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SUDDHASATTWA DAS

Abstract. One-parameter families ft of circle diffeomorphisms
are a common occurrence in dynamical systems. One subject of
investigation is the variation of the rotation number with the pa-
rameter and how the parameter-range splits into periodic windows
and a Cantor set of irrational rotation numbers. One of the ear-
liest topics of investigation is how the measure of this Cantor set
depends on the family, starting with the work of V. I. Arnol’d,
Michael-Robert Herman, etc. Studies of various parameterized cir-
cle maps seem to indicate that this measure approaches 1 when ft
is a small perturbation of the identity, and sometimes approaches
0 when ft is close to a critical map. This paper describes a uni-
versal function η which gives an upper bound on the Lebesgue
measure of the periodic windows based on the C4 distance of ft
from the identity map. This confirms several observations made in
the mathematical literature in the past.

1. Introduction and Main Results

In this paper, the unit circle S1 will be identified as R/N, and proj :
R → N is the associated quotient map. A homeomorphism of the circle
f : S1 → S1 can be lifted to a map f̄ : R → R under the covering map
proj. It is well known (see, for example, [13]) that the following limit
exists and is a constant independent of z.

ρ(f) := lim
n→∞

f̄(z)− z

n
This limit is called the rotation number of f . The rotation number is of
fundamental importance in inferring the properties of the map and its

2010 Mathematics Subject Classification. 37E10, 37E45, 37C55.
Key words and phrases. diophantine, quasiperiodicity, rotation, numbers.
c⃝2017 Topology Proceedings.

179



180 S. DAS

limit points. If the rotation number is rational of the form p
q , then all

points on S1 are in the basin of attraction of some q-periodic point. On
the other hand, if ρ /∈ Q, then f has the rotation θ 7→ θ + ρ mod 1 as
a factor map. In fact, a homeomorphism of the circle is conjugate to
an irrational rotation if and only if it is transitive (see [15]). Dynamics
on a torus Td or on S1 which are conjugate to an irrational rotation
are called quasiperiodic dynamics. They have interesting properties like
transitivity, non-mixing, unique ergodicity, zero Lyapunov exponents, etc.
The existence of an invariant curve/manifold, on which the dynamics is
transitive, can often lead to strong global properties. See, for example,
the role of blenders in [4] and [5] and transversal quasiperiodic curves in
[8].

An orientation preserving circle homeomorphism f is of the form given
below.

(1.1) f(θ) = θ + g(θ) mod 1

where g : R → R is called the periodic part of the map F and is periodic
and of the same smoothness class as F . We are interested in parameterized
families of C3 circle diffeomorphisms, parameterized by a parameter t ∈
[0, 1], which can be written similar to (1.1) in the following manner.

(1.2) ft : θ 7→ θ + t+ gt(θ) mod 1

Here g is C1 function of the parameter t and a C3, 1-periodic function of
θ.

1.1. Partition of the parameter space.

Given a parameterized family ft, define P(ft) to be the set {t ∈ [0, 1] :
ft has a periodic point}, and by Q(ft) the set {t ∈ [0, 1] : ft is topologically
conjugate to an irrational rotation}. By A. Denjoy’s theorem [9], a C3

circle diffeomorphism with an irrational rotation number ρ is topologically
conjugate to the rotation θ 7→ θ + ρ mod 1. Therefore,

[0, 1] = P(ft) ⊔Q(ft).

The focus of the paper will be on the following map M on 1-parameter
families ft:

(1.3) M(ft) := µ(P(ft)).

M(ft) is the Lebesgue measure µ of the set of parameter values t for
which ft has a periodic point. These sets of values of t are often called
the “mode-locked” regions [10] or “periodic windows.” We will show later
that M is an upper semi-continuous map. Pavol Brunovský proved that
there is a set of 1-parameter circle diffeomorphisms which is residual in
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the family of C3-circle diffeomorphisms for which the periodic windows
form an open, dense set in the parameter space [0, 1] (see [6, Proposition
3]).

1.2. Arnol’d tongues and periodic windows.

The dependence of the rotation number on the parameter t has been
studied for over 50 years; see, for example, [13], [1], etc. If for some
parameter value t0, ft0 has a stable periodic orbit with period n, then
ρ(ft) is constant and = k/n for t in some neighborhood of t0. These
intervals over which ρ(ft) is constant are called periodic windows. Arnold,
in the seminal paper [1], studied the family

ft,δ : θ → θ + t+ δ sin(2πθ) mod 1

and proved that M(ft) → 0 as δ → 0 . In his example, each of the
countably infinitely many periodic windows shrink in width to a point
at δ = 0, as δ → 0, and monotonically thicken as δ is increased. The
bifurcation diagrams of these windows with δ are called “Arnol’d tongues”
because of their shape. The scaling laws of their width with parameter δ
have been studied extensively in the general setting of ft ∈ F , in which
sin(2πθ) is replaced by some general periodic function gt(θ).

The main result of this paper is to establish a bound on the total
Lebesgue measure of the periodic windows, based on the C4 norm of the
periodic part gt of the family.

1.3. Universality of Arnol’d tongues.

Many universal properties of Arnol’d tongues have been observed in
general families of the form (1.2). Predrag Cvitanović, Boris Shraiman,
and Bo Söderberg [7] ordered the tongues based on the “Farey-sequence”
ordering of the rationals and for all fixed values of t, found asymptotic
scaling laws with respect to their number in this ordering. Leo B. Jonker
[14] and Jacek Graczyk [10], [11] proved q−3 scaling laws, where q is the
denominator of the rotation number. The differentiability properties of
the boundaries of the Arnol’d tongues and their angle of contact at δ = 0
have been studied in [2] and [3].

Before stating the main theorem, a norm ∥ft∥F will be defined on the
space of C4 parameterized circle diffeomorphisms.

(1.4) ∥ft∥F := max (∥gt∥C4 , ∥∂/∂tgt∥C0) .

Note that ∥ ∂
∂tgt∥C0=max{

∣∣ ∂
∂tgt(θ)

∣∣ : t ∈ [0, 1], θ ∈ S1 }. The C4 norm of
gt as a function of θ is denoted by ∥gt∥C4 . Let Diffr denote the family of
Cr diffeomorphisms of S1. We will define F to be the set of parameterized
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circle diffeomorphismsft such that ft ∈ Diff4 for every t ∈ [0, 1] and such
that ∥ft∥F < 1.

Theorem 1.1. Let M and ∥∥F be as in (1.3) and (1.4). For every
r ∈ [0, 1), there is an η ∈ (0, 1) such that if a parameterized family ft ∈ F
satisfies |ft|F ≤ r, then M(ft) < η.

Remark 1.2. This theorem is consistent with the general observations
made in the mathematical literature in the past on the gradual widening
of the Arnol’d tongues as the periodic part gt grows in C4 norm. For
example, the standard family ft,δ : θ 7→ θ + t + δ(2π)−1 sin(2πθ) mod 1
of V. I. Arnol’d was shown to satisfy M(ft,δ) → 1 as δ → 0 in [1] and
M(ft,δ)) → 0 as δ → 1 in [17]. Theorem 1.1 is proved in §3.

2. Two Lemmas

To prove Theorem 1.1, two important lemmas will be stated and proved.
The first lemma is a generalization of a lemma by Michael-Robert Her-

man [12, 3.8.2], which itself was an improvement of a theorem of Arnol’d
[1, Theorem 2]. The proof is based on ideas presented in [12, Theorem
7.1.] and has been provided for the sake of completeness and because
no equivalent lemma has been found by the author in the mathematical
literature.

Lemma 2.1 (Generalization of Herman’s continuity theorem). Let ft be
as in (1.2). Then for every ϵ > 0, there exists δ > 0 such that if gt is a
C3 function and satisfies ∥gt∥C3 < δ, then M(ft) < 5ϵ.

The lemma which is being generalized will be provided and used in the
proof. For all C > 0, let D(C) denote the set {x ∈ [0, 1] : ∀n ∈ N− {0},
|ei2πnx − 1| ≥ C|n|−3}. It is known (see, for example, [12, Theorem 7.1])
that for all C > 0, D(C) is compact and lim

C→0
µD(C) = 1.

Lemma 2.2 (KAM theorem, [13]). Let f be as in (1.1) and C > 0. Then
there exists K0(C) > 0 (with K0(C) → 0 as C → 0) and L(C) > 0 (with
L(C) → ∞ as C → 0) such that if the periodic part g of f is C3 and
∥g∥C3 = K ≤ K0, then there is a continuous map λg : D(C) → R such
that for every s ∈ D(C), there is a diffeomorphism hg,s of S1 such that
the following hold:

(i) θ + λg(s) + g(θ) mod 1 = h−1
g,s ◦ (θ + s) ◦ hg,s; i.e., the map θ 7→

θ + λg(s) + g(θ) mod 1 is conjugate via hg,s to a rotation by s,
(ii) |λg(s)− s| ≤ KL(C),
(iii) |hf,s − Id|C0 + |dhf,s − Id|C0 ≤ KL(C),
(iv) µ(λg(D(C))) > 1− ϵ.
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Proof of Lemma 2.1. The version of Lemma 2.1 that is to be proven in-
volves gt instead of g. Let ϵ > 0 be fixed for the rest of the proof. Let
C > 0 be chosen so that µ(D(C)) > 1−ϵ. Let K0 = K0(C) and L = L(C)
be as in Lemma 2.2 and let K < K(C) be chosen so that KL < ϵ. Then
by Lemma 2.2, if ∥gt∥C3 < K, then

(i) the map θ 7→ θ+λgt(s)+ gt(θ) is conjugate via a diffeomorphism
hgt,s to a rotation by s.

(ii) ∥hgt,s − Id∥C1 ≤ ϵ.
Let D′(C) :={t ∈ D(C) : t ∈ λgt(D(C))}. Note that if t ∈ D′(C),

then t = λgt(s) for some s ∈ (D(C)), so ft is conjugate to a rotation by
s. Therefore, P(f) ∩ D′(C) = ∅, so the lemma will be proved if it can be
shown that µ(D′(C)) > 1− 5ϵ.

For every s ∈ D(C), let ϕs : [0, 1] 7→ R denote the map t 7→ λgt(s).
Each of the maps ϕs is continuous. To see this, note that hgt changes con-
tinuously with gt (for proof, see, for instance, [16, Lemma 4]). Therefore,
λgt changes continuously with gt and therefore with t.

We are interested in the fixed points of the graphs ϕs. For if there
exists t ∈ [0, 1] such that ϕs(t) = t, then λgt(s) = t. So the map ft : θ 7→
θ + t + gt(θ) is the same as θ 7→ θ + λgt(s) + gt(θ) and is, by definition,
conjugate to a rotation by s, so t ∈ D′(C).

Let D′′(C) := {s ∈ D(C) : graph of ϕs has a fixed point}. Since the
maps ϕs are continuous and ∥ϕs−s∥C0 < ϵ, [ϵ, 1−ϵ]∩D(C) ⊆ D′′(C). Let
ϕ̄(s) denote this fixed point for all s ∈ D′′(C). Note that ϕs(ϕ̄(s)) = ϕ̄(s),
so ϕ̄ is a continuous function. By Lemma 2.2(ii), ∥ϕs−s∥C0 < ϵ; therefore,
∥ϕ̄− Id∥C0 < ϵ.

The fixed points of ϕs are the image of D′′(C) under ϕ̄. So proving
that ϕ̄ (D′′(C)) > 1− 5ϵ is enough to prove the claim of the lemma.

Since ϕ̄ is a C0 function satisfying ∥ϕ̄ − Id∥C0 < ϵ, if A ⊂ [0, 1] is
a compact set, then µ

(
ϕ̄(A)

)
≥ (1 − ϵ)µ(A). With this in mind, it is

sufficient to prove that µ(D′′(C)) > 1− 3ϵ. To this end, note that,

µ (D′′(C)) ≥ µ ([ϵ, 1− ϵ] ∩ D(C)) ≥ µ ([ϵ, 1− ϵ])+

µ (D(C))− µ ([ϵ, 1− ϵ] ∪ D(C)) ≥ (1− 2ϵ) + (1− ϵ)− (1) = 1− 3ϵ.

This completes the proof of Lemma 2.1. �
Remark 2.3. Lemma 2.1 proves that the map M from (1.3) is continuous
at gt ≡ 0. Whether M is continuous everywhere is not known. However,
for our purposes, a notion weaker than continuity, called “semi-continuity”
is needed.

Definition 2.4. Let X be a topological space, f : X → R. Then f is
said to be upper semi-continuous at x if lim supy→x f(y) ≤ f(x) and f is
said to be upper semi-continuous if it is upper semi-continuous at every



184 S. DAS

point x ∈ X. Equivalently, f is upper semi-continuous if and only if for
every a ∈ R, f−1(−∞, a) is open. The following lemma proves that M
from equation (1.3) is an upper semi-continuous function.

Lemma 2.5 (Semi-continuity lemma). The map M defined in (1.3) is
upper semi-continuous as a map from parameterized families of C3-diffeo-
morphisms into [0, 1].

Remark 2.6. Semi-continuity of the function M has been mentioned
before in the literature, but the author has found no proof of the claim,
at least in the generality of the problem being studied. Hence, it is being
provided here.

Proof of Lemma 2.5. Let ft ∈ F , ∥ft∥F = r < 1, and M(ft) = η < 1. It
will be proved that M is upper semi-continuous at ft. Fix ϵ > 0; it will
be shown that there exists δ > 0 such that if

∥∥∥f̂t − ft

∥∥∥
F

< δ for some

f̂t ∈ F , then M(f̂t) < M(ft) + 3ϵ.
Recall that Q(ft) denotes the complement in [0, 1] of the set P(ft)

C .
Following the idea in [12, Proposition 6.2.], divide the set Q(ft) (up to
a set of measure 0) as a union of nested compact sets ∪k∈NDk, where
Dk:= {t : ft is C3 conjugate to the rotation by ρ(ft), via a conjugacy ht

satisfying ∥ht∥C3 ≤ k}. Therefore, limk→∞ µ (Dk) = 1− η.
Let k ∈ N be chosen large enough so that µ(Dk) ≥ 1 − η − ϵ. Let

f̂t(θ) = ft(θ) + ∆t(θ) for some periodic perturbation term ∆t. Let δ =

k−2ϵ and ∥∆t∥F < δ, so that
∥∥∥f̂t − ft

∥∥∥
F
< δ.

If t0 ∈ DK , then ft0 = h−1 ◦ (θ 7→ θ+ ρ0) ◦ h, where ρ0 = ρ(ft0) and h
is the conjugacy satisfying ∥dht∥C0 ≤ k.

Note that f̂t can be written as

f̂t : θ 7→ ft0(θ) + ∆̂t(θ); ∆̂t(θ) = (t− t0) + ∆t(θ) + ft(θ)− ft0(θ).

Conjugating both sides by h gives

h ◦ f̂t ◦ h−1 : θ 7→ θ + ρ0 + νt(θ).

Since ∥dht∥C0 ≤ k, ∥νt∥C3 ≤ k2∥∆t∥C3 < ϵ. By Lemma 2.1, a continuous
function Ψ∆ : Dk → R may be constructed so that if t′ = Ψ∆(t0), then
|t0 − t′| < ϵ and the map

θ 7→ θ + ρ0 + νt′(θ)

from above is conjugate to an irrational rotation. Therefore, similar to
the proof of Lemma 2.1,

µ(Q(f̂t)) > (1− ϵ)µ(DK) > (1− ϵ)(1− η − ϵ)) > 1− η − 3ϵ,

so M(f̂t) < η + 3ϵ. This completes the proof of Lemma 2.5. �
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3. Proof of Theorem 1.1

Let η : [0, 1] → [0, 1] be defined as

∀r ∈ [0, 1], η(r) := sup{µP(f) : f ∈ F , ∥ft∥F < r}.
Note that η is a non-decreasing function of r. Moreover, η(0) = 0, η(1) =
1.

Claim 1. η is a right-continuous function. The proof will be by con-
tradiction, so let η not be right-continuous at some r ∈ (0, 1). Since η is
non-decreasing, this means that there exists δ > 0 and fn,t a sequence of
parameterized families in F such that the norms ∥fn,t∥F are monotoni-
cally decreasing and converge to r+, but M(fn,t) ≥ η(r) + δ. Since their
periodic parts gn,t are a bounded sequence in C4(S1), they have a limit
point gt in C3(S1).

Let ft : θ 7→ θ+ t+ gt(θ). By the upper semi-continuity of M (Lemma
2.5), M(ft) ≥ lim supn → ∞M(fn,t) ≥ η(r) + δ. However, ∥ft∥F must
equal r, so by the definition of η, η(r) ≥ M(ft), which is a contradiction.
So the assumption that η is not right-continuous at r was wrong, and the
claim is proved.

Claim 2. η is a left-continuous function. To see this, first note that
by the upper semi-continuity of M ,

lim supr′ → r−η(r′) ≤ η(r).

So if η is not left-continuous at r ∈ (0, 1), then there exists δ > 0 such
that

lim supr′ → r−η(r′) < η(r)− δ.

So there must exist ft ∈ F such that ∥ft∥F = r and M(ft) = r. Now
by adding a small perturbation to gt over a range of parameter values of
length < 0.5δ, it is possible to get a new family f̄t such that

∥∥f̄t∥∥F < r.
However, M(f̄t) could only have decreased by 0.5δ, so M(f̄t) > η(r)− δ.
This contradicts the equation above and completes the proof of the claim.

Claim 3. η is a continuous function. This follows from the previous
two claims.

Claim 4. η(r) < 1 for r ∈ (0, 1). To prove this, define the univer-
sal constant r∗ as r∗ := inf{r ∈ [0, 1] : η(r) = 1}. Lemma 2.1 proves
that r∗ > 0. Suppose r∗ < 1. Then there exists a sequence fn,t of pa-
rameterized families in F such that the norms ∥fn,t∥F are monotonically
decreasing and converge to r+∗ , but M(fn,t) = 1. Since gn,t is a bounded
sequence in C4(S1), they have a limit point gt in C3(S1).

Let ft := (θ) 7→ θ + t + gt(θ). By the upper semi-continuity of M
(Lemma 2.5), 1 ≥ M(ft) ≥ lim supn → ∞M(fn,t) = 1. This contradicts
[12, Theorem 6.1.], which states that a family ft with a non-constant



186 S. DAS

rotation number cannot have a full Lebesgue measure set of parameters
with rational rotation number.

This completes the proof of the claim and also of Theorem 1.1. �
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