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ON ISOTOPY OF SELF-HOMEOMORPHISMS OF
QUADRATIC INVERSE LIMIT SPACES

H. BRUIN AND S. ŠTIMAC

Abstract. We prove that every self-homeomorphism on the in-
verse limit space of a quadratic map is isotopic to some power of
the shift map.

1. Introduction

The two most prominent families of unimodal maps are the family of
quadratic maps Qa, a ∈ [1, 4], and the family of tent maps Ts, s ∈ [1, 2].
The inverse limit spaces of quadratic and tent maps share a lot of com-
mon properties. For example, if f is a map from one of these fami-
lies, then 0 is a fixed point of f ; the point 0̄ := (. . . , 0, 0, 0) is con-
tained in lim←− ([0, 1], f) and is an end-point. The arc-component C of
lim←− ([0, 1], f) which contains 0̄ is a ray converging to, but (provided a < 4

and s < 2) disjoint from the inverse limit of the core lim←− ([c2, c1], f), and
lim←− ([0, 1], f) = C ∪ lim←− ([c2, c1], f), where the critical or turning point is
denoted as c and ck := fk(c). If c is periodic with (prime) period N , then
lim←− ([c2, c1], f) contains N end-points.

The relationships between quadratic and tent maps and between their
inverse limits are mostly well understood. Each quadratic map Qa with
positive topological entropy is semi-conjugate to a tent map Ts with
log s = htop(Qa), and this semi-conjugacy collapses (pre)periodic inter-
vals to points [6]. If a quadratic map is not renormalizable and does not
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168 H. BRUIN AND S. ŠTIMAC

have an attracting periodic point, then this semi-conjugacy is a conjugacy
indeed.

It is clear that if two interval maps are topologically conjugate, then
their inverse limit spaces are homeomorphic. The effect of renormalization
on the structure of the inverse limit is also well understood [2]: It produces
proper subcontinua that are periodic under the shift homeomorphism and
homeomorphic with the inverse limit space of the renormalized map.

A very interesting question is to characterize groups of homeomor-
phisms which act on inverse limits of unimodal maps. In [5] we proved
that for every homeomorphism h : lim←− ([0, 1], Ts) → lim←− ([0, 1], Ts) there
exists R ∈ Z such that h is isotopic to σR, where σ is the standard shift
map (see also [3] and [4]). Thus, it is natural to ask the same question
for the ”fuller” quadratic family, which includes (infinitely) renormaliz-
able maps. The answer does not follow in a straightforward way from
[5]. Some work should be done, and the following result is what we have
proved in this paper.

Theorem 1.1. Let H : lim←− ([0, 1], Q) → lim←− ([0, 1], Q) be a homeomor-
phism. Then H is isotopic to σR for some R ∈ Z.

The paper is organized as follows. Section 2 gives basic definitions.
Section 3 gives the major step for the isotopy result from tent map in-
verse limits to quadratic map inverse limits. In section 4 we show how
homeomorphisms act on p-points and prove our main theorem. These last
proofs depend largely on the results obtained in [5] and [1].

2. Preliminaries

Let N = {1, 2, 3, . . . } be the set of natural numbers and N0 = N ∪ {0}.
We consider two families of unimodal maps, the family of quadratic maps
Qa : [0, 1]→ [0, 1], with a ∈ [1, 4], defined as Qa(x) = ax(1− x), and the
family of tent maps Ts : [0, 1]→ [0, 1] with slope ±s, s ∈ [1, 2], defined as
Ts(x) = min{sx, s(1−x)}. Let f be a map from any of these two families.
The critical or turning point is c := 1/2. Write ck := fk(c). The closed
f -invariant interval [c2, c1] is called the core.

The inverse limit space lim←− ([0, 1], f) is the collection of all backward
orbits

{x = (. . . , x−2, x−1, x0) : f(x−i−1) = x−i ∈ [0, c1] for all i ∈ N0},

equipped with metric d(x, y) =
∑
n≤0 2n|xn − yn| and induced, or shift

homeomorphism

σ(x) := σf (. . . , x−2, x−1, x0) = (. . . , x−2, x−1, x0, f(x0)).
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Let πk : lim←− ([0, 1], f) → [0, c1], πk(x) = x−k be the kth projection map.
For any point x ∈ lim←− ([0, 1], f), the composant of x in lim←− ([0, 1], f) is
the union of all proper subcontinua of lim←− ([0, 1], f) containing x, and the
arc-component of x in lim←− ([0, 1], f) is the union of all arcs in lim←− ([0, 1], f)

containing x.
We review some of the main tools introduced in [1] and which are neces-

sary here as well. We define p-points as those points x = (. . . , x−2, x−1, x0)
∈ lim←− ([0, 1], f) such that x−p−k = c for some k ∈ N0. The supremum k of
the set of integers with this property is called the p-level of x, Lp(x) := k.
Note that k can be ∞, and this will happen if, for example, the turning
point is periodic, say of period N . In this case the corresponding inverse
limit will have N+1 end-points: one is 0̄ and the others are p-points with
p-level ∞ for every p.

Among the p-points of C there are special ones, called salient, which
are center points of symmetries in C. Homeomorphisms preserve these
symmetries to such an extent that it is possible to prove that salient points
map close to salient points.

We call a p-point y ∈ C salient if 0 ≤ Lp(x) < Lp(y) for every p-
point x ∈ (0̄, y). Let (sip)i∈N be the sequence of all salient p-points of
C, ordered such that sip ∈ (0̄, si+1

p ) for all i ≥ 1. Since by definition
Lp(s

i
p) > 0, for all i ≥ 1, we have Lp(s1p) = 1. Also, since sip = σi−1(s1p),

we have Lp(sip) = i for every i ∈ N. Therefore, for every p-point x of
lim←− ([0, 1], f) with Lp(x) 6= 0, there exists a unique salient p-point skp such
that Lp(x) = Lp(s

k
p) = k. Note that the salient p-points depend on p: If

p ≥ q, then the salient p-point sip equals the salient q-point si+p−qq .
A continuum is chainable if for every ε > 0, there is a cover {`1, . . . , `n}

of open sets (called links) of diameter less than ε such that `i ∩ `j 6= ∅
if and only if |i − j| ≤ 1. Such a cover is called a chain. Clearly, the
interval [0, c1] is chainable. Throughout, we will use sequences of chains
Cp of lim←− ([0, 1], f) satisfying the following properties:

(1) there is a chain {I1p , . . . , Inp } of [0, c1] such that `jp := π−1p (Ijp) are
the links of Cp;

(2) each point x ∈
⋃p
i=0 f

−i(c) is a boundary point of some link Ijp ;
(3) for each i there is j such that f(Iip+1) ⊂ Ijp .

If maxj |Ijp | < εs−p/2, then mesh(Cp) := max{diam(`p) : `p ∈ Cp} < ε,
which shows that lim←− ([0, 1], f) is indeed chainable. Property (3) ensures
that Cp+1 refines Cp (written Cp+1 � Cp).

Note that all p-points of p-level k belong to the same link of Cp. (This
follows by property (1) of Cp because Lp(x) = Lp(y) implies πp(x) =
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πp(y).) Therefore, every link of Cp which contains a p-point of p-level k
contains also the salient p-point skp.

Let `0, `1, . . . , `k be those links in Cp that are successively visited by
an arc A ⊂ C (hence, `i 6= `i+1, `i ∩ `i+1 6= ∅, and `i = `i+2 is possible
if A turns in `i+1). We call the arc A p-link-symmetric if `i = `k−i for
i = 0, . . . , k and maximal p-link-symmetric if it is p-link-symmetric and
there is no p-link-symmetric arc B ⊃ A which passes through more links
than A. In any of these cases, k is even, and the link `k/2 is called the
central link of A.

As we have already mentioned in the introduction, in [5] we proved
that for a tent map T and every homeomorphism h : lim←− ([0, 1], T ) →
lim←− ([0, 1], T ), there exists R ∈ Z such that h is isotopic to σR. The only
places in the proofs of [5] that rely on properties of tent maps are those
where Theorem 4.1, Proposition 4.2, or Theorem 1.3 from [1] are cited.
All other results, although stated for the tent maps, work for the quadratic
maps as well. Therefore, the goal of this paper is to prove the analogs of
these three results for the quadratic family, since, in that case, the proof
of our main theorem will follow from [5]. For the reader’s convenience,
we state the analogs of these three results.

Let H : lim←− ([0, 1], Q) → lim←− ([0, 1], Q) be a homeomorphism. Let p
and q be such that H(Cp) ≺ Cq, where Ck denotes a natural chain of
lim←− ([0, 1], Q). Let x be a p-point of C and let y be a q-point of C. We
will write that H(x) ≈ y if H(x) and y belong not only to the same link
of Cq, but also to the same arc-component of that link.

Theorem 2.1 (The analog of [1, Theorem 4.1]). There exists R ∈ Z such
that H(si) ≈ σR(si) for all sufficiently large integers i ∈ N.

Proposition 2.2 (The analog of [1, Proposition 4.2]). Let R be as in
Theorem 2.1. For every p-point x ∈ C of p-level i there exists a q-point
y ∈ C of p-level i+R such that H(x) ≈ y for all sufficiently large integers
i ∈ N.

Theorem 2.3 (The analog of [1, Theorem 1.3]). Let R be as in Theorem
2.1. Then H and σR, restricted to the core lim←− ([c2, c1], Q), are pseudo-
isotopic; i.e., they permute the composants of the core of the inverse limit
in the same way.

At the end of these preliminaries let us recall the definition of itineraries
which we will need later on: For x ∈ X, define the itinerary i(x) = (in)n∈Z
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as the sequence where

in(x) =

{
0, xn ≤ c,
1, xn ≥ c,

and if xn = c, we write in(x) = 0
1.

3. Pseudo-isotopy

Let Q be a quadratic map of entropy htop(Q) > 1
2 log 2, which is renor-

malizable, but (due to the entropy restraint) of period N > 2. Let
{Jj}N−1j=0 be the periodic cycle of intervals numbered so that c ∈ J0

and Q(Ji) = Ji+1 (mod N). Denote J =
⋃N−1
j=0 Jj . Also assume that

Ji = [pi, p̂i], where pi is N -periodic and QN (p̂i) = pi. Let T := Ts
be the semiconjugate tent map with s = exp(htop(Q)). Then T has an
N -periodic critical point.

Let X := lim←−([c2, c1], Q) and X̃ := lim←−([c̃2, c̃1], T ). Let Gj := {x ∈
X : πk(x) ∈ Jj−k (mod N), k ∈ N0}, j ∈ {0, . . . , N − 1}. These are the
(maximal) proper subcontinua of X that are not arcs or points. On
the other hand, all proper subcontinua of X̃ are arcs and points and X̃
has N endpoints ej , where π̃0(ej) = c̃j . Here πi : X → [c2, c1] and
π̃i : X̃ → [c̃2, c̃1] are the coordinate projections.

There is a unique arc-component Zj of X ∩ π−10 (Jj) that compactifies
exactly on Gj . This is a ray, and we can extend it on one side with an arc
Z∗j such that π0(Z∗j ) = [rj,0, pj ] (where the point rj,0 close to pj is chosen
below).

Theorem 3.1. There exists a continuous onto map φ : lim←−([c2, c1], Q)→
lim←−([c̃2, c̃1], T ) such that φ(Gj) = ej and φ is one-to-one on lim←−([c2, c1], Q)\⋃N−1
j=0 Gj.

Proof. For the quadratic map, let (rj,k)k∈N0
be a monotone sequence of

points such that rj,k belong to a single component of [c2, c1] \ J , and
rj,k → pj (see Figure 1).

p2c2p̂2

J2

p0p̂0 c

J0

p1 c1 p̂1

J1
•
r2,0

••• •
r0,0

••• •
r1,0

•••

Figure 1. The intervals Jj with sequences rj,k → pj .

Without loss of generality, we can set Q(rj,k) = rj+1,k for 0 ≤ j <
N − 1 and Q(rN−1,k+1) = r0,k for k ≥ 0. This means that the sequence
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(rj,k : j = 0, . . . N−1, k ∈ N0), starting from r0,0, forms a single backward
orbit.

Similarly, for the tent map T , for fixed 0 ≤ j < N , let (r̃j,k)k∈N0
be a

monotone sequence of points such that r̃j,k belong to a single component
of [c̃2, c̃1] \ orbT (c̃), and r̃j,k → c̃j . Again we set T (r̃j,k) = r̃j+1,k for
0 ≤ j < N − 1 and T (r̃N−1,k+1) = r̃0,k for k ≥ 0.

Note that if x ∈ X is such that πn(x) /∈ J for all n ∈ Z, then there is a
unique point x̃ ∈ X̃ such that x and x̃ have the same itinerary. Without
loss of generality, we can indeed assume that orb(r0,0) ∩ J = ∅, and then
indeed choose r̃0,0 with the same itinerary as r0,0. Then rj,k and r̃j,k have
the same itinerary for every j and k.

Now take x ∈ X. Depending on whether π0(x) ∈
⋃
j(rj,0, p̂j) or not,

and on whether Gj are the Knaster continua or not, we have different
algorithms to define φ(x).

Case 1. π0(x) /∈
⋃
j(rj,0, p̂j). Suppose that x belongs to a component

W of X \ π−10 (
⋃
j(rj,0, p̂j)). There is a unique component W̃ of X̃ \

π̃−10 (
⋃
j(r̃j,0, c̃j)) which has the same backward itinerary as W . Define

φ : W → W̃ such that π̃0 ◦φ◦π−1 is an affine map from π0(W ) to π̃0(W̃ ).
Case 2. π0(x) ∈

⋃
j(rj,0, p̂j), non-Knaster construction. Assume that

π0(x) ∈ [rj,0, p̂j ] for some j, and letW be the component of π−10 ([rj,0, p̂j ])

containing x and V ⊂W be the corresponding component of π−10 ([pj , p̂j ]).
Let

Λ = sup{L(y) : y ∈ V is a p-point},
where L := Lp is the p-level of a p-point. The definition of φ|W will
depend on the value of Λ (see Figure 2).

Λ = 0

W

W̃

rj,0 pj p̂j

r̃j,0 c̃j

φ φ

Λ = 1

W

W̃

rj,0 pj

cj

r̃j,0 c̃jrj,1

φ

φ
φ

φ

φ

Λ =∞

W ⊃ Zj

W̃

φ
φ

φ φ

c̃jr̃j,0 r̃j,1 r̃j,2 c̃j

Figure 2. The non-Knaster case: The arcsW and their
images under φ. The labels refer to the π0-images of the
points.
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(2.1). If Λ = 0, then π0 : W → [rj,0, p̂j ] is injective. Let W̃ ⊂ X̃

be the unique component of π̃−10 ([r̃j,0, c̃j ]) that has the same backward
itinerary as W . Define φ : W → W̃ to be the homeomorphism such that
π̃0◦φ◦π−1 is the affine map from [rj,0, p̂j ] = π0(W ) onto [r̃j,0, c̃j ] = π̃0(W̃ )
so that π̃0 ◦ φ ◦ π−1(rj,0) = r̃j,0.

(2.2). If 0 < Λ <∞, then let m ∈W be the p-point of level L(m) =
Λ. In fact, m is the unique point with this property: it is the midpoint
of W . Furthermore, there are two finite sequences of points {vk}λk=1 and
{v̂k}λk=1, λ ≤ Λ, inside V such that ∂V = {v1, v̂1}, vλ = v̂λ = m, vk+1 is
the p-point in [vk,m] such that L(vk+1) > L(vk) and no point in (vk, vk+1)
has level larger than the level of vk, and v̂k+1 is the p-point in [v̂k,m] such
that L(v̂k+1) > L(v̂k) and no point in (v̂k, v̂k+1) has level larger than the
level of v̂k. (Note that if V and V ′ are two different components of
π−10 ([pj , p̂j ]) with levels of their midpoints satisfying Λ < Λ′, then λ < λ′,
and, in fact, the levels of the points v′k ∈ V ′ are a superset of the levels
of the points vk ∈ V .)

Let W̃ ⊂ X̃ be the component of π̃−10 ([r̃j,0, c̃j ] so that the two endpoints
of W̃ have the same itineraries as the corresponding endpoints ofW . Note
that the midpoint m̃ of W̃ has the level L(m̃) = Λ.

Define φ : W → W̃ to be the homeomorphism such that

(a) π̃0 ◦ φ ◦ π−1 maps [rj,0, pj ] affinely onto [r̃j,0, r̃j,1];
(b) [vk, vk+1] and [v̂k, v̂k+1] are mapped to the two components of

π̃−10 ([r̃j,k, r̃j,k+1]) ∩ W̃ , for 0 ≤ k < λ− 1;
(c) [vλ−1, v̂λ−1] is mapped onto π̃−10 ([r̃j,λ−1, c̃j ]) ∩ W̃ in such a way

that π̃0 ◦ φ(m) = c̃j .

(2.3). If Λ = ∞ and x ∈ Zj (but Zj ∩ Gj = ∅ since we are in the
non-Knaster case), then V = Zj ⊂ W is a ray, and we can define an
infinite sequence {vk}∞k=1 so that π0(v1) = pj and vk+1 is the p-point on
Zj \ [v1, vk] such that L(vk+1) > L(vk) and no p-point on (vk, vk+1) has
the level larger than the level of vk.

Let W̃ be the component of π̃−10 ([r̃j,0, c̃j)) having ej as boundary point.
Define φ : W → W̃ to be the homeomorphism such that

(a) π̃0 ◦ φ ◦ π−1 maps [rj,0, pj ] affinely onto [r̃j,0, r̃j,1];
(b) [vk, vk+1] is mapped to π̃−10 ([r̃j,k, r̃j,k+1]) ∩ W̃ , for k ≥ 1.

(2.4). φ(x) = ej for every x ∈ Gj .

Case 3. π0(x) ∈
⋃
j(rj,0, p̂j), Knaster construction. Now we adapt the

construction for the case that the renormalizationQN |J0 is a full unimodal
map (i.e., Gj is the Knaster continuum). In this case Zj ⊂ Gj and the
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construction of φ : W → W̃ for (2.1) remains the same. Item (2.2) is
changed into (3.2) below, and (2.3) and (2.4) are combined into (3.4).

(3.2). With W , W̃ , and sequence {vk}λk=1 and {v̂k}λk=1 with vλ =

v̂λ = m as before, define φ : W → W̃ to be the homeomorphism such that
(a) π̃0 ◦ φ ◦ π−1 maps [rj,0, pj ] affinely onto [r̃j,0, r̃j,λ+1];
(b) [vk, vk+1] and [v̂k, v̂k+1] are mapped to the two components of

π̃−10 ([r̃j,λ+k, r̃j,λ+k+1]) ∩ W̃ , for 1 ≤ k < λ− 1.
(c) [vλ−1, v̂λ−1] is mapped onto π̃−10 ([r̃j,2λ−1, c̃j ]) ∩ W̃ in such a way

that π̃0 ◦ φ(m) = c̃j (see Figure 3).

Λ = 0

W

W̃

rj,0 pj p̂j

r̃j,0 c̃j

φ φ

Λ = 1

W

rj,0 pj

cj

r̃j,0 c̃jrj,1 rj,2

φ

φ
φ

φ

φ

Λ =∞

W \Gj

W̃

pjp̂j

c̃jr̃j,0

φ φ

Figure 3. The Knaster case: the arcs W and their im-
ages under φ. The labels refer to the π0-images of the
points.

(3.4). If Λ =∞ and x ∈ Z∗j ∪Gj , then let W̃ be the component of X̃
with boundary point ej and π̃0(W̃ ) = [r̃j,0, c̃j). Let φ : Z∗j → W̃ be such
that π̃0 ◦ φ ◦ π−10 : [rj,0, pj)→ [r̃j,0, c̃j) is affine and φ(x) = ej if x ∈ Gj .

By construction, φ : W → W̃ is always a homeomorphism for all
the components W in this construction, and their union, together with⋃N−1
j=0 Gj , is the entire X, just as the union of all W̃ , together with⋃N−1
j=0 {ej}, is the entire X̃. Therefore, φ is onto and one-to-one on

X̃ \
⋃N−1
j=0 Gj .

The construction of φ : W → W̃ essentially depends only on the value
of Λ, in the sense that without loss of generality,

(3.1) π̃0 ◦ φ ◦ π−1 : π0(W )→ π̃0(W̃ )

can be chosen to depend only on Λ = Λ(W ). This makes φ continuous on
X \

⋃N−1
j=0 (Gj ∪ Zj). Finally, in the non-Knaster case, W → Zj ∪ Gj in
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the Hausdorff metric if and only if Λ(W )→∞ and Λ(W ) (mod N) = j.
Recall that we specified φ|Zj to have the limit dynamics of φ|W for W →
Zj ∪Gj , thus achieving continuity of φ on each Zj ∪Gj .

In the Knaster case, diam(φ(W )) → 0 as W → Gj , so here φ is also
continuous on each Gj . �

Corollary 3.2. Given a homeomorphism h : X → X, the map h̃ :=
φ ◦ h ◦ φ−1 is a well-defined homeomorphism on lim←−([c̃2, c̃1], T ).

Proof. The endpoints ej are the only points where φ−1 is not single-
valued. Therefore, h̃ is well defined on lim←−([c̃2, c̃1], T ) \ {e0, . . . , eN−1}.
However, since h is a homeomorphism, it has to permute the subcontinua
Gj ; therefore, h ◦ φ−1(ej) = Gi for some i and φ ◦ h ◦ φ−1(ej) = ei.
Therefore, h̃ is defined (in a single-valued way) also at the endpoints, and
it permutes them by the same permutation as h permutes the subcontinua
Gj .

Since φ is continuous and injective outside Gj , h̃ is continuous on X̃ \
{e0, . . . , eN−1}. To conclude continuity of h̃ at the endpoints ej , observe
that for every Λ0 ∈ N there is a neighborhood U of Gj such that π−10 (J)∩
W ⊂ U only if Λ(W ) ≥ Λ0 (where the components W and their maximal
levels Λ(W ) are as in the proof of Theorem 3.1). On the other hand,
for every neighborhood Ũ of ei = h̃(ej), φ(W ) ∩ π̃−10 (c̃i) ∩ Ũ 6= ∅ only if
Λ(W ) is sufficiently large. Therefore, h̃ maps small neighborhoods of ej
into small neighborhoods of ei, and the continuity of h̃ at {e0, . . . , eN−1}
follows. �

Recall that lim←− ([0, 1], Q) = C ∪X, where X = lim←−([c2, c1], Q) and C is
the ray containing 0̄ that compactifies on X. Analogously, lim←− ([0, 1], T ) =

C̃ ∪ X̃.

Remark 3.3. Let H : lim←− ([0, 1], Q) → lim←− ([0, 1], Q) be a homeomor-
phism. In a straightforward way it is possible to expand our construction
of φ : X → X̃ to get the continuous map Φ : lim←− ([0, 1], Q)→ lim←− ([0, 1], T )

such that Φ|X = φ and the map H̃ := Φ◦H ◦Φ−1 is a well-defined home-
omorphism on lim←− ([0, 1], T ). Obviously, H̃|X̃ = h̃.

In [5] we proved that every homeomorphism on lim←− ([0, 1], T ) is isotopic
to some power of the shift map. Therefore, H̃ is isotopic to σR for some
R ∈ Z. Since Φ is injective on lim←− ([0, 1], Q)\(

⋃N−1
i=0 Gi) and Φ◦H = H̃◦Φ,

H restricted to lim←− ([0, 1], Q) \ (
⋃N−1
i=0 Gi) is pseudo-isotopic to σR, and

H permutes the Gis in the same way as σR.
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4. Isotopy

Let Ck denote a natural chain of lim←− ([0, 1], Q). Then, by construction
of Φ, Φ(Ck) is a natural chain of lim←− ([0, 1], T ). Also, for every k, l ∈ N,
Φ maps the salient k-point of C of k-level l to the salient k-point of C̃ of
the same k-level l.

Let p and q be such that H(Cp) ≺ Cq. Then, by construction of Φ,
H̃(Φ(Cp)) ≺ Φ(Cq). Let {ti : i ∈ N} denote all salient p-points of C and
{si : i ∈ N} all salient p-points of C̃. Let {t′i : i ∈ N} denote all salient
q-points of C and {s′i : i ∈ N} all salient q-points of C̃.

Let Ai be the maximal p-link-symmetric arc centered at ti. Since Ai
is p-link-symmetric, and H(Cp) � Cq, the image Di := H(Ai) is q-link-
symmetric and therefore has a well-defined central link `q, and a well-
defined center, we denote it as m′i. In fact, H(ti) and m′i belong to the
central link `q and m′i is the q-point with the highest q-level of all q-points
of the arc component of `q which contains H(ti). Recall that we write
H(d) ≈ b if H(d) and b belong not only to the same link, but also to the
same arc-component of that link. Thus, H(ti) ≈ m′i.

As we explained in the preliminaries, to prove our main theorem we
should prove Theorem 2.1, Proposition 2.2, and Theorem 2.3.

Proof of Theorem 2.1. We will prove that there exists R ∈ Z such that
m′i = t′i+R for all sufficiently large integers i ∈ N.

Let Φ and H be as in Remark 3.3. Let R be such that H̃ is isotopic to
σR. Recall that Φ maps the salient p-point of C of p-level i to the salient
p-point of C̃ of the same p-level i; that is, Φ(ti) = si, for all i ∈ N, and
analogously for salient q-points, Φ(t′i) = s′i, for all i ∈ N. Since by [7,
Theorem 4.12] and [1, Theorem 4.1], H̃(si) ≈ s′i+R for all i sufficiently
large, and H̃ ◦ Φ = Φ ◦H, it follows that H(ti) ≈ t′i+R for all sufficiently
large i ∈ N. �

Now, in the same way as in the proof of [1, Proposition 4.2], but using
Theorem 2.1 instead of [1, Theorem 4.1], it follows that for every p-point
x ∈ C of p-level i there exists a q-point x′ ∈ C of p-level i+ R such that
H(x) ≈ x′ for all sufficiently large integers i ∈ N, which is the statement of
Proposition 2.2. Further, in the same way as in the proof of [1, Theorem
1.3], but using Theorem 2.1 instead of [1, Theorem 4.1] and Proposition
2.2 instead of [1, Proposotion 4.2], it follows that the homeomorphism
H : lim←− ([0, 1], Q)→ lim←− ([0, 1], Q) is pseudo-isotopic to σR.

Having now the analogous results of Theorem 4.1, Proposition 4.2,
and Theorem 1.3 from [1] proved for the quadratic family, the proof of
our main theorem follows from [5].
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