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FINITE GRAPHS HAVE UNIQUE n-FOLD
PSEUDO-HYPERSPACE SUSPENSION

ULISES MORALES-FUENTES

Abstract. Let X be a metric continuum. Let n be a positive
integer, let Cn(X) be the space of all nonempty closed subsets of
X with at most n components, and let F1(X) be the space of sin-
gletons of X. The n-fold pseudo-hyperspace suspension of X is the
quotient space Cn(X)/F1(X) and it is denoted by PHSn(X). In
this paper we prove that if X is a finite graph and Y is a contin-
uum such that PHSn(X) is homeomorphic to PHSn(Y ), then X
is homeomorphic to Y . This answers a question by Juan C. Macías.

1. Introduction

A continuum is a compact connected metric space. For a continuum
X, consider the following set:

2X = {A ⊂ X : A is a nonempty closed subset of X}.
Let n be a positive integer; the n-fold hyperspace of X, denoted by Cn(X),
is the set:
{A ∈ 2X : A has at most n components};

the n-fold symmetric product of X, denoted by Fn(X), is the set:
{A ⊂ X : A has at most n points}.

These sets are topologized with the Hausdorff metric which is defined as
H(A,B) = inf{ε > 0 : A ⊂ Vε(B) and B ⊂ Vε(A)},

where Vε(A) = {x ∈ X : d(x,A) < ε}.
Sam B. Nadler, Jr., [21] introduced the hyperspace suspension of a

continuum, HS(X), as the quotient space C1(X)/F1(X). Later Sergio
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Macías [18] gave a generalization of it, defining the n-fold hyperspace sus-
pension of a continuum, HSn(X), as the quotient space Cn(X)/Fn(X).
In 2008, Juan C. Macías [15] introduced the n-fold pseudo-hyperspace sus-
pension of a continuum, PHSn(X), as the quotient space Cn(X)/F1(X).

For a continuumX, let S(X) denote one of the hyperspaces 2X , Fn(X),
Cn(X), HSn(X), or PHSn(X). X is said to have unique S(X) if the
following holds: if Y is a continuum such that S(X) is homeomorphic to
S(Y ), then X is homeomorphic to Y .

The problem of finding conditions on X in order that X has unique
S(X) has been widely studied; see R. Duda [4] and [5], Carl Eberhart and
Nadler [6], S. Macías [16], Nadler [20], and Gerardo Acosta [1]. Uniqueness
of the hyperspace C1(X) has been proven for several families of continua:

(1) finite graphs different from an arc and a simple closed curve [4], [5].
(2) hereditarily indecomposable continua ([20, Theorem 0.60]).
(3) indecomposable continua such that all their proper subcontinua are

arcs [16].
In [1], Acosta also proved that metric compactifications of the arc

[0,∞), different from an arc, have unique hyperspace C1(X). S. Macías
[17] proved that hereditarily indecomposable continua have unique hy-
perspace 2X . Enrique Castañeda and Alejandro Illanes [2] have proven
that finite graphs have unique hyperspace Fn(X) for each n. Illanes [12],
[13] proved that finite graphs have unique hyperspace Cn(X) for each
n > 1. It has been proved that dendrites with closed set of end points
have unique Cn(X) for each n (see [8], [9], and [11]).

In [7], the authors study the uniqueness of the hyperspace Cn(X) for
Peano continua, giving some sufficient and also some necessary conditions
for a Peano continuum X to have unique hyperspace Cn(X).

In [10], the authors adopt some of the techniques presented in [7] and
prove that finite graphs have unique HSn(X) for each n. In the present
work, we prove that finite graphs have unique PHSn(X) for each n; we
use most of the ideas presented in [10]. Many of the arguments in the
proof of our main result are parallel to the arguments of the proof of the
main result in [10]; this means that most of the arguments that work
for HSn(X) work for PHSn(X). However, in working with PHSn(X),
θm-graphs need a special treatment in the case where n ≥ 2.

2. Definitions

We use the definitions that are presented in [10] and several are the
“PHSn(X)” version of an “HSn(X)” ; for the reader’s convenience we
provide them. We also present some basic definitions.
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Let qnX denote the quotient map qnX : Cn(X)→ PHSn(X), and let FnX
denote the element qnX(F1(X)).

The topological boundary of U in X will be denoted by frX(U). The
topological interior of U in X will be denoted by intX(U), or simply U◦
if there is no possible confusion with the underlying topological space in
which U lies. And the topological closure of U in X will be denoted by
clX(U). The symbol N will denote the set of positive integers.

Given a finite graph X, a point x of X, and an element n of N, we
say that X has order less than or equal to n at x, written ord(x,X) ≤ n,
provided that x has a basis B of neighborhoods in X such that, for each U
in B, we have that frX(U) has cardinality less than or equal to n. We say
that X has order equal to n at x, written ord(x,X) = n, if ord(x,X) ≤ n
and ord(x,X) � m for any natural number m such that m < n.

Given a finite graph X, E(X) will denote the set of points of X whose
order is one. The elements of E(X) will be called end points of X. The
set of points of X whose order is greater than or equal to 3 will be denoted
by R(X) and its elements will be called ramification points of X. Note
that R(X) is the set of vertices of X.

Given a finite graph X, a loop in X is a simple closed curve S in X
such that S has at most one ramification point of X. A free arc in X
is an arc α with extreme points a and b such that α − {a, b} is open in
X. A maximal free arc is a free arc that is maximal with respect to the
inclusion.

Let m ∈ N − {1, 2}. A continuum X will be called the θm-graph
provided that X is a finite graph that can be written as the union of m
arcs J1, . . . , Jm, such that there is a two point set {v, u} in X, such that
the set {v, u} is the set of extreme points of each arc Ji, and Ji∩Jj = {v, u}
if j 6= i.

Let X be a finite graph such that R(X) 6= ∅; let us define its set of
edges in a topological way: AS(X) = {J ⊂ X : J is a maximal free
arc or J is a loop in X}, AR(X) will be the subset of loops of AS(X),
and AE(X) will be the subset of AS(X) consisting of arcs with just one
ramification point of X.

Now, let R2 denote the Euclidean plane. Let L0 be the continuum
obtained as L0 = D1− intR2(D2), where D1 and D2 are disks in the plane
R2, D2 is a proper subset of D1, and the disks D1 and D2 are tangent.

Let X be a finite graph such that R(X) 6= ∅. Given J ∈ AS(X), define
E(J) in the following way: If J is an arc, let E(J) = C1(J). In the case
that J is a loop, let pJ be the only ramification point of X that belongs to
J , and define E(J) = {A ∈ C1(J) : A = J or A = {p} for some p ∈ J , or A
is a subarc of J such that pJ /∈ A, or A is a subarc of J such that pJ is one
of its extreme points}; from the construction given in [14, Example 5.2],
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we see that if J is a loop, then E(J) is homeomorphic to the continuum
L0.

Now let X be a finite graph and let n ∈ N. Let us define
PHLn(X) = {χ ∈ PHSn(X) : χ has a neighborhood N in
PHSn(X) such that N is a 2n-cell};

∂PHLn(X) = {χ ∈ PHSn(X) : χ has a neighborhood N in
PHSn(X) such that N is a 2n-cell and χ is in the manifold
boundary of N};
PHDn(X) = {χ ∈ PHSn(X) : χ /∈ PHLn(X) and χ has a basis
B of neighborhoods in PHSn(X) such that for each U ∈ B,
dim(U) ≤ 2n, and U ∩ PHLn(X) is arcwise connected};
PHEn(X) = {χ ∈ PHSn(X) : dimχ[PHSn(X)] = 2n}.

Let X be a topological space and m ∈ N. Let U1, . . . , Um be subsets
of X. Define

〈U1, . . . , Um〉n = {A ∈ Cn(X) : A ⊂ U1 ∪ · · · ∪ Um and
A ∩ Ui 6= ∅ for each i ∈ {1, . . . ,m}};

it is known ([14, Theorem 3.1]) that the family of sets of the form
〈U1, . . . , Um〉n, where Ui is open in X, is a basis for the topology in
Cn(X).

For J , K ∈ AS(X), let us define
PHD(J,K) = clPHS2(X)(∂PHL2(X) ∩ q2X(〈J◦,K◦〉2))

∩clPHS2(X)(∂PHL2(X)− q2X(〈J◦,K◦〉2)).

3. Preliminary Results

The proofs of lemmas 3.1 and 3.2 are similar to the proofs of lemmas
2.4 and 2.9(b) of [10], respectively; we omit the details of these proofs.

Lemma 3.1. Let X be a finite graph such that R(X) 6= ∅, and let n ∈ N.
Then for each neighborhood U of FnX in PHSn(X), we have dim[U ] ≥
2n+ 1.

Lemma 3.2. Let X be a finite graph. If n ≥ 3 and R(X) 6= ∅, then
PHDn(X)= {qnX(A) ∈ PHSn(X) : A ∈ C1(X)−F1(X) and A∩R(X) =
∅}.

Lemma 3.3. Let X be a finite graph. Then

(a) If n ≥ 3 and R(X) 6= ∅, then the components of PHDn(X) are
the sets of the form qnX(〈J◦〉n∩C1(X))−{FnX}, where J ∈ AS(X).

(b) If R(X) 6= ∅, then the components of PHEn(X) are the sets of
the form qnX(〈J◦1 , ..., J◦m〉n) − {FnX}, where J1, ..., Jm ∈ AS(X),
and m ≤ n.
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Proof. (a) By Lemma 3.2, PHDn(X) =
⋃
{qnX(〈J◦〉n ∩C1(X))− {FnX} :

J ∈ AS(X)}. It is easy to see that the sets of the form qnX(〈J◦〉n∩C1(X))−
{FnX} are arcwise connected and, therefore, connected. Note that the sets
of the form qnX(〈J◦〉n∩C1(X))−{FnX} are open in PHDn(X) and pairwise
disjoint; we conclude that they are the components of PHDn(X).

(b) By the main formula in [19] and using Lemma 3.1, we conclude that
PHEn(X) =

⋃
{qnX(〈J◦1 , ..., J◦m〉n)− {FnX} : J1, ..., Jm ∈ AS(X)}. Using

[3, Proposition 2.6], it is easy to show that 〈J◦1 , ..., J◦m〉n−F1(X) is arcwise
connected; therefore, the sets of the form qnX(〈J◦1 , ..., J◦m〉n) − {FnX} are
connected. The rest of the proof is similar to the proof of (a). �

Lemma 3.4. Let X be a finite graph such that R(X) 6= ∅; also let p ∈ X
and let J ∈ AS(X). Then

(1) if J is an arc, then {q2X({p} ∪ A) : A ∈ E(J)} is a 2-cell in
PHS2(X);

(2) if J is a loop, then {q2X({p} ∪ A) : A ∈ E(J)} is homeomorphic
to the continuum L0.

Proof. Let g be the embedding of C1(X) into C2(X) given by g(A) =
{p} ∪A. Since the set g(E(J)) ∩ F1(X) is either the set ∅ or the set {p},
we have that g(E(J))/F1(X) is homeomorphic to E(J); note that in (1),
the set E(J) is a 2-cell, and in (2), it is homeomorphic to the continuum
L0. Now, we finish the proof mentioning that g(E(J))/F1(X) is clearly
homeomorphic to {q2X({p} ∪A) : A ∈ E(J)}. �

Lemma 3.5. Let X be a finite graph such that R(X) 6= ∅. Let J,K ∈
AS(X). Then PHD(J,K) = {q2X({p} ∪G) : p ∈ frX(J) and G ∈ E(K)
or p ∈ frX(K) and G ∈ E(J)}.

Proof. Let the right-hand side of the equality of the lemma be denoted by
Γ. The proof of PHD(J,K) = Γ is analogous to the proof of Lemma 2.15
in [10], with the exception of the element F 2

X . Each one of the facts, F 2
X ∈

PHD(J,K) and F 2
X ∈ Γ, implies that 1 ≤| J ∩K ∩R(X) |≤ 2 or J = K;

this has to be taken into account in proving that if F 2
X ∈ PHD(J,K),

then F 2
X ∈ Γ (and vice versa). So a simple adaptation of the argument

needs to be done. Details are left to the reader. �

4. Models for PHD(J,K)

For the proof of our main theorem, in the case n = 2, explicit models for
the set PHD(J,K) are needed. The topology of PHD(J,K) depends on
what kind of edges J and K are. In all cases, we use Lemma 3.5 in order
to write the set PHD(J,K) as the union of sets whose models have been
described previously in Lemma 3.4. In proving uniqueness of HS2(X)
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and C2(X), a similar description, and for an analogous purpose, is made
in [10] right after Lemma 2.15 and in [7, Theorem 34], respectively.

In all cases, J and K are elements of AS(X), where X is a finite graph
such that R(X) 6= ∅.

Case A: J = K, J is an arc, and J /∈ AE(X). By Lemma 3.5,
PHD(J, J) = {q2X({p1} ∪ A) : A ∈ E(J)} ∪ {q2X({p2} ∪ A) : A ∈ E(J)},
where J ∩ R(X) = {p1, p2}. So now, using Lemma 3.4, we see that
PHD(J, J) is the union of two 2-cells whose intersection is the set
{F 2

X , q
2
X(J), q2X({p1, p2})}. It is easy to see that this set belongs to the

manifold boundary of both 2-cells.
Case B: K = J ∈ AE(X). An analysis similar to that in Case A can

be made. Therefore, PHD(J,K) is a 2-cell.
Case C: K = J ∈ AR(X). As with Case B, an analysis similar to that

in Case A can be made. Therefore, PHD(J,K) is an L0 continuum.
For the next cases assume that J 6= K.
Case D: J and K are arcs such that none of them belongs to AE(X).

Let {pJ , qJ} = J ∩ R(X) and let {pK , qK} = K ∩ R(X). Let D1 =
{q2X({pJ} ∪ A) : A ∈ E(K)}, D2 = {q2X({qJ} ∪ A) : A ∈ E(K)},
G1 = {q2X({pK}∪A) : A ∈ E(J)}, and G2 = {q2X({qK}∪A) : A ∈ E(J)}.
Note that since J and K are arcs, we have that D1, D2, G1, and G2 are
2-cells and PHD(J,K) = D1∪D2∪G1∪G2. Now let us consider the next
three subcases.

D.1: J∩K = ∅. In this subcase, we have that D1∩D2 = ∅, D1∩G1 =
{q2X({pJ , pK})}, D1 ∩ G2 = {q2X({pJ , qK})}, D2 ∩ G1 = {q2X({qJ , pK})},
D2 ∩ G2 = {q2X({qJ , qK})}, and G1 ∩ G2 = ∅.

D.2: J ∩K is a one point set; we can consider pJ = pK . In this sub-
case we see that D1∩D2 = ∅, D1∩G1 = {F 2

X}, D1∩G2 = {q2X({pJ , qK})},
D2 ∩ G1 = {q2X({qJ , pK})}, D2 ∩ G2 = {q2X({qJ , qK})}, and G1 ∩ G2 = ∅.

D.3: J∩K is a two point set; we may assume that pJ = pK and qJ =
qK . In this subcase we see that D1 ∩ D2 = {F 2

X , q
2
X({pJ , qK}), q2X(K)},

D1 ∩ G1 = {F 2
X , q

2
X({pJ , qK})}, D1 ∩ G2 = {F 2

X , q
2
X({pJ , qK})}, D2 ∩

G1 = {F 2
X , q

2
X({pJ , qK})}, D2 ∩ G2 = {F 2

X , q
2
X({pJ , qK})}, and G1 ∩ G2 =

{F 2
X , q

2
X({pJ , qK}), q2X(J)}.

For each of the cases below, a similar analysis can be made to the one
in Case D; in each of these cases there are two subcases: (1) J ∩K = ∅
and (2) | J ∩K |= 1. The details are left to the reader.

Case E: J /∈ AE(X) ∪ AR(X) and K ∈ AE(X)).
Case F: J /∈ AE(X) ∪ AR(X) and K ∈ AR(X).
Case G: {J,K} ⊂ AE(X).
Case H: J ∈ AE(X) and K ∈ AR(X).
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Case I: {J,K} ⊂ AR(X)).
Finally, in Figure 1, we present a table with all the possible models

for PHDn(J,K) when J 6= K; note that {pJ , qJ , pK , qK} = (J ∪ K) ∩
R(X). They are ordered from left to right and from top to bottom. They
correspond to the subcases in cases D, E, F, G, H, and I, respectively. It
is important to note that none of the models in Figure 1 is homeomorphic
to a model in which J = K.

Figure 1. All possible models for PHD(J,K), when
J 6= K.

5. Main Results

In this section we present a proof for our main result. The first step will
be to mention that S. Macías [18] and J. C. Macías [15] have proven that
the graphs S1 and [0, 1] have unique n-fold pseudo-hyperspace suspension.
Then we prove that for each m ∈ N, the graph θm has unique n-fold
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pseudo-hyperspace suspension. And finally, we prove that for a graph X,
such that R(X) 6= ∅ and X not homeomorphic to a θm-graph for any
m ∈ N, the uniqueness of the n-fold pseudo-hyperspace suspension holds.

Lemma 5.1. Let X and Y be finite graphs such that R(X) 6= ∅ 6= R(Y ),
let n ∈ N, and let h : PHSn(X) → PHSn(Y ) be a homeomorphism.
Assume that for each J ∈ AS(X), there exists Jh ∈ AS(Y ) such that
h(qnX(〈J◦〉n ∩ C1(X)) − {FnX}) ⊂ qnY (〈J◦h〉n) and AS(Y ) = {Jh : J ∈
AS(X)}. Then

(A) for each J ∈ AS(X), h(qnX(〈J◦〉n)− {FnX}) = qnY (〈J◦h〉n)− {FnY };
(B) for each J ∈ AS(X), h−1(qnY (〈J◦h〉n∩C1(Y ))−{FnY }) ⊂ qnX(〈J◦〉n)−
{FnX};

(C) the relation J 7→ Jh is a bijection between AS(X) and AS(Y ).

Proof. This proof is very similar to the proof of parts (A), (B), and (C)
of [10, Theorem 3.1]; therefore, we omit the proof. �

Lemma 5.2. Let n ≥ 2 and let X be a finite graph with R(X) 6= ∅. Then

|
⋂
{clPHSn(X)(q

n
X(〈J◦〉n)−{FnX}) : J ∈ AS(X)} |= 2

if and only if X is homeomorphic to θm for some m ∈ N. In fact,⋂
{clPHSn(θm)(q

n
θm(〈J◦〉n)−{Fnθm}) : J ∈ AS(θm)} =

{Fnθm , q
n
θm({v, w})},

where {v, w} is the set of ramification points of θm. And if X is not
homeomorphic to θm for any m ∈ N, then⋂

{clPHSn(X)(q
n
X(〈J◦〉n)−{FnX}) : J ∈ AS(X)} = {FnX}.

Proof. First, let us see that if X is the graph θm, then

|
⋂
{clPHSn(θm)(q

n
θm(〈J◦〉n)−{Fnθm}) : J ∈ AS(θm)}| = 2.

Let v and w be the two ramification points of θm, so R(θm) = {v, w}.
Let J ∈ As(θm). Because each {p}, where p ∈ J◦, can be approximated by
elements in 〈J◦〉n−F1(θm), we have that {p} ∈ clCn(θm)(〈J◦〉n−F1(θm));
this implies that Fnθm ∈ clPHSn(θm)(q

n
θm

(〈J◦〉n)−{Fnθm}). Also since n ≥
2, {v, w} can be approximated by elements in 〈J◦〉n−F1(θm). Hence,
{v, w} ∈ clCn(θm)(〈J◦〉n−F1(θm)); thus,

qnθm({v, w}) ∈ clPHSn(θm)(q
n
θm(〈J◦〉n)−{Fnθm}).

So we have

{Fnθm , q
n
θm({v, w})} ⊂

⋂
{clPHSn(θm)(q

n
X(〈J◦〉n)−{Fnθm}) : J ∈ AS(θm)}.
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Now let us assume that

χ ∈
⋂
{clPHSn(θm)(q

n
θm(〈J◦〉n)−{Fnθm}) : J ∈ AS(θm)}−

{Fnθm , q
n
θm({v, w})}.

Let J0 ∈ AS(θm), and let {Ak}∞k=1 be a sequence of elements of 〈J◦0 〉n
such that lim qnθm(Ak) = χ. Then it is clear that limAk = A for some
A ∈ 〈J0〉n. Since χ 6= Fnθm , χ 6= qnθm({v, w}), and qnθm(A) = χ, we have
that A ∈ Cn(J0) − (F1(J0) ∪ {{v, w}}). This implies that at least one
component of A intersects J◦0 . Then A∩J◦0 6= ∅. Let J ∈ AS(θm) be such
that J 6= J0. By a similar argument to the one just given, there exists
D ∈ Cn(J)− (F1(J)∪{{v, w}}) such that qnθ (D) = χ. Since χ 6= Fnθm , we
have that D = A. Hence, J◦0 ∩ J 6= ∅, which is a contradiction. Thus,

{FnX}∪ {qnX({v, w})} =
⋂
{clPHSn(θm)(q

n
X(〈J◦〉n)−{Fnθm}) : J ∈ AS(θm)}.

Therefore, |
⋂
{clPHSn(θm)(q

n
X(〈J◦〉n)−{Fnθm}) : J ∈ AS(θm)}| = 2.

Now, we will show that if X is a finite graph such that R(X) 6= ∅ and
it is not the graph θm for any m ∈ N, then⋂

{clPHSn(X)(q
n
X(〈J◦〉n)−{FnX}) : J ∈ AS(X)} = {FnX}.

LetX be a finite graph such thatX is not the graph θm for anym ∈ N. Let
J ∈ As(X). Since each element {p} such that p ∈ J◦ can be approximated
by elements in 〈J◦〉n−F1(X), we have that {p} ∈ clCn(X)(〈J◦〉n−F1(X)).

Hence, FnX ∈ clPHSn(X)(q
n
X(〈J◦〉)−{FnX}). Therefore,

FnX ∈
⋂
{clPHSn(X)(q

n
X(〈J◦〉n)−{FnX}) : J ∈ AS(X)}.

Now let us assume that

χ ∈
⋂
{clPHSn(X)(q

n
X(〈J◦〉n)−{FnX}) : J ∈ AS(X)} − {FnX}.

Let J0 ∈ AS(X). Then there exists a sequence {Ak}∞k=1 in 〈J◦0 〉n such
that lim qnX(Ak) = χ. It is clear that limAk = A for some A ∈ 〈J0〉n.
Since χ 6= FnX and qnX(A) = χ, we have that A ∈ Cn(J0)− F1(J0), which
implies that at least one component of A intersects J◦0 , or that A is the
set R(X) ∩ J0; note that A, in the latter case, must be a two point set
since A ∈ Cn(J0)− F1(J0), say A = {a, b}.

Let us assume that we have the first situation: A ∩ J◦0 6= ∅. Let
J ∈ AS(X) be such that J 6= J0. By a similar argument to the one
given above, there exists D ∈ Cn(J)−F1(J) such that qnX(D) = χ. Since
χ 6= FnX , we have that D = A. Hence, J◦0 ∩J 6= ∅, which is a contradiction.

Now let us assume we are in the second situation: A = {a, b} with
a 6= b. Since the only finite graph with more than one vertex in which
all its edges share the same set of vertices is a θm-graph, we can assure,
since X is not a θm-graph, that there exists J ∈ AS(X) such that J 6= J0
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and such that J0 ∩ J 6= {a, b}. By a similar argument as the one given
before, there exists D ∈ Cn(J) − F1(J) such that qnX(D) = χ and, since
χ 6= FnX , we have that D = A. This implies that {a, b} ∈ Cn(J)− F1(J).
Therefore, J and J0 have the same set of ramification points of X, which
is a contradiction. This means that for a finite graph such that R(X) 6= ∅
and such that it is not a θm-graph for any m ∈ N, we have⋂

{clPHSn(X)(q
n
X(〈J◦〉n)−{FnX}) : J ∈ AS(X)} = {FnX}.

Therefore, if X is not the graph θm for any m ∈ N, we have that

|
⋂
{clPHSn(X)(q

n
X(〈J◦〉n)−{FnX}) : J ∈ AS(X)} |=| {FnX} |= 1. �

Theorem 5.3. Let X be a continuum and let n ∈ N. If PHSn(X) is
homeomorphic to PHSn([0, 1]), then X is homeomorphic to [0, 1]. And if
PHSn(X) is homeomorphic to PHSn(S1), then X is homeomorphic to
S1.

Proof. For the case n = 1, see [18, theorems 5.5 and 5.6]. For the case
n ≥ 2, see [15, Theorem 4.4]. �

Now we will show that the graph θm has unique n-fold pseudo-hyperspace
suspension.

Theorem 5.4. If n,m ∈ N, then the graph θm has unique n-fold pseudo-
hyperspace suspension.

Proof. Let Y be a continuum, let m ∈ N, and let h : PHSn(θm) →
PHSn(Y ) be a homeomorphism. Then, by [15, Corollary 4.6] and Theo-
rem 5.3, Y is a finite graph such that R(Y ) 6= ∅.

Case 1: n = 1.
Since PHS1(X) is equal to HS1(X) for any continuum X, the main

result in [10] asserts that Y is homeomorphic to θm.
Case 2: n ≥ 3.
We check that θm and Y satisfy the hypothesis of Lemma 5.1. Since

h is a homeomorphism, h(PHLn(θm)) = PHLn(Y ), which, recalling the
definition of PHDn(X), implies that h(PHDn(θm)) = PHDn(Y ). Thus,
by Lemma 3.3(a), for each J ∈ AS(θm), there exists Jh ∈ AS(Y ) such
that

h(qnθm(〈J◦〉n ∩ C1(θm))− {Fnθm}) = qnY (〈J◦h〉n ∩ C1(Y ))− {FnY } ⊂
qnY (〈J◦h〉n)− {FnY }.

Since there is a one-to-one correspondence between the set of components
of PHDn(θm) and the set of components of PHDn(Y ), we obtain that
the relation J 7→ Jh between AS(θm) and AS(Y ) is a bijection. Let
R(θm) = {v, w}. Then, by lemmas 5.1 and 5.2,
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2 =| h({Fnθm , q
n
θm

({v, w})}) |=
|
⋂
{clPHSn(Y )(h(qnθm(〈J◦〉n)−{Fnθm})) : J ∈ AS(θm)} |=

|
⋂
{clPHSn(Y )(q

n
Y (〈J◦h〉n)−{FnY }) : J ∈ AS(θm)} |=

|
⋂
{clPHSn(Y )(q

n
Y (〈J◦h〉n)−{FnY }) : Jh ∈ AS(Y )} | .

Hence, by Lemma 5.2, Y is homeomorphic to the graph θm.
Case 3: n = 2.
First, we check that for each J ∈ AS(θm), there exists Jh ∈ AS(Y )

such that h(q2θm(〈J◦〉2)− {F 2
θm
}) = q2Y (〈J◦h〉2)− {F 2

Y }.
Since the definition of PHE2(θm) is given in terms of topological prop-

erties, we have that h(PHE2(θm)) = PHE2(Y ). By Lemma 3.3(b), the
components of PHE2(θm) are the sets of the form q2θm(〈J◦,K◦〉2)−{F 2

θm
},

where J,K ∈ AS(θm) and the components of PHE2(Y ) are the sets of the
form q2Y (〈J◦,K◦〉2) − {F 2

Y }, where J,K ∈ AS(Y ). Therefore, given J ∈
AS(θm), there exist Jh,Kh ∈ AS(Y ) such that h(q2θm(〈J◦〉2)− {F 2

θm
}) =

q2Y (〈J◦h ,K◦h〉2) − {F 2
Y }. By Lemma 3.1, F 2

θm
/∈ ∂PHL2(θm). And since

R(Y ) 6= ∅, by Lemma 3.1, F 2
Y /∈ ∂PHL2(Y ). Since the definition of

∂PHL2(θm) is given in terms of topological properties, we have that
h(∂PHL2(θm)) = ∂PHL2(Y ). This implies that

h(∂PHL2(θm) ∩ q2θm(〈J◦〉2)) = ∂PHL2(Y ) ∩ q2Y (〈J◦h ,K◦h〉2)

and

h(∂PHL2(θm)− q2θm(〈J◦〉2)) = ∂PHL2(Y )− q2Y (〈J◦h ,K◦h〉2).

Hence, h(PHD(J, J)) = PHD(Jh,Kh). Let us assume that Jh 6= Kh.
Then PHD(J, J) is homeomorphic to PHD(Jh,Kh) with Jh 6= Kh, which
implies that a model in one of the cases A, B, or C is homeomorphic to
a model in one of the cases D, E, F, G, H, or I (given in the previous
section), clearly, a contradiction. We conclude that Jh = Kh. Therefore,
h(q2θm(〈J◦〉2) − {F 2

θm
}) = q2Y (〈J◦h〉2) − {F 2

Y }, which induces the relation
J 7→ Jh. By symmetry, the relation J 7→ Jh from AS(θm) → AS(Y ) is a
bijection.

Now, let R(θm) = {v, w}. Thus, by Lemma 5.2,

2 =| h({F 2
θm
, q2θm({v, w})}) |=

|
⋂
{clPHS2(Y )(h(q2θm(〈J◦〉2)−{F 2

θm
})) : J ∈ AS(θm)} |=

|
⋂
{clPHS2(Y )(q

2
Y (〈J◦h〉2)−{F 2

Y }) : J ∈ AS(θm)} |=
|
⋂
{clPHS2(Y )(q

2
Y (〈J◦h〉2)−{F 2

Y }) : Jh ∈ AS(Y )} | .

Therefore, by Lemma 5.2, Y is homeomorphic to the graph θm. �

Lemma 5.5. Let X and Y be finite graphs such that R(X) 6= ∅ 6= R(Y ),
and such that X is not a θm-graph for any m ∈ N. Let n ∈ N, and let
h : PHSn(X)→ PHSn(Y ) be a homeomorphism. Assume that
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for each J ∈ AS(X), there exists Jh ∈ AS(Y ) such that
h(qnX(〈J◦〉n ∩ C1(X))− {FnX}) ⊂ qnY (〈J◦h〉n)
and AS(Y ) = {Jh : J ∈ AS(X)};

then h(FnX) = FnY . And if we additionally assume that
(1) if J ∈ AR(X), then Jh ∈ AR(Y ), and
(2) if J ∈ AE(X), then Jh ∈ AE(Y ),

then X is homeomorphic to Y .

Proof. First, let us assume that for each J ∈ AS(X), there exists Jh ∈
AS(Y ) such that h(qnX(〈J◦〉n∩C1(X))−{FnX}) ⊂ qnY (〈J◦h〉n) and AS(Y ) =
{Jh : J ∈ AS(X)}. We will show that h(FnX) = FnY .

Since X is not a θm-graph for any m ∈ N, by Lemma 5.2, we have that⋂
{clPHSn(X)(q

n
X(〈J◦〉n)−{FnX}) : J ∈ AS(X)} = {FnX},

and, since the θm-graphs have unique n-fold pseudo-hyperspace suspen-
sion, a fact proven in Theorem 5.4, we obtain that Y is not a θm-graph.
Hence, by Lemma 5.2,⋂

{clPHSn(Y )(q
n
Y (〈J◦〉n)−{FnY }) : J ∈ AS(Y )} = {FnY }.

Now, we can use Lemma 5.1(A),(C) to obtain

h({FnX}) =⋂
{clPHSn(Y )(h(qnX(〈J◦〉n)−{FnX})) : J ∈ AS(X)} =⋂
{clPHSn(Y )(q

n
Y (〈J◦h〉n)−{FnY }) : Jh ∈ AS(Y )} = {FnY }.

Thus, h({FnX}) = {FnY }.
Now, assume hypotheses (1) and (2). It is easy to see that a construc-

tion of a homeomorphism between X and Y can be made in a similar
fashion as the one constructed in the proof of [10, Theorem 3.1]; details
are left to the reader. �

Theorem 5.6. If X is a finite graph such that R(X) 6= ∅, then X has a
unique n-fold pseudo-hyperspace suspension.

Proof. By Theorem 5.4, we assume that X and Y are not homeomorphic
to a θm-graph for any m ∈ N. Let Y be a continuum, let n ∈ N, and
let h : PHSn(X) → PHSn(Y ) be a homeomorphism. Then, by [15,
Corollary 4.6], Y is a finite graph, and Y is such that R(Y ) 6= ∅ (Theorem
5.3).

Case 1: n = 1.
Since PHS1(X) is equal to HS1(X) for any continuum X, the main

result of [10] asserts that Y is homeomorphic to X.
Case 2: n ≥ 3.
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Using Lemma 3.3(a) and Lemma 5.5, the proof of this case is very
similar to the proof of [10, Theorem 3.2, Case 1].

Case 3: n = 2.
We check that X and Y satisfy the hypothesis of Lemma 5.5.
Let J ∈ AS(X). By Lemma 3.3(b), there exist Jh,Kh ∈ AS(Y ) such

that h(q2X(〈J◦〉2) − {F 2
X}) = q2Y (〈J◦h ,K◦h〉2) − {F 2

Y }; therefore, giving a
similar argument as the one given in the proof of Theorem 5.4, Case 3, we
have that h(PHD(J, J)) = PHD(Jh,Kh). Now, if we assume Jh 6= Kh,
then we have that h(PHD(J, J)) = PHD(Jh,Kh) with Jh 6= Kh; using
the models constructed in the past section, we see that this is a contradic-
tion. Therefore, h(q2X(〈J◦〉2)−{F 2

X}) = q2Y (〈J◦h〉2)−{F 2
Y }, which induces

a relation J 7→ Jh. By symmetry, the relation J 7→ Jh from AS(X) into
AS(Y ) is a bijection. Since h(q2X(〈J◦〉2)− {F 2

X}) = q2Y (〈J◦h〉2)− {F 2
Y }, it

is immediate that h(q2X(〈J◦〉2 ∩ C1(X))− {F 2
X}) ⊂ q2Y (〈J◦h〉2).

So, in order to use Lemma 5.5 to prove that X is homeomorphic to Y ,
there is only left to show that (1) if J ∈ AE(X), then Jh ∈ AE(Y ), and
(2) if J ∈ AR(X), then Jh ∈ AR(Y ).

If J ∈ AE(X), then PHD(J, J) is homeomorphic to the model in Case
B of the past section. Since h(PHD(J, J)) = PHD(Jh, Jh), we obtain
that PHD(Jh, Jh) is also homeomorphic to the model in Case B; thus,
since none of the models in cases A and C are homeomorphic to the model
in case B, we conclude that Jh ∈ AE(Y ). Similarly, if J ∈ AR(X), then
Jh ∈ AR(Y ).

Hence, X, Y , and h satisfy the hypothesis of Lemma 5.5. Therefore,
X is homeomorphic to Y . �

So as a consequence of theorems 5.3 and 5.6, we have our main result.

Theorem 5.7. Let X be a finite graph, then X has unique n-fold pseudo-
hyperspace suspension.
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