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A GENERALIZED DEFINITION
OF TOPOLOGICAL ENTROPY

LOUIS BLOCK, JAMES KEESLING, AND LENKA RUCKA

Abstract. Given an arbitrary (not necessarily continuous) func-
tion of a topological space to itself, we associate a non-negative
extended real number which we call the continuity entropy of the
function. In the case where the space is compact and the function is
continuous, the continuity entropy of the map is equal to the usual
topological entropy of the map. We show that some of the stan-
dard properties of topological entropy hold for continuity entropy,
but some do not. We show that for piecewise continuous piece-
wise monotone maps of the interval the continuity entropy agrees
with the entropy defined in Horseshoes and entropy for piecewise
continuous piecewise monotone maps by Michał Misiurewicz and
Krystina Ziemian Finally, we show that if f is a continuous map of
the interval to itself and g is any function of the interval to itself
which agrees with f at all but countably many points, then the
continuity entropies of f and g are equal.

1. Introduction

Topological entropy has become a useful tool for recognizing, quan-
tifying, and classifying the complicated dynamics of continuous maps.
Topological entropy was first defined in [1] for a continuous map of a
compact topological space to itself. In [9] and [10] an alternate definition
was given in the case of a uniformly continuous map of a metric space
to itself, and it was shown that this alternate definition coincides with
the definition given in [1] in the case of a continuous map of a compact
metric space to itself. Another idea which has been explored is to define
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the topological entropy by axioms, as in [3]. With the growing popu-
larity and importance of this tool, many researchers used some type of
topological entropy to study the dynamics of maps with discontinuities,
especially maps of the interval (see [4], [5], [6], [14], [21], and [22], for
example). Also, various definitions of topological entropy for continuous
maps of non-compact topological spaces have been investigated (see [12],
[13], [16], [17], [19], and [20]).

In this paper we define a type of entropy for an arbitrary function (not
necessarily continuous) from a topological space to itself. We call this
entropy the continuity entropy of f and denote it by hC(f). We use the
notation h(g) to denote the usual topological entropy of g when g is a
continuous map of a compact topological space to itself.

Definition 1.1. Let f : X → X be a function from a topological space
X to itself. We set

hC(f) := sup{h(f |K) : K ∈ K(X, f)},
where K(X, f) is the family of all compact, f -invariant subsets of X such
that f |K is continuous. In the case of K(X, f) being empty, we put
hC(f) := 0.

We have two main results which suggest that the notion of continuity
entropy may be useful. The first result states that for a piecewise con-
tinuous piecewise monotone function f of the interval to itself, if hMZ(f)
denotes the entropy of f as defined in [23], then hC(f) = hMZ(f). The
second result states that if f is a continuous map of the interval to itself
and g is a function of the interval to itself which agrees with f at all
but countably many points, then hC(g) = hC(f). These two results are
proved in §3. In §2, we recall some basic properties of the usual topo-
logical entropy and consider the extent to which these properties hold for
continuity entropy.

2. Properties of Continuity Entropy

We begin this section with some definitions and notation. Let f : X →
X be a function from a topological space X to itself. We let f0 denote the
identity map and, inductively, let fn = f ◦ fn−1. A subset K ⊆ X is said
to be f -invariant, if and only if f(K) ⊆ K and strictly f -invariant if and
only if f(K) = K. A subset M of X is called f -minimal, or a minimal
set for f , if and only if M is a non-empty, closed, f -invariant subset of X
which has no non-empty, proper, closed f -invariant subset. By ωf (x) we
denote the ω-limit set of x, i.e., the set of points which are the limit of a
subsequence of the sequence {x, f(x), f2(x), ...}. We say a point x ∈ X is
recurrent if and only if x ∈ ωf (x).
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The first result states that topological entropy is an invariant of topo-
logical conjugacy. A proof may be found in [1], [2], or [7].

Proposition 2.1. Let X and Y be compact topological spaces and let
f : X → X and g : Y → Y be continuous maps. Suppose there is a
homeomorphism α : X → Y such that α ◦ f = g ◦ α. Then h(f) = h(g).

The same result holds in our setting.

Proposition 2.2. Let X and Y be topological spaces and let f : X → X
and g : Y → Y be functions. Suppose there is a homeomorphism α : X →
Y such that α ◦ f = g ◦ α. Then hC(f) = hC(g).

Proof. This follows the previous theorem, as α takes compact f -invariant
subsets of X to compact g-invariant subsets of Y and α−1 takes compact
g-invariant subsets of Y to compact f -invariant subsets of X. �

The next result involves restrictions of a map. The result follows from
the proof of Theorem 4 in [1]. A proof also may be found in [7].

Proposition 2.3. Let X be a compact topological space and let f : X →
X be a continuous map. Suppose that Y is a closed, f -invariant subset of
X. Then h(f) ≥ h(f |Y ).

Again, we have a similar result for continuity entropy.

Proposition 2.4. Let X be a topological space and let f : X → X be a
function. Suppose that B is an f -invariant subset of X. Then hC(f) ≥
hC(f |B).

Proof. Let K ∈ K(B, f |B). Then K is a compact subset of B and (f |B)|K
is continuous. Hence, K is a compact subset of X and f |K is continuous.
Thus,

h((f |B)|K) = h(f |K) ≤ hC(f).

Since this is true for each K ∈ K(B, f |B), we have hC(f |B) ≤ hC(f). �

The next result appears as [1, Theorem 4].

Proposition 2.5. Let X be a compact topological space and let f : X →
X be a continuous map. Suppose that X =

∪n
i=1Xi, where each Xi is

compact and f -invariant. Then h(f) = max{h(f |Xi
) : i = 1, 2, ..., n}.

Again, we have a similar result.

Proposition 2.6. Let X be a Hausdorff space and let f : X → X be
a function. Suppose that X =

∪n
i=1Xi, where each Xi is compact and

f -invariant. Then hC(f) = max{hC(f |Xi) : i = 1, 2, ..., n}.



208 L. BLOCK, J. KEESLING, AND L. RUCKA

Proof. It follows from Proposition 2.4 that hC(f) ≥ max{hC(f |Xi) : i =
1, 2, ..., n}.

We prove the reverse inequality by contradiction. Suppose that hC(f) >
max{hC(f |Xi) : i = 1, 2, ..., n}. There exists K ∈ K(X, f) such that
h(f |K) > max{hC(f |Xi) : i = 1, 2, ..., n}.

Let Di = Xi ∩K for each i = 1, 2, ..., n. Then each Di is compact and
f -invariant. By Proposition 2.5 we have

h(f |K) = max{h(f |Di) : i = 1, 2, ..., n} ≤ max{hC(f |Xi) : i = 1, 2, ..., n}.
This is a contradiction. �
Definition 2.7. Let f : X → X be a continuous map of a compact
metric space to itself. Let M(X, f) denote the set of all f -invariant,
Borel probability measures on X. Let E(X, f) denote the set of all f -
invariant, ergodic, Borel probability measures on X. For µ ∈ M(X, f),
the measure theoretic entropy of f denoted hµ(f) may be defined; see,
e.g., [24] for details.

The following theorem known as the variational principle ([24, p. 188,
Theorem 8.6]) relates topological entropy and measure theoretic entropy.

Theorem 2.8. Let f : X → X be a continuous map of a compact metric
space to itself. Then

h(f) = sup{hµ(f) : µ ∈ M(X, f)}.

The following is a corollary ([24, p. 190, Corollary 8.6.1]) to the vari-
ational principle.

Corollary 2.9. Let f : X → X be a continuous map of a compact metric
space to itself. Then

h(f) = sup{hµ(f) : µ ∈ E(X, f)}.

The following result for continuity entropy follows from Corollary 2.9.

Theorem 2.10. Let f : X → X be a function from a metric space to
itself. If hC(f) > 0, then

hC(f) = sup{S(K, f) : K ∈ K(X, f)},
where

S(K, f) = sup{hµ(f |K) : µ ∈ E(K, f |K)}.

Proof. Let λ = sup{S(K, f) : K ∈ K(X, f)}. We will show that hC(f) =
λ.

LetK ∈ K(X, f). For any µ ∈ E(K, f |K), we have hµ(f |K) ≤ h(f |K) ≤
hC(f). Since µ is arbitrary, S(K, f) ≤ hC(f). Since K is arbitrary,
λ ≤ hC(f).
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To prove the reverse inequality, suppose that 0 < α < hC(f). There
exists K ∈ K(X, f) with h(f |K) > α. Then for some µ ∈ E(K, f |K)}, we
have hµ(f |K) > α. This implies that α < λ. As α is arbitrary, we have
hC(f) ≤ λ. �

Let R(f) denote the set of recurrent points of f . The following result
follows from Corollary 2.9 and the fact (noted in [24, p. 157]) that for
any µ ∈ M(X, f), we have µ(R(f)) = 1.

Theorem 2.11. Let f : X → X be a continuous map of a compact metric
space to itself. Then h(f) = h(f |

R(f)
).

In our setting, we have the following.

Theorem 2.12. Let f : X → X be a function from a metric space X to
itself. Then

hC(f) = sup{h(f |K)},
where the supremum is taken over all K ∈ K(X, f) such that K ⊂ R(f).

Proof. Let λ = sup{h(f |K)}, where the supremum is taken over all K ∈
K(X, f) such that K ⊂ R(f). It is immediate that hC(f) ≥ λ. We prove
the reverse inequality by contradiction. Suppose that hC(f) > λ. Then
for some K ∈ K(X, f), we have h(f |K) > λ. Let D denote the closure of
the set of recurrent points of f |K . Then D ⊆ R(f), with D ∈ K(X, f),
and h(f |D) = h(f |K) > λ. This is a contradiction. �

The next result follows from Theorem 2.11.

Theorem 2.13. Let f : X → X be a continuous map of a compact metric
space to itself. Then h(f) = h(f |X∞), where X∞ =

∩
n≥0 f

n(X).

From Theorem 2.13, we obtain the following.

Theorem 2.14. Let f : X → X be a function of a metric space to itself.
Then hC(f) = h(f |X∞), where X∞ =

∩
n≥0 f

n(X). Also,

hC(f) = sup{h(f |K)},
where the supremum is taken over all K ∈ K(X, f) such that f(K) = K.

Proof. Let K ∈ K(X, f). If K∞ =
∩

n≥0 f
n(K), then f(K∞) = K∞ and

h(f |K∞) = h(f |K). �

The following is another property of the usual topological entropy. A
proof may be found in [1], [2], or [7].

Theorem 2.15. Let f : X → X be a continuous map of a compact
topological space to itself, and let k ∈ N. Then h(fk) = k · h(f).
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A partial result holds in our setting.

Theorem 2.16. Let f : X → X be a function from a topological space to
itself. Then for every k ∈ N, hC(fk) ≥ k · hC(f).
Proof. Since K(X, f) ⊆ K(X, fk) for all k ∈ N, we have

hC(f
k) = sup

M∗
h(fk|M∗) ≥ sup

M
h(fk|M ) = k · sup

M
h(f |M ) = k · hC(f),

where M∗ ∈ K(X, fk) and M ∈ K(X, f). �
Here is an example which shows that equality need not hold in Theorem

2.16.

Proposition 2.17. For every k > 1 there is a function f : X → X of a
compact metric space X with hC(fk) > k · hC(f).
Proof. First, let us take k = 2. Let X = X1 ∪ X2 where X1 and X2

are uncountable disjoint compact subspaces of X. Let φ : X1 → X1

be a homeomorphism with h(φ) > 0 such that X1 is φ-minimal. Let
ψ : X2 → X2 be a continuous map with h(ψ) = 0. Let x0 ∈ X1, and
let orbφ(x0) = {xn}∞n=−∞ be the full (two-sided) orbit of x0 under φ so
that φ(xn) = xn+1 for every n ∈ Z. Let {yn}∞n=−∞ be a countable set
consisting of distinct points of X2.

We define a function f : X → X by the rule f(xn) = yn, f(yn) =
φ2(xn) for all n, and f = φ or f = ψ on X1 \ {xn} or X2 \ {yn}, respec-
tively. Note that for each x ∈ X1, we have f2(x) = φ2(x). Consequently,
hC(f

2) ≥ h(φ2) > 0. Also, note that f |X1 is not continuous, as there is a
dense subset of X1 which is mapped to X1 and also a dense subset of X1

which is mapped to X2.
We will show that hC(f) = 0. Let K ∈ K(X, f). We must show that

h(f |K) = 0. This is immediate if K ⊂ X2, so we may assume that there
exists a point y ∈ (K ∩X1). We consider two cases. First, suppose that
X1 is φ2-minimal. Then y ∈ K implies that X1 ⊂ K, a contradiction.
Finally, suppose that X1 is not φ2-minimal. By [8, Lemma 2.1], there is
a closed subset M of X1 with y ∈ M such that M is φ2-minimal, and
X1 = M ∪ f(M). Again, it follows that X1 ⊂ K, a contradiction. This
completes the proof in the case that k = 2.

For k > 2, we consider the space X as a disjoint union X = X1 ∪X2 ∪
... ∪Xk, and we use a similar construction. �

The following important result about topological entropy is sometimes
called the semiconjugacy property. A proof may be found in [24] or [7].

Theorem 2.18. Let X and Y be compact spaces and let f : X → X and
g : Y → Y be continuous maps. Suppose there is a continuous surjective
map φ : X → Y such that φ ◦ f = g ◦ φ. Then h(f) ≥ h(g).
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Unfortunately, this theorem fails to hold for continuity entropy.

Proposition 2.19. The semiconjugacy property does not hold for conti-
nuity entropy.

Proof. Let Y be a compact metric space, and let g : Y → Y be a contin-
uous map such that Y is g-minimal and h(g) > 0. Let X = Y × {1, 2}.
Then X is compact and metrizable.

Define f : X → X as follows. Fix y0 ∈ Y . Set f(x, 1) = (g(x), 1)
and f(x, 2) = (g(x), 2) if x ̸= y0. Set f(y0, 1) = (g(y0), 2) and f(y0, 2) =
(g(y0), 1). Then f is not continuous at (y0, 1) and (y0, 2).

On the other hand, there are no closed, f -invariant, nonempty, proper
subsets of X. So K(X, f) = ∅ and hC(f) = 0.

Finally, define φ : X → Y by φ(y, k) = y. So φ is the projection
onto the first coordinate. Then φ is a continuous surjective map, and the
diagram

X
f→ X

↓φ ↓φ
Y

g→ Y

commutes. �
Another property of topological entropy is the following (see [18]).

Theorem 2.20. Let X and Y be compact spaces and f : X → Y and
g : Y → X be continuous maps. Then h(f ◦ g) = h(g ◦ f).

This property also fails to hold for continuity entropy as we see in our
next example.

Proposition 2.21. There is a compact metric space Z and functions
f, g : Z → Z such that hC(f ◦ g) > hC(g ◦ f) = 0.

Proof. There is a compact metric space Z such that Z is the disjoint union
of two compact subspaces X and Y which satisfy the following properties.

(1) X is an infinite compact space, such that there exists a minimal
homeomorphism φ : X → X with h(φ) > 0.

(2) Y = {yn}∞n=−∞ ∪ {y∞}, where yn ̸= ym ̸= y∞ for n ̸= m.
(3) limn→−∞ yn = limn→∞ yn = y∞.

Let x0 ∈ X, and let orbφ(x0) = {xn}∞n=−∞ be the full (two-sided) orbit
of x0 under φ so that φ(xn) = xn+1 for every n ∈ Z.

Now we can define functions f and g, such that (f ◦g)|X = φ as follows:

f(x) =


x if x ∈ X,

xn if x = yn, n ∈ Z,
y∞ if x = y∞,
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g(x) =


φ(x) if x ∈ X \ orbφ(x0),
yn+1 if x = xn, n ∈ Z,
y∞ if x ∈ Y.

Now, it is easily checked that (f ◦ g)|X = φ. Hence,

hC((f ◦ g)) ≥ h(φ) > 0.

On the other hand, using the minimality of φ, we see that if K is
a compact subset of Z with (g ◦ f)(K) ⊆ K, then K ⊆ Y . Hence,
hC(g ◦ f) = 0. �
Remark 2.22. A similar example may be easily constructed with hC(f ◦
g) > hC(g ◦ f) > 0.

3. Proof of the Main Results

We begin this section by recalling some notation used in [23]. Let
I denote the compact interval, and let P(I) denote the set of all finite
partitions of I into disjoint intervals (of any form [a, b], (a, b), [a, b), or(a, b]
with a < b). A function f : I → I is said to be piecewise continuous
piecewise monotone (PCPM) if and only if there exists a partition A ∈
P(I), such that f is continuous and (not necessarily strictly) monotone
on each interval of this partition. We let P(f) denote the set of all such
partitions.

For a given partition A ∈ P(f), set

h(f,A) = lim sup
n→∞

1

n
log cn(f,A),

where cn(f,A) is the number of nonempty sets of the form
n−1∩
i=0

f−i(Ej),

where each Ej is an interval in the partition A.
Now, let f : X → X be a continuous map of a compact metric space to

itself. A set E ⊂ X is said to be (n, ε)-separated if and only if for every
x ̸= y ∈ E there is i ∈ {0, 1, . . . , n− 1} such that d(f i(x), f i(y)) > ε. Let
sn(f, ε) denote the maximal cardinality of an (n, ε)-separated set in X.
For every ε > 0, we set

s(f, ε) = lim sup
n→∞

1

n
log sn(f, ε) and s(f) = lim

ε→0
s(f, ε).

Of course, in this situation we have h(f) = s(f). In fact, in many texts
this is how the topological entropy is defined.
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Now, let f : I → I be PCPM. Then s(f) may be defined exactly as
above. The following result is proved in [23].

Theorem 3.1. If f : I → I is PCPM and A ∈ P(f), then h(f,A) = s(f).

We will denote the common value in the previous theorem by hMZ(f).
We now prove our first main result.

Theorem 3.2. If f : I → I is PCPM, then hC(f) = hMZ(f).

Proof. First we show that hC(f) ≥ hMZ(f). We may assume that
hMZ(f) > 0. Let b be an arbitrary positive real number with b < hMZ(f).
Let A ∈ P(f). By [23, Theorem 1], there are positive integers q and n
and pairwise disjoint closed intervals J1, ..., Jq, such that

(1) 1
n log q > b;

(2) for each i = 1, . . . , q and j = 0, . . . , n − 1, the set f j(Ji) is con-
tained in the interior of an element of A;

(3) for each i = 1, . . . , q, fn(Ji) ⊇ (J1 ∪ · · · ∪ Jq).
Set

Y =

q∪
i=1

(Ji ∪ f(Ji) ∪ · · · ∪ fn−1(Ji)).

Let X denote the set of x ∈ Y such that f i(x) ∈ Y for each positive
integer i. Observe that X is a closed set which is invariant under f , and
f |X is continuous.

Let K denote the set of x ∈ (J1∪· · ·∪Jq) such that f tn(x) ∈ (J1∪· · ·∪
Jq) for each positive integer t. Then K ̸= ∅ and K ⊆ X ⊆ Y . Moreover,
K is closed and invariant under fn, and fn|K is continuous. We may also
observe that K is a disjoint union of the closed sets K ∩ J1, . . .K ∩ Jq,
and each of these sets is mapped onto K by fn. It follows that

h(fn|X) ≥ h(fn|K) ≥ log q.

This implies that

hC(f) ≥ h(f |X) ≥ 1

n
log q > b.

Since b was arbitrary, hC(f) ≥ hMZ(f).
Next, we show hC(f) ≤ hMZ(f). It suffices to show that if X is a

closed invariant subset of I such that f |X is continuous, we have h(f |X) ≤
hMZ(f). It is evident that for any ε > 0 and any positive integer n, if
E ⊆ X is an (n, ε)-separated set for f |X , then E is also an (n, ε)-separated
set for f . Thus, sn(f, ε) ≥ sn(f |X , ε). So we have

hMZ(f) = s(f) ≥ s(f |X) = h(f |X). �
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It is shown in [23] that if f, g : I → I are PCPM maps which differ
only on a finite set, then hMZ(f) = hMZ(g). In this case, we have by the
previous theorem that hC(f) = hC(g).

We will consider the following related question. Suppose that we have
a continuous map of a compact metric space, and we change the map
at countably many points. Can something be said about the continuity
entropy of the two maps? We will give an answer to this question in
Theorem 3.9 after some preliminary results.

We will use the following terminology. Let X be a topological space,
and let x ∈ X. By a neighborhood of x, we mean an open subset of X
which contains x. We say that x is a perfect point of X if and only if
every neighborhood of x contains uncountably many points of X.

Theorem 3.3. Let X be a topological space which has a countable basis.
The set of perfect points of X is a closed set whose complement in X is
a countable open set.

Proof. Let B1 be a countable basis. Let B2 be the subset of B1 which
consists of those B ∈ B1 which contain only countably many points. Let
W be the union of all of the B ∈ B2. Then W is a countable open subset
of X, and every countable open subset of X is a subset of W .

Let P denote the set of perfect points of X. Then P and W are disjoint
subsets of X with P ∪W = X. The conclusion follows. �

We will use the following property of ergodic measures, which is a part
of [24, p. 27, Theorem 1.5].

Theorem 3.4. Let f : X → X be a continuous map of a compact metric
space to itself. Let µ ∈ E(X, f) and let B be a Borel set. If µ((f−1(B) \
B) ∪ (B \ f−1(B))) = 0, then either µ(B) = 0 or µ(B) = 1.

Proposition 3.5. Let f : X → X be a continuous map of a compact
metric space to itself. Let µ ∈ E(X, f), and suppose that for some x ∈ X,
we have µ({x}) > 0. Then x is a periodic point of f , and if D is the
forward orbit of x, then µ(D) = 1.

Proof. It follows from the Poincaré recurrence theorem ([24, p. 26, The-
orem 1.4]) that x is a periodic point of f . Let D denote the forward orbit
of x. As D ⊂ f−1(D), it follows that µ(f−1(D) \D) = 0. As µ is ergodic
and µ(D) > 0, it follows from Theorem 3.4 that µ(D) = 1. �

Theorem 3.6. Let X be a compact metric space and let f : X → X be
a continuous map. Let µ ∈ E(X, f) and suppose that hµ(f) > 0. Let P
denote the set of perfect points of X. Then there is a closed, invariant,
subset Y of P with µ(Y ) = 1.
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Proof. Since hµ(f) > 0, there does not exist a periodic orbit D with
µ(D) = 1. Hence, by Proposition 3.5, we have µ({x}) = 0 for all x ∈ X.
Since µ is a measure, we have µ(E) = 0 for any countable subset E of X.
Let A = X \ P and let B =

∪∞
k=1 f

−k(A). Let Y = X \ B. Then Y is a
closed, invariant, subset of P with µ(Y ) = 1. �

We mention the following corollaries.

Corollary 3.7. Let X be a countable, compact metric space and let f :
X → X be a continuous map. Then h(f) = 0.

Proof. It follows from Theorem 3.6 that for all µ ∈ E(X, f), we have
hµ(f) = 0. By Corollary 2.9, h(f) = 0. �

Corollary 3.8. Let X be an uncountable, compact metric space, and let
P denote the set of perfect points of X. Let f : X → X be a continuous
map with h(f) > 0. Then h(f) = sup{h(f |Y )} where the supremum is
taken over all closed invariant subsets Y of P .

Proof. Suppose 0 < β < h(f). By Corollary 2.9, there exists µ ∈ E(X, f),
with hµ(f) > β. By Theorem 3.6, there is a closed, invariant, subset Y
of P with µ(Y ) = 1. Then h(f |Y ) > β. �

Theorem 3.9. Let f : X → X be a continuous map of a compact metric
space to itself. Suppose that g : X → X agrees with f at all but countably
many points. Then hC(g) ≤ hC(f).

Proof. Proceeding by contradiction, suppose that hC(g) > hC(f). There
is a K ∈ K(X, g) such that h(g|K) > hC(f). By Corollary 2.9, there
exists µ ∈ E(K, g|K) such that hµ(g|K) > hC(f). By Theorem 3.6, there
is a closed, g-invariant, subset Y of the set of perfect points of K with
µ(Y ) = 1. So, we may think of µ as a measure on Y , and we have
hµ(g|Y ) > hC(f).

Since f |Y and g|Y are continuous, and g agrees with f at all but count-
ably many points, we have f |Y = g|Y . It follows that Y is f -invariant,
µ ∈ E(Y, f |Y ), and

hµ(f |Y ) = hµ(g|Y ) > hC(f).

This is a contradiction as

hC(f) = h(f) ≥ h(f |Y ) ≥ hµ(f |Y ). �

In general, we need not have equality in the previous theorem.

Example 3.10. There exists a continuous map f : X → X of a compact
metric space to itself and a function g : X → X which agrees with f at
all but one point such that hC(g) < hC(f).
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Proof. Consider f : X → X such that X is f -minimal and h(f) > 0. Fix
x0 ∈ X. Let g : X → X satisfy g(x) = f(x) for all x ∈ X − {x0} while
g(x0) = x0. Then hC(g) = 0. �

We will show that if X is the interval, the inequality in Theorem 3.9
can be replaced by equality. To show this, we first prove a result about
minimal sets for continuous maps of the interval.

Theorem 3.11. Let f : I → I be continuous and let 0 < t < h(f). There
is an f -minimal set M with h(f |M ) = t.

Proof. Let f and t be given. By a theorem of Michał Misiurewicz (see [21]
or [7, p. 215, Theorem VIII.29]), there are positive integers j and q with
1
j log q > t and disjoint intervals J1, . . . , Jq such that for each i = 1, . . . , q,
we have (J1 ∪ · · · ∪ Jq) ⊆ f j(Ji). The expression f j has a q horseshoe
(with disjoint intervals) is often used to describe this situation; see, e.g.,
[2]. Let σ denote the full one-sided shift on q symbols. Since log q > jt,
it follows from [15] that there is a σ-minimal set E with h(σ|E) = jt.

Now, by a standard argument (see, e.g., [7, p. 35, Proposition II.5]),
there is a closed, f j-invariant subset B of I and a continuous surjective
map α : B → Σq which is at most two-to-one with α ◦ (f j |B) = σ ◦ α (a
semiconjugacy).

There is a subset D of α−1(E) such that D is a minimal set for f j |B .
Then the diagram

D
fj |D→ D

↓α|D ↓α|D
E

σ|E→ E

commutes. Since E is a minimal set, α|D is surjective. Since α is at most
two to one, it follows from [9, Theorem 17] that h(f j |D) = h(σ|E) = jt.

Finally, let M =
∪j−1

i=0 f
i(D). Then M is a minimal set for f . More-

over,
h(f j |M ) = max{h(f j |D), · · · , h(f j |fj−1(D))},

and we have a semiconjugacy

D
fj |D→ D

↓f ↓f

f(D)
fj |f(D)→ f(D).

It follows that h(f j |D) ≥ h(f j |f(D)). Similarly,

h(f j |f(D)) ≥ h(f j |f2(D)) ≥ · · · ≥ h(f j |fj−1(D)) ≥ h(f j |fj(D)).
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But h(f j |fj(D)) = h(f j |D) as f j(D) = D. It follows that h(f j |D) =

h(f j |f(D)) = · · · = h(f j |fj−1(D)). Thus, h(f j |M ) = h(f j |D), which im-
plies that h(f |M ) = 1

j h(f
j |M ) = 1

j h(f
j |D) = t. �

We are now ready to prove our second main result and conclude the
paper.

Theorem 3.12. Let f : I → I be a continuous map of the interval to
itself. Suppose that g : I → I agrees with f at all but countably many
points. Then hC(f) = hC(g).

Proof. By Theorem 3.9, it suffices to prove that hC(g) ≥ hC(f). So we
may assume that h(f) > 0. Let β satisfy 0 < β < h(f). Let D ⊂ I be
the set of points x such that f(x) ̸= g(x). By Theorem 3.11, there is an
uncountable family {Mα} of f -minimal sets, such that h(f |Mα) > β for
each α. Since any two distinct f -minimal sets are disjoint, there exists an
f -minimal set M , disjoint from D, with h(f |M ) > β. So f |M = g|M and

hC(g) ≥ h(g|M ) = h(f |M ) > β.

As β was arbitrary, it follows that hC(g) ≥ hC(f). �
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