuous, and therefore ζ-proper. �

4. Upwards-Stable and Web Quasi-Ordered Spaces

We call a quasi-ordered space (Q, T ) upwards-stable (↑-stable) if O ∈ T
implies ↑O ∈ T . Here are some alternative characterizations of ↑-stability.

Lemma 4.1. For a quasi-ordered space (Q, T ), the following conditions
are equivalent:

(u1) (Q, T ) is ↑-stable.
(u2) T ≤ = {↑O : O ∈ T }.
(u3) The interior of each upper set is an upper set.
(u4) The closure of each lower set is a lower set.

Upwards-stability is frequently fulfilled in concrete situations (for in-
stance, in Euclidean spaces ΛRn). However, there are also rather simple
examples of compact pospaces that are not ↑-stable, although in compact
pospaces, ↑A and ↓A are closed for any closed subset A (see [13, VI-1]).

Example 4.2. Let P = (X,≤) be a poset with top element > such that
all principal ideals except ↓> = X are finite. The topology

T = {U ⊆ X : > 6∈ U} ∪ {X \ F : F finite,> 6∈ F}

makes (P, T ) a compact pospace, in fact, a Priestley space: Since all
points except > are isolated, for x 6≤ y the principal ideal ↓y is a clopen
lower set containing y but not x, and the space is compact because every
neighborhood of > misses only a finite number of points. If there is at
least one a ∈ X \ {>} for which X \ ↑a is infinite, then (P, T ) cannot be
↑-stable because {a} is open, while ↑a is not.

A typical instance is the complete lattice L = (X,≤) sketched below.
Neither L nor the coframe T ≤c of closed lower sets is meet-continuous.
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T ≤c

X = {a,>} ∪ {bn : n ∈ ω},
x ≤ y ⇔ x = y or x = b0 or y => or x = bi, y = bj , i < j.

In this example, the above-defined topology T coincides with the Lawson
topology. Hence, (L, T ) is an υ-convex but not an ↑-stable Priestley space.
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Such situations cannot occur in semitopological meet-semilattices (whose
unary meet operations ∧x : y 7→ x ∧ y are continuous): They are always
↑-stable, since ↑U =

⋃
{∧x−1[U ] : x ∈ U}. A much more general result

holds for so-called web quasi-ordered spaces, which we now are going to
define. A web around a point x in a qosetQ = (X,≤) is a setW containing
x and, for each y ∈ W , a common lower bound of x and y. If ≤ is the
specialization order of a space, the latter condition means that the closures
of x and y have a common point in W . Any union of down-directed sets
that contain a given point x is a web around it, and conversely. Every
web is connected in the order-theoretical sense: any two elements of a web
are joined by a path of length at most 4. A straightforward verification
shows that for each subset U of a qoset Q and each point x ∈ U , the set

Ux = U ∩ ↑(U ∩ ↓x)

is the greatest web around x in the subqoset U , called the web component
of U containing x. In spite of the similarity to (path) components in qosets
and spaces, distinct web components need not be disjoint. However, the
web components of any order convex subset are order convex, too. By a
web (quasi-)ordered space, we mean an ↑-stable (quasi-)ordered space in
which every point has a neighborhood base of webs around it. In the case
of a space equipped with its specialization order, ↑-stability is automatic,
and the previous definition amounts to that of a web space as given in
[8], where it was shown that web spaces are locally path-connected and
generalize meet-continuous semilattices and dcpos; in [13, III-2], meet-
continuous dcpos are defined by the condition that for directed subsets
D, x ≤

∨
D implies x ∈ clσ(↓x ∩ ↓D), which means that their Scott

spaces are web spaces. The next theorem provides a list of characteristic
properties of web quasi-ordered spaces and, in particular, of web spaces
equipped with the specialization order (see [8]).

Theorem 4.3. For any quasi-ordered space (Q, T ) = (X,≤, T ), the fol-
lowing seven conditions are equivalent:

(1) (Q, T ) is web quasi-ordered.
(2) U ∈ T implies ↑(U ∩ V ) ∈ T for all lower sets V .
(3) x ∈ U ∈ T implies ↑(U ∩ ↓x) ∈ T .
(4) x ∈ ↓clT Y implies x ∈ clT (↓x ∩ ↓Y ) for all Y ⊆ X.
(5) ↓x ∩ ↓clT Y ⊆ clT (↓x ∩ ↓Y ) for all x ∈ X and Y ⊆ X.
(6) The interior operator induces a homomorphism from αQ to T ≤.
(7) The closure operator induces a homomorphism from αQ̃ to T ≤c.

These conditions are equivalent to ↑-stability plus one of the following:
(1′) The upper space U(Q, T ) = (X, T ≤) is a web space.
(2′) Every point has a neighborhood base of open webs around it.
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(3′) The web components of any open subset are open.
(4′) The lattice T ≤ of open upper sets is a coframe.
(5′) The lattice T ≤c of closed lower sets is meet-continuous (a frame).
(6′) The interior operator preserves finite unions of upper sets.
(7′) The closure operator preserves finite intersections of lower sets.

Proof. (1)⇒ (2) For U ∈ T , V = ↓V , and y ∈ ↑(U ∩ V ), there is an
x ∈ U ∩ V ∩ ↓y. The web component Ux satisfies x ∈ intT Ux and
W = ↑ intT Ux ⊆ ↑Ux ⊆ ↑(U ∩ ↓x) ⊆ ↑(U ∩ V ). Then y ∈ ↑x ⊆ W and,
by ↑-stability, W ∈T . Hence, ↑(U ∩ V ) ∈ T .

(2)⇒ (3) is trivial.
(3)⇒ (4) by contraposition: If x∈U =X \ clT (↓x∩↓Y ), then we get

W =↑(U ∩ ↓x)∈T and x∈W . Now, the equation U ∩↓x∩↓Y =∅ entails
W ∩ Y = ∅; hence, W ∩ clT Y = ∅ and x 6∈ ↓clT Y (as x ∈W = ↑W ).

(4)⇒ (3) For x∈U ∈T and Y =X \↑(U ∩↓x), we get U ∩↓x∩↓Y = ∅
and x 6∈ clT (↓x∩↓Y ) (as x ∈ U), and then x 6∈ ↓clT Y and clT Y ⊆
X \ ↑x ⊆ Y (as ↑(U ∩ ↓x) ⊆ ↑x); hence, ↑(U ∩↓x) = X \ Y ∈ T .

(4)⇒ (5) z∈↓x∩↓clT Y implies z ∈ clT (↓z ∩↓Y )⊆ clT (↓x∩↓Y ).

(5)⇒ (7) First, let us show that (5) entails ↑-stability. If Y is a
lower set, then x ∈ ↓clT Y implies x ∈ ↓x∩↓clT Y ⊆ clT (↓x∩Y ) ⊆ clT Y ;
hence, clT Y = ↓clT Y , and Lemma 4.1 applies. It follows that the closure
operator induces a join-preserving map from αQ̃ onto T ≤c, and if we can
prove the inclusion clT Y ∩ clT Z ⊆ clT (Y ∩Z) for all lower sets Y and Z,
then the restricted and corestricted closure operator from αQ̃ onto T ≤c
is a lattice homomorphism (and even a frame homomorphism).

By (5), we have ↓x∩ clT Y ⊆ clT (↓x∩Y ) for each x ∈ Z = ↓Z; hence,

(∗) clT Y ∩ Z ⊆ clT (Y ∩Z).

Now, observing that clT Z is a lower set by ↑-stability (see Lemma 4.1
again) and using (∗) twice (once for clT Z in place of Z and once with Y
and Z exchanged), we get the inclusion

clT Y ∩ clT Z ⊆ clT (Y ∩ clT Z) ⊆ clT clT (Y ∩Z) = clT (Y ∩Z).

(6)⇔ (7) The lower sets are the complements of the upper sets, and
the closure of a lower set V is complementary to the interior of X \ V .

(7)⇒ (1) will follow from the implications established below; the re-
quired hypothesis of ↑-stability is a consequence of (7) by Lemma 4.1.

(3)⇒ (3′)⇒ (2′), (6)⇒ (6′), and (7)⇒ (7′) are clear.
(7′)⇒ (5′) Since the restricted and corestricted closure operator from

the frame αQ̃ to T ≤c preserves finite meets and arbitrary joins, its range
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is a frame, too. As T ≤c is always distributive, it suffices to postulate
meet-continuity in order to ensure the frame property.

(1′)⇔ (4′)⇔ (5′) has been shown in [8].
(6′)⇔ (7′) is obtained by passing to complements.
Now, assume that (Q, T ) is ↑-stable. Then (2′) clearly implies (1).
(1′)⇒ (4) If x ∈ ↓clT Y ⊆ ↓clT (↓Y ), then x ∈ clT ≤(↓Y ) by Lemma

4.1(u4), and the proven implication (1)⇒ (4) for T ≤ instead of T yields
x ∈ clT ≤(↓x∩↓Y ) = clT (↓x∩↓Y ), again by Lemma 4.1(u4).

In all, we have established the following implication circuits:
(1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (6)⇒ (7)⇒ (1),

and under the hypothesis that (Q, T ) is ↑-stable,
(1)⇒ (7)⇒ (7′)⇒ (6′)⇒ (5′)⇒ (4′)⇒ (1′)⇒ (4) ⇒ (3)⇒ (3′)
⇒ (2′)⇒ (1). �

As shown in [8], in case Q is a meet-semilattice, (1′) is equivalent to
(1′′) The unary meet operations ∧x : y 7→ x ∧ y are T ≤-continuous.

That ↑-stability is indispensable for the equivalence of conditions (1′) to
(7′) can be checked easily by a review of Example 4.2.

Example 4.4. Consider once again the compact but not ↑-stable Lawson
pospace (L, T ) in Example 4.2; recall that neither L nor the coframe T ≤c
is meet-continuous. Nevertheless, the closure operator preserves intersec-
tions of arbitrary collections Y of lower sets: The only non-closed lower
sets are A = X \ {a,>} and B = X \ {>}, and one easily verifies

clT (
⋂
Y) =

⋂
Y ∪ {>} =

⋂
{clT Y : Y ∈Y} in case

⋂
Y ∈ {A,B},

and clT (
⋂
Y) =

⋂
Y =

⋂
{clT Y : Y ∈Y} in all other cases. Hence, con-

ditions (6′) and (7′) are fulfilled, whereas (4′) and (5′) and therefore all
seven conditions (1) – (7) are violated. Furthermore, (1′) and (1′′) cannot
hold either, because the unary meet operation ∧a is not continuous with
respect to the topology T ≤ = αL\{↑a, ↑>}; whereas U = X\↓b0 belongs
to T ≤, the preimage ∧−1a [U ] = ↑a does not. While (2′) holds, (3′) fails
because the web component Ua of the open set U is the non-open set ↑a.

Example 4.5. Every linearly ordered lower semi-pospace is a web ordered
space, as all nonempty subsets are filtered; for ↑-stability, observe that

↑U= U ∪ {X \ ↓x : x ∈ U}.
But there are linearly ordered spaces whose topology of open upper sets
is a coframe, while ↑-stability fails. An example is the real line R with the
topology consisting of R and all Euclidean open subsets of R \ Z. Here,
the upper topology is the 2-element coframe {∅,R}.



158 M. ERNÉ

Example 4.6. The conditionally complete lattice Rn with the interval
topology (see Example 3.6) is ↑-stable, but for n>1, it badly fails to be
a web ordered space: no point has any web neighborhood except Rn.

We are ready for diverse further characterizations of web spaces, show-
ing that they may always be recovered from their patch spaces.

Proposition 4.7. For any space S = (X,S), the following are equivalent:

(1) S is a web space.
(2) ↑(U ∩ V ) ∈ S for each U ∈ S and each lower set V .
(3) The topology S is a coframe.
(4) The interior operator induces a homomorphism fromα(X,≤S) to S.
(5) Any patch space of S is a web quasi-ordered space with upper spaceS.
(6) S is ζ-determined with ↑-stable ζ-patch space for any coselection ζ.
(7) S is α-determined, and its strong patch space PαS is ↑-stable.
(8) S = {↑O : O ∈ T } for any patch topology T of S.

Proof. (1)⇔ (2)⇔ (3)⇔ (4) Apply Theorem 4.3 to the quasi-ordered space
(Q, T ) = (X,≤S ,S) (see [8]).

(2)⇒ (5) As the up-closure operator ↑ preserves arbitrary unions, for
↑-stability of a patch space (X,≤, T ) of (X,S), it suffices to assure that
O ∈ T implies ↑O ∈ T for basic sets of the form O= U ∩V with U ∈ S
and lower sets V . By the implication (2)⇒ (1), for x ∈ O, there is a web
neighborhoodW with x ∈W ⊆ U , and thenW∩V is a web neighborhood
of x in the patch space (X,≤, T ) with W ∩ V ⊆ O.

In order to see that the upper space of (X,≤, T ) is (X,S), consider any
O ∈ T ≤ and x ∈ O. There are U ∈ S and V = ↓V with x∈U ∩V ⊆O. By
(2), it follows thatW = ↑(U ∩ V ) ∈ S, and we get x ∈W ⊆ ↑O = O ∈ S.

(5)⇒ (6)⇒ (7) and (5)⇒ (8)⇒ (2) are straightforward.

(7)⇒ (2) U ∈S and V = ↓V imply U ∩ V ∈ Sα; now ↑-stability yields
↑(U ∩ V ) ∈ Sα≤ = S. �

By a web semi-qospace, we mean a web quasi-ordered semi-qospace.
Now, Proposition 3.8, Theorem 3.10, and Theorem 4.3 lead to the follow-
ing.

Corollary 4.8. The strongly convex (ζ-convex, respectively) web semi-
qospaces are exactly the patch (ζ-patch, respectively) spaces of web spaces.

Finally, let us note that a nonempty product of (quasi-ordered) spaces
is a web (quasi-ordered) space if all factors are web (quasi-ordered) spaces
and all but a finite number are filtered, i.e., down-directed (see [3]).
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5. Categories of Web Ordered Spaces and Semilattices

We now are going to apply the previous results to (meet-)semilattices.
Let us record a consequence of Proposition 4.7 and the remark thereafter.

Lemma 5.1. Any semitopological meet-semilattice is a web ordered space,
and its upper space is a web space, hence a semitopological semilattice.

Boolean lattices provide interesting examples showing that patch spaces
of T0 web spaces (in fact, of meet-continuous lattices with the Scott topol-
ogy) need not be Hausdorff, while T1 web spaces must already be discrete.

Example 5.2. Every complete Boolean lattice is a frame, hence meet-
continuous, but the Axiom of Choice guarantees that it is continuous in
the sense of Scott [13] if and only if it is atomic, i.e., isomorphic to a
power set (see [10] and [13, Theorem I-4.20]). Thus, every Scott space
of a complete Boolean lattice is a web space, while the only complete
Boolean lattices whose Lawson space is Hausdorff are the atomic ones
(see [13, Theorem III-2.11]).

It is important to distinguish between continuity of the unary meet
operations ∧x and continuity of the binary meet. While both proper-
ties coincide for compact Hausdorff semilattices (see [17]), we have the
following.

Example 5.3. The complete lattice of all regular open subsets of the
Euclidean real line is Boolean, hence meet-continuous, but the binary
meet operation is not continuous relative to the Lawson topology [10],
and this topology is not Hausdorff (the discovery of such “pathological”
lattice topologies is due to E. E. Floyd [12]).

Recall from §2 that an υmc-ordered space is an υ-convex, mc-ordered,
and upper m-determined semi-pospace. Corollary 2.6, Theorem 2.7, Propo-
sition 4.7, and Lemma 5.1 together yield the following facts.

Proposition 5.4. (1) The Scott spaces of meet-continuous domains are
exactly those m-determined mc-spaces which are web spaces.

(2) The Lawson spaces of meet-continuous domains are exactly those
υmc-ordered spaces which are web ordered.

Corollary 5.5. (1) The Scott spaces of meet-continuous semilattices are
exactly those m-determined mc-spaces which are semitopological meet-
semilattices relative to the specialization order.

(2) The Lawson spaces of meet-continuous semilattices are exactly the
υmc-ordered semitopological meet-semilattices.
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From Theorem 3.10, Theorem 4.3, and Proposition 4.7, we deduce for
ζ=α that any α-convex ↑-stable semi-qospace is web quasi-ordered, being
the strong patch space of its upper space, which is a web space. Let us
reformulate some of the previous results in categorical terms.

Theorem 5.6. (1) For any coselection ζ, the patch functor Pζ induces
a concrete isomorphism between the category of web spaces with ζ-proper
(continuous, respectively) maps and the category of ζ-convex web semi-
qospaces with isotone continuous (lower semicontinuous, respectively)
maps.

(2) Via Pα, the category of web spaces is isomorphic to the category
of α-convex ↑-stable semi-qospaces; and the category of semitopological
meet-semilattices with compatible topologies is isomorphic to the category
of α-convex T1-ordered semitopological meet-semilattices.

(3) Via Pυ, the category of web spaces is isomorphic to the category
of υ-convex web semi-qospaces; and the category of semitopological meet-
semilattices with compatible topologies is isomorphic to the category of
υ-convex T1-ordered semitopological meet-semilattices.

(4) Via Σ, the category MD of meet-continuous domains is isomorphic
to the category MCW of m-determined mc-spaces that are web spaces,
and via Λ to the category υMCW of υmc- and web ordered spaces.

(5) Via Σ, the category MS of meet-continuous semilattices is isomor-
phic to the category MCS of m-determined mc-spaces that are semitopo-
logical semilattices, and via Λ, it is isomorphic to the category υMCS of
υmc-ordered semitopological semilattices.

MD

�� HH

MCW υMCW

�
�
�

�
�

�
��	

Σ

�
�
�
�
�
�
�
��

Σ−

@
@
@
@
@
@
@@R

Λ

@
@

@
@

@
@
@@I

Λ−

-� U

Pυ

MS

MCS υMCS

��	��� @@R@@I

-�

The Fundamental Theorem of Compact Semilattices [13, VI-3] states
that (in ZF+AC) the compact T2-topological semilattices with small semi-
lattices are exactly the Lawson spaces of continuous complete semilattices.
Our considerations show that here the existence of enough small semilat-
tices may be replaced by the property of being upper m-determined.
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6. Subspaces of Web (Ordered) Spaces

By a subspace of a (quasi-)ordered space, we mean one that carries
not only the induced topology but also the induced (quasi-)order. While
strong convexity is inherited by subspaces, the web property is not.

Example 6.1. The real frame T = [ 0, 1]2 with the Scott topology is a
topological lattice, hence a web ordered space. As a subspace, the anti-
chain S = {(x, 1−x) : x ∈ [ 0, 1]} carries the Euclidean topology, whereas
a T1 web space must already be discrete. Thus, S cannot be web ordered.

@
@
@
@
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.................................................................................................................................................................................................................................

However, we shall characterize the T0 web spaces as certain “consistent”
subspaces of semitopological semilattices and prove a similar theorem for
strongly convex web semi-pospaces, that is, for patch spaces of T0 web
spaces. Let (Q,V) be a quasi-ordered space with down-closure operator ↓ .
A subspace T = (X,≤, T ) of (Q,V) is called ↓-consistent if

X ∩ clV(↓Y ∩ ↓Z) ⊆ clT (Y ∩ Z) for all lower sets Y and Z in T.

The reverse inclusion is always fulfilled. Hence, ↓-consistency entails

X ∩ clV(↓Y ) = clT Y for all lower sets Y in T,

which implies that ↑-stability is inherited by T from (Q,V) (Lemma 4.1),
and that X ∩ clV(↓Y )∩ clV(↓Z) = clT Y ∩ clT Z for lower sets Y and Z
in T . Hence, Theorem 4.3 yields the following lemma.

Lemma 6.2. Every ↓-consistent subspace of a web (quasi-ordered) space
is a web (quasi-ordered) space, too.

Corollary 6.3. Every ↓-consistent subspace of a semitopological meet-
semilattice is a web ordered space.

Example 6.4. Any subspace of a linearly mc-ordered lower semi-pospace
is ↓-consistent.

The cospectrum of a complete lattice L is the set P of all coprimes p
(satisfying p ∈ ↓F for all finite F ⊆ L with p ≤

∨
F ), equipped with

the topology {P \ ↓y : y ∈ L}. A subset X of L is join-dense in L if
y =

∨
(X ∩ ↓y) for all y in L.

Proposition 6.5. For a space S, the following conditions are equivalent:
(1) S is a subspace of the cospectrumof a frameL and join-dense in L.
(2) S is a ↓-consistent subspace of a semitopological meet-semilattice

with a compatible topology (in fact, with the weak upper topology).
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(3) S is a ↓-consistent subspace of a T0 web space.
(4) S is a T0 web space.

The frames L in (1) are isomorphic to the lattice of closed subsets of S.

Proof. (1)⇒ (2) For any frame L, the ordered space (L, υL) is a semitopo-
logical semilattice: The unary meet operations ∧x are residuated (i.e.,
preimages of principal ideals are principal ideals), hence υ-continuous.
Let S = (X,S) be a subspace of the cospectrum of L and join-dense in L.
Then, given any Y ⊆ X, one obtains Y ⊆ C for C = X ∩↓

∨
Y ∈ Sc, and

if Y ⊆ A = X ∩↓a ∈ Sc, then C = X ∩↓
∨
Y ⊆ X ∩↓a = A. This proves

clSY = X ∩↓
∨
Y . Now, for arbitrary lower sets Y =X ∩↓Y , Z=X ∩↓Z

in S, one computes, using the join-density of X in L,
X ∩ clυL(↓Y ∩↓Z) ⊆ X ∩↓

∨
(↓Y ∩ ↓Z) = X ∩↓

∨
(Y ∩ Z) = clS(Y ∩Z),

which shows that S is a ↓-consistent subspace of (L, υL).
(2)⇒ (3) Lemma 5.1.
(3)⇒ (4) Lemma 6.2.
(4)⇒ (1) Put S=(X,S),Y ′= {↓y : y∈Y } (Y ⊆X), S ′= {U ′: U ∈ S},

and S′= (X ′,S ′). Then ηS : S → S′, x 7→ ↓x = clS{x} is a homeomor-
phism, and S′ is a subspace of the cospectrum of Sc, which is a frame.
Any A ∈ Sc is a union of point closures, hence the join of the set A′.
Thus, X ′ is join-dense in Sc, and an isomorphic copy L of Sc gives (1).

On the other hand, if L is a frame as in (1), then the map i : L→ Sc
with i(y) = X ∩ ↓y is an isomorphism since A ∈ Sc implies A = X ∩ ↓y
for a y ∈ L; the embedding property is assured by join-density of X in
L. �

We now are going to establish a similar result for web ordered spaces.
It remains open whether any web ordered space is a subspace of a semi-
topological semilattice, but we are able to give a positive answer for ↑-
costable ordered spaces, in which ↑C is closed for every closed subset
C. (In [16] and [20], pospaces with this and the dual property are re-
ferred to as C-spaces, whereas in [4], [6], and elsewhere, C-spaces have
a different meaning, namely, that each point has a neighborhood base of
cores.) All compact pospaces are ↑-costable (see, e.g., [13, VI-1]). For
the intended subspace theorem, we need an ordered variant of the classi-
cal Vietoris topology ([22]; see also [13, Example VI-3.8] and [15]). Let
L be the coframe T ≤c of all closed lower sets in a lower semi-pospace
T = (X,≤, T ), and let VT be the topology on L generated by

the upper sets U≤ = {A ∈ L : A ∩ U 6= ∅ } (U ∈ T ≤)

and the lower sets V ≥= {A ∈ L : A ⊆ V } (V ∈ T ≥).
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We call the ordered space VT = (L,VT ) the (ordered) Vietoris space of T .
The principal ideal map (which here is not the point closure map!)

eT : X → L, x 7→ ↓x

is a well-defined order embedding (as x ≤ y ⇔ ↓x ⊆ ↓y), and it is a
topological embedding of T in VT in case T is strongly convex, since

e−1T [U≤] = {x ∈ X : ↓x ∩ U 6= ∅} = U for U ∈ T ≤,
e−1T [V ≥] = {x ∈ X : ↓x ⊆ V } = V for V ∈ T ≥.

By slight abuse of language, we speak of a semitopological frame if we
mean a frame L with a topology V making the operations ∧x continuous.
And we say a subspace (X,≤, T ) of (L,V) is join-generating if

(g1) X is join-dense in L,
(g2) clT Y = X ∩ ↓L

∨
Y for all lower sets Y of (X,≤), and

(g3) {L \ ↓L y : y ∈ L} ∪ {L \ ↑LC : C ∈ T ≥c} is a subbase for V.

After these preparations, we are ready for the main result in this sec-
tion.

Theorem 6.6. Any strongly convex semi-pospace T , i.e., any patch space
of a T0 space, enjoys the implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5), where

(1) T is ↑-stable and VT is a semitopological frame,
(2) T is a join-generating subspace of a semitopological frame (L,V),
(3) T is a ↓-consistent subspace of a semitopological meet-semilattice,
(4) T is a ↓-consistent subspace of a web ordered space,
(5) T is a web ordered space.

If T is ↑-costable, all five conditions are equivalent.
The semitopological frames in (2) are isomorphic and homeomorphic

toVT . The ordered spaces in (3) and (4) may be chosen strongly convex.

Proof. (1)⇒ (2) Identifying T with T ′ = (X ′,⊆, T ′) as in the proof of
Proposition 6.5, we may say T is a join-dense subspace of VT = (L,VT ).
For any Y ∈ α(X,≥), one concludes that clT Y coincides with X ∩ ↓

∨
Y ,

using that T is ↑-stable: By Lemma 4.1, A = clT Y lies in L=T ≤c, whence
A ⊆ X ∩ ↓

∨
Y ⊆ X ∩ ↓

∨
A = A, by a similar clue as in Proposition 6.5.

For U ∈ T ≤, we have X \ U ∈ T ≤c = L and

U≤ = {A ∈ L : A 6⊆ X \ U} = L \ ↓L{X \ U}.

For V ∈ T ≥ and C = X \ V , we obtain a closed upper set C ′ in T ′ with

V ≥ = {A ∈ L : A ∩ C = ∅} = {A ∈ L : ∀x ∈ C (↓x 6⊆ A)} = L \ ↑LC ′.

This shows that VT has the claimed specified subbase in (g3).
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(2)⇒ (3) The subbase in (g3) ensures that (L,V) is strongly convex.
The meet of lower sets Y and Z in T is a lower set, too. Now from (g1),
(g2), and (g3), one derives the inclusion

X ∩ clV(↓Y ∩↓Z) ⊆ X∩↓
∨

(↓Y ∩ ↓Z) = X ∩↓
∨

(Y ∩Z) = clT (Y ∩Z),

which shows that T is a ↓-consistent subspace of (L,V).
(3)⇒ (4) Lemma 5.1.
(4)⇔ (5) Lemma 6.2.
(5)⇒ (1) By Proposition 4.7, L = T ≤c is a frame. If T is ↑-costable,

then for B ∈ L = T ≤c, U ∈ T ≤, and V ∈ T ≥, the operation ∧B satisfies

∧−1B [U≤] = {A∈L : A ∩B ∩ U 6= ∅} = UB
≤ for UB=X \ C :B ∈ T ≤,

where C = X \ U ∈ L and C :B = max{A ∈ L : A ∩B⊆C},
∧−1B [V ≥] = {A∈L : A ∩B ⊆ V } = VB

≥ for VB = X\ ↑(B \V ) ∈ T ≥.
Finally, if (L,V) is as in (2), then the map e : L→ T ≤c, y 7→ X ∩ ↓y, is
an isomorphism and a homeomorphism between (L,V) and VT , since
e−1[U≤] = {y∈L : ↓y ∩U 6= ∅}= L \ ↓z for U ∈T ≤ and z=

∨
(X\U),

e−1[V ≥] = {y∈L : X∩↓y⊆V }=L\↑LC for V ∈T ≥ and C = X\V. �

7. Regularity Axioms

Concerning regularity (see §2), we note without proof the following
facts.

Lemma 7.1. (1) Compact qospaces are upper and lower regular.
(2) Strongly convex upper and lower regular quasi-ordered spaces, as well
as υ-convex upper regular semi-qospaces, are regular.
(3) ↑-stable and ↑-costable regular quasi-ordered spaces are upper regular.
(4) If T is upper regular, then the Vietoris space VT is T2-ordered.

Given any coselection ζ, we say a space (X,S) is ζ-regular if for all
x ∈ O ∈ S, there are U ∈ S and V ∈ ζS such that x ∈ U ⊆ X \ V ⊆ O.
Every space is α-regular (take U = X \V = O). The π-regular spaces are
the locally compact ones, and for ηS = {X \ ↑F : F finite }, the η-regular
spaces are the locally hypercompact ones [8]; any such space is υ-regular.

On the other hand, call a qospace (X,≤, T ) a ζ-qospace if it is ζ-convex
and upper regular, and ζ-reflexive if ζ(T ≤) = T ≥. Similarly, call a space
(X,S) ζ-reflexive if S = Sζ≤ and ζS = Sζ≥. Then we have the following
consequences of Theorem 3.10.

Proposition 7.2. ζ-patch spaces of ζ-determined ζ-regular spaces are ζ-
qospaces. The functor Pζ induces a concrete isomorphism between the
category of ζ-reflexive ζ-regular spaces and that of ζ-reflexive ζ-qospaces.
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The first part, together with Lemma 3.7 and Corollary 4.8, yields the
following.

Corollary 7.3. The strong patch space of a web space is an α-qospace.
The patch space PπS of a locally compact web space S is a π-qospace. The
weak patch space of a locally hypercompact web space is an υ-qospace.

If (X,S) and (X, ζS) are ζ-determined ζ-regular spaces with ζζS = S,
we call (X,S) a ζ-symmetric space. Similarly, a strongly convex, upper
and lower regular qospace (X,≤, T ) with T ≥= ζ(T ≤) and T ≤= ζ(T ≥)
is referred to as a ζ-symmetric qospace. Then an easy check confirms the
following theorem.

Theorem 7.4. The patch functor Pζ induces a concrete isomorphism be-
tween the category of ζ-symmetric spaces and that of ζ-symmetric qospaces.

This theorem has several interesting instances. First, for ζ=α, it gives
the categorical equivalence between (T0) A-spaces and qosets (posets).
Second, using results in [7] and [13], one deduces from Alexander’s Sub-
base Lemma (which is equivalent to UT, see [5]) that the π-symmetric T0

spaces are the stably compact spaces and the π-symmetric pospaces are
the compact pospaces. Thus, Theorem 7.4 includes for ζ=π the equiva-
lence between stably compact spaces and compact pospaces. And third,
for ζ=υ, UT assures that the interval space IL=(L, υL υ) of a complete
lattice is compact [5], and Theorem 7.4 yields an equivalence between
locally hypercompact weak upper spaces of complete lattices and lattices
with compact T2 interval topologies.
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