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ON ORDERED TOPOLOGICAL VECTOR SPACES
WITH POSITIVE INTERIOR POINTS

KAORI YAMAZAKI

Abstract. Answering a question indicated by Er-Guang Yang in
(Partial answers to some questions on maps to ordered topological
vector spaces, Topology Proc. 50 (2017), 311–317), we show that,
for an ordered topological vector space Y with positive interior
points, if each non-zero positive element is an order unit, then Y

is isomorphic to the real line. We also provide a technique which
reduces some vector-valued results to the original real-valued ones
by using some Minkowski functionals.

1. Introduction

Throughout this paper, let R be the set of all real numbers, and N the
set of all natural numbers.

Let us recall some terminology from [1] and [5]. A partially ordered real
vector space (Y,≤) is said to be an ordered vector space if the following
conditions are satisfied:

(i) x ≤ y implies x+ z ≤ y + z for all x, y, z ∈ Y,
(ii) x ≤ y implies rx ≤ ry for all x, y ∈ Y and all r ∈ R with r ≥ 0.

Let (Y,≤) be an ordered vector space. Then, y ∈ Y is positive if 0 ≤ y,
and the set {y ∈ Y : 0 ≤ y}, called the positive cone of Y , is denoted by
Y +. For y1, y2 ∈ Y with y1 ≤ y2, the subspace (y1 + Y +) ∩ (y2 − Y +)
of Y , called an order interval, is denoted by [y1, y2]. A topological vector
space Y is called an ordered topological vector space (o.t.v.s.) if Y is an
ordered vector space such that the positive cone Y + is closed in Y . It is
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known that e ∈ Y + is an interior point of Y + if and only if [−e, e] is a
0-neighborhood [1, Lemma 2.5]. An interior point e of Y + is a positive
interior point of Y if e > 0. A point x ∈ Y + is called an order unit if
each y ∈ Y admits λ > 0 such that y ≤ λx. The positive cone Y + is
normal if each 0-neighborhood U admits a 0-neighborhood V such that
(V + Y +) ∩ (V − Y +) ⊂ U .

Let f : X → Y be a map from a topological space X into an o.t.v.s. Y .
Then f is said to be lower semi-continuous (l.s.c.) (upper semi-continuous
(u.s.c.), respectively), if for each x ∈ X and each 0-neighborhood U ,
there exists a neighborhood Ox of x such that f(Ox) ⊂ f(x) + U + Y +

(f(Ox) ⊂ f(x)+U−Y +, respectively) (see [2] and [7]). Every continuous
map f : X → Y from a topological space X into an o.t.v.s.Y is l.s.c. and
u.s.c., and the converse holds if Y + is normal.

The following are obtained in [4, Theorem 25], [3, Theorem 3], and
[6, Corollary 3.3]. See [4] for the definition of monotonically countably
paracompact spaces. The symbol (0,∞) stands for the set {r ∈ R : r > 0}.

Theorem 1.1 ([4], [3], [6]). The following statements are equivalent:

(a) X is monotonically countably paracompact.
(b) There exist operators Φ and Ψ assigning to each u.s.c. function

f : X → R an l.s.c. function Φ(f) : X → R and a u.s.c. function
Ψ(f) : X → R with f ≤ Φ(f) ≤ Ψ(f) such that Φ(f) ≤ Φ(f ′)
and Ψ(f) ≤ Ψ(f ′) whenever f ≤ f ′.

(c) There exist operators Φ and Ψ assigning to each l.s.c. function
f : X → (0,∞), a u.s.c. function Φ(f) : X → (0,∞) and an l.s.c.
function Ψ(f) : X → (0,∞) with Ψ(f) ≤ Φ(f) ≤ f such that
Φ(f) ≤ Φ(f ′) and Ψ(f) ≤ Ψ(f ′) whenever f ≤ f ′.

In [7], we extend earlier characterizations ([4], [3]) of monotonically
countably paracompact spaces X via real-valued functions into ones via
some vector-valued maps. For example, it is shown in [7, Theorem 3.1]
that R in Theorem 1.1(b) can be replaced by an o.t.v.s.Y with positive
interior points. Namely, for an o.t.v.s.Y with positive interior points, the
following condition is equivalent to each of (a), (b), and (c) in Theorem
1.1.

(b′) There exist operators Φ and Ψ assigning to each u.s.c.map f :
X → Y an l.s.c. map Φ(f) : X → Y and a u.s.c. map Ψ(f) :
X → Y with f ≤ Φ(f) ≤ Ψ(f) such that Φ(f) ≤ Φ(f ′) and
Ψ(f) ≤ Ψ(f ′) whenever f ≤ f ′.

On the other hand, [7, Question 5.1.3] asks if, for an o.t.v.s.Y with
positive interior points, the following condition is equivalent to X being
monotonically countably paracompact.
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(c′) There exist operators Φ and Ψ assigning to each l.s.c. map f :
X → Y +\{0} a u.s.c. map Φ(f) : X → Y +\{0} and an l.s.c.map
Ψ(f) : X → Y + \ {0} with Ψ(f) ≤ Φ(f) ≤ f such that Φ(f) ≤
Φ(f ′) and Ψ(f) ≤ Ψ(f ′) whenever f ≤ f ′.

Recently, Er-Guang Yang [8] showed that (c′) implies X being mono-
tonically countably paracompact and that the converse holds assuming
the condition that “each point of Y + \ {0} is an order unit.” Moreover,
in [8, Remark 2.3], Yang asks if there exists an o.t.v.s. with positive inte-
rior points satisfying this condition other than R. In §2, we answer this
question negatively. Namely, we show that if each point of Y + \ {0} is an
order unit, where Y is an o.t.v.s. with positive interior points, then Y is
isomorphic to R as an o.t.v.s.

In §3, by using Minkowski functionals p[−e,e] and pe, we give alternative
proof to some results in [7] and [8], containing the equivalence (b) ⇔ (b′).
This actually provides the technique for reducing many results of maps
to o.t.v.s.’s with positive interior points into the original real-valued one.

2. Spaces Y such that Each Point of Y + \ {0}
Is an Order Unit

Let Y be an o.t.v.s. with a positive interior point e. Since each point
of Y + \{0} is an order unit if and only if each y ∈ Y + \{0} admits λ > 0
such that e ≤ λy, the following proposition provides a negative answer to
a question in [8, Remark 2.3].

Proposition 2.1. Let Y be an o.t.v.s. with a positive interior point e. If
each y ∈ Y + \ {0} admits λ > 0 such that e ≤ λy, then Y is isomorphic
to R as an o.t.v.s.

Proof. Since Y has a positive interior point, it suffices to show that Y is
one-dimensional (as a vector space) because the map j : R → Y defined
by j(r) = re is surjective when Y is one-dimensional, and hence, it is easy
to see that j is a natural isomorphism.

Fact 1. Y + \ {0} ⊂ intY Y +.
Proof. To show this, let y ∈ Y + \ {0}. From the assumption, take

λ > 0 such that e ≤ λy; thus, e
λ ≤ y. It follows from e ∈ intY Y + that

e
λ ∈ intY Y +. Hence, we have

y ∈ e

λ
+ Y + ⊂ intY Y + + Y + = intY Y +.

Fact 2. Y + \ {0} is a clopen subset of Y \ {0}.
Proof. For brevity, set Y ′ = Y \ {0}. Since the positive cone Y + is

closed in Y , Y + \ {0} is closed in Y \ {0} = Y ′. On the other hand,
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Y + \ {0} ⊂ intY Y + ∩ Y ′ holds by Fact 1. Since intY Y + ∩ Y ′ is open in
Y ′, it follows that

Y + \ {0} ⊂ intY Y + ∩ Y ′ = intY ′(intY Y + ∩ Y ′) ⊂ intY ′(Y + \ {0}),
which shows that Y + \ {0} is open in Y ′.

Since e ∈ Y + \{0}, we have that −e ∈ Y ′ \ (Y + \{0}). Thus, Y + \{0}
is a non-empty clopen subset of Y ′ and whose complement is also non-
empty, namely this implies that Y ′(= Y \ {0}) is disconnected. Thus, Y
must be one-dimensional. �

3. Around Minkowski Functionals

Let e be a positive interior point of an o.t.v.s.Y . The Minkowski func-
tional (gauge) of [−e, e] is the function

p[−e,e] : Y → R+; y 7→ inf{r > 0 : y ∈ r[−e, e]},
which is known to be a continuous norm (see, e.g., [5] and Proposition 3.1
(1) below). If the positive cone Y + is normal, the norm p[−e,e] carries the
vector topology of Y ; in this case, { 1

n [−e, e] : n ∈ N} is a neighborhood
base of 0.

Let Y be an o.t.v.s. A subset A ⊂ Y is bounded (upper-bounded,
respectively) if for each 0-neighborhood V , there exists n ∈ N such that
A ⊂ nV (A ⊂ nV −Y +, respectively). If Y + has a positive interior point
e, A is upper-bounded if and only if A ⊂ ne− Y + for some n ∈ N. If Y +

is normal and has a positive interior point e, A is bounded if and only if
A ⊂ [−ne, ne] for some n ∈ N. For o.t.v.s.’s X and Y , a map f : X → Y
is called bounded preserving (upper-bounded preserving, respectively) if
f(A) is bounded (upper-bounded, respectively) in Y for each bounded
(upper-bounded, respectively) subset A of X. Also, f : X → Y is called
order-preserving if f(x) ≤ f(x′) whenever x ≤ x′. An ordered vector
space Y is called a (vector) lattice if each two-point set {x, y} has a least
upper bound x∨y and a greatest lower bound x∧y. For a (vector) lattice
Y and y ∈ Y , the symbol |y| stands for y ∨ (−y).

Proposition 3.1. Let Y be an o.t.v.s. with a positive interior point e.
For the Minkowski functional p[−e,e], the following are valid.

(1) p[−e,e] is continuous and bounded preserving.
(2) p[−e,e](y) ≤ p[−e,e](y

′) holds whenever 0 ≤ y ≤ y′.
(3) If Y is a lattice, p[−e,e](y) ≤ p[−e,e](y

′) holds whenever |y| ≤ |y′|.

Proof. (1) The set [−e, e] is a radial, circled, and convex subset of Y ;
p[−e,e] is a semi-norm (actually, it is a norm); see, e.g., [5, p. 39]. Since
p[−e,e] is continuous at 0, it follows from [5, II.1.6] that p[−e,e] is con-
tinuous. For each bounded set A of Y , there exists n ∈ N such that
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A ⊂ n[−e, e], and thus p[−e,e](A) ⊂ [0, n]. Hence, p[−e,e] is bounded
preserving.

(2) Assume 0 ≤ y ≤ y′. If y′ ∈ r[−e, e], then −re ≤ 0 ≤ y ≤ y′ ≤ re,
which shows that y ∈ r[−e, e]. Thus, p[−e,e](y) ≤ p[−e,e](y

′) holds.
(3) Let Y be a lattice. Since y ∈ r[−e, e] ⇔ −y ∈ r[−e, e] ⇔ |y| ∈

r[−e, e], it follows that p[−e,e](y) = p[−e,e](|y|) for each y ∈ Y . Since
0 ≤ |y|, we have (3) from (2). �

For the Minkowski functional of e− Y +, we use the symbol pe instead
of pe−Y + for brevity. Namely,

pe : Y → R+; y 7→ inf{r > 0 : y ≤ re}.

Note that e−Y + is not circled and pe is not semi-norm. However, pe has
the following good property.

Proposition 3.2. Let Y be an o.t.v.s. with a positive interior point e.
For the Minkowski functional pe, the following are valid.

(1) pe(y) = 0 ⇔ y ≤ 0.
(2) pe(x+ y) ≤ pe(x) + pe(y) for each x, y ∈ Y .
(3) pe is continuous, upper-bounded preserving, bounded preserving,

and order-preserving.

Proof. (1) The “if” part is obvious. To show the “only if” part, let pe(y) =
0. Then, y ≤ 1

ne for each n ∈ N. Since Y is Archimedean (see, e.g., [1,
Lemma 2.3] and [5, p. 205]), y ≤ 0.

(2) For each r1 > 0 with x ≤ r1e and each r2 > 0 with y ≤ r2e, it
follows from x + y ≤ (r1 + r2)e that pe(x + y) ≤ r1 + r2. This provides
that pe(x+ y) ≤ pe(x) + pe(y).

(3) To show pe is continuous at x, let ε > 0. Take a neighborhood O =
x+[− ε

2e,
ε
2e] of x. It follows from (2) that pe(x)−pe(y) ≤ pe(x−y) ≤ ε

2 < ε
and pe(y)− pe(x) ≤ pe(y − x) ≤ ε

2 < ε for each y ∈ O, which shows that
pe(x) − ε < pe(y) < pe(x) + ε for each y ∈ O. Thus, pe is continuous at
x. On the other hand, for an upper bounded set A ⊂ Y , it follows that
A ⊂ ne− Y + for some n ∈ N; hence, pe(A) ⊂ [0, n], which provides that
pe is upper-bounded preserving. It is similar to show that pe is bounded
preserving and order-preserving. �

For an o.t.v.s. with a positive interior point e, define another map je :
R → Y ; r 7→ re. The map je is not only continuous (see [8, p. 314]) but
also has the following property.

Proposition 3.3. Let Y be an o.t.v.s. with a positive interior point e.
For the map je, the following are valid.
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(1) je is continuous, upper-bounded preserving, bounded preserving,
and order-preserving.

(2) If Y is a lattice, then |je(r)| ≤ |je(r′)| holds whenever |r| ≤ |r′|.

Proposition 3.4. Let Y be an o.t.v.s. with a positive interior point e.
For the Minkowski functional p[−e,e], pe, and the map je, the following
are valid.

(1) |r| = p[−e,e] ◦ je(r) and r ∨ 0 = pe ◦ je(r).
(2) y,−y ≤ je ◦ p[−e,e](y), and y ≤ je ◦ pe(y).

The proofs of propositions 3.3 and 3.4 are easy and omitted.
Let X be a topological space, Y an o.t.v.s. , and f : X → Y a map. f

is said to be locally upper-bounded (locally bounded, respectively) [7] if for
each x ∈ X and each 0-neighborhood V , there exist a neighborhood Ox

of x and n ∈ N such that f(Ox) ⊂ nV − Y + (f(Ox) ⊂ nV , respectively).
This definition is a natural generalization of local (upper-) boundedness
of real-valued functions, where f : X → R is locally upper-bounded (locally
bounded, respectively), if for each x ∈ X, there exist a neighborhood Ox

of x and n ∈ N such that f(x′) < n (|f(x′)| < n, respectively) for each
x′ ∈ Ox.

The following lemma is essentially proved in [7, Proposition 2.4 and
Corollary 2.8].

Lemma 3.5 ([7]). For a topological space X, an o.t.v.s.Y , and a map
f : X → Y , the implications (1) ⇒ (2) and (1′) ⇒ (2′) hold.

(1) Each x ∈ X admits a neighborhood Ox of x such that f(Ox) is
upper-bounded.

(1′) Each x ∈ X admits a neighborhood Ox of x such that f(Ox) is
bounded.

(2) f is locally upper-bounded.
(2′) f is locally bounded.

If, in addition, Y has positive interior points (Y + is normal and Y has
positive interior points, respectively), (1) ⇔ (2) ((1′) ⇔ (2′), respectively)
holds.

Proposition 3.6. Let X be a topological space, Y an o.t.v.s. with a pos-
itive interior point e, and Z an o.t.v.s. Then the following are valid.

(1) If f : X → Y is locally upper-bounded and g : Y → Z is upper-
bounded preserving, then g ◦ f is locally upper-bounded.

(2) If Y + is normal, f : X → Y is locally bounded, and g : Y → Z is
bounded preserving, then g ◦ f is locally bounded.

(3) If f : X → Y is locally bounded, then p[−e,e] ◦f is locally bounded.
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Proof. (1) Let f : X → Y be locally upper-bounded and g : Y → Z
be upper-bounded preserving, and let x ∈ X. Since f is locally upper-
bounded, by Lemma 3.5, there exists a neighborhood Ox of x such that
f(Ox) is upper-bounded. Since g is upper-bounded preserving, g ◦ f(Ox)
is upper-bounded. By applying Lemma 3.5 to g ◦ f , we have that g ◦ f is
locally upper-bounded.

(2) is similar to (1).
(3) Let x ∈ X. Since [−e, e] is a 0-neighborhood in Y , there exist

a neighborhood Ox of x and n ∈ N such that f(Ox) ⊂ n[−e, e]. Then
p[−e,e] ◦f(Ox) ⊂ [0, n], which shows that p[−e,e] ◦f is locally bounded. �

Proposition 3.7. Let X be a topological space and let Y and Z be
o.t.v.s.’s. Then, the following are valid.

(1) If f : X → Y is l.s.c. (u.s.c., respectively) and g : Y → Z is
order-preserving l.s.c. (order-preserving u.s.c., respectively), then
g ◦ f is l.s.c. (u.s.c., respectively).

(2) If Y has a positive interior point e and f : X → intY Y + is l.s.c.,
then p[−e,e] ◦ f is l.s.c.

Proof. (1) We show only the case of maps being l.s.c. Let f : X → Y
be l.s.c., g : Y → Z be order-preserving l.s.c., x ∈ X, and V be a 0-
neighborhood in Z. Since g is l.s.c., take a 0-neighborhood W in Y
such that g(f(x) + W ) ⊂ (g ◦ f)(x) + V + Z+. Since f is l.s.c., take a
neighborhood Ox of x such that f(Ox) ⊂ f(x)+W+Y +. Then g◦f(Ox) ⊂
g(f(x) + W + Z+) ⊂ g(f(x) + W ) + Z+ ⊂ (g ◦ f)(x) + V + Z+, where
the second inclusion follows from being order-preserving of g. Thus, g ◦ f
is l.s.c.

(2) Let e be a positive interior point of Y , f : X → intY Y + be an
l.s.c.map, and x ∈ X. To show p[−e,e] ◦ f : X → R is l.s.c., let ε > 0.
Since p[−e,e] ◦f(x) > 0, without loss of generality, we may assume p[−e,e] ◦
f(x)−ε > 0. Since f(x) ∈ intY Y +, there exists a 0-neighborhood U such
that f(x)+U ⊂ Y +. Take ε′ > 0 such that ε′ ≤ ε/2 and −ε′e ∈ U . Then
f(x)−ε′e ∈ Y + and f(x)+ε′[−e, e]+Y + = f(x)−ε′e+Y + ⊂ Y +. Since
ε′[−e, e] is a 0-neighborhood and f is l.s.c., there exists a neighborhood
Ox of x such that f(Ox) ⊂ f(x) − ε′e + Y +. For each z ∈ Ox, it follows
from 0 ≤ f(x)− ε′e ≤ f(z) that

p[−e,e] ◦ f(x)− p[−e,e](ε
′e) ≤ p[−e,e](f(x)− ε′e) ≤ p[−e,e] ◦ f(z),

where the first inequality follows from p[−e,e] being a semi-norm (see
[5, p. 39]), and the second one is due to Proposition 3.1(2). Because
p[−e,e](ε

′e) = ε′, we have that

p[−e,e] ◦ f(x)− ε < p[−e,e] ◦ f(x)− ε/2 ≤ p[−e,e] ◦ f(x)− ε′ ≤ p[−e,e] ◦ f(z).
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Hence, p[−e,e] ◦ f is l.s.c. �

Propositions 3.2, 3.3, 3.6, and 3.7 provide the following.

Corollary 3.8. For a topological space X and an o.t.v.s.Y with a positive
interior point e, the following are valid.

(1) If f : X → Y is locally upper-bounded (locally bounded, l.s.c.,
u.s.c, respectively), then pe ◦ f is locally upper-bounded (locally
bounded, l.s.c., u.s.c, respectively).

(2) If f : X → R is locally upper-bounded (locally bounded, l.s.c.,
u.s.c, respectively), then je ◦ f is locally upper-bounded (locally
bounded, l.s.c., u.s.c, respectively).

Proof. (1) The case of maps being locally bounded can be proved in a
way similar to the proof of Proposition 3.6(3). Other cases follow from
propositions 3.2(3), 3.6(1), and 3.7(1).

(2) Note that R+ is normal. Apply propositions 3.3(1); 3.6(1), (2); and
3.7(1). �

Let Y be an o.t.v.s. with a positive interior point e. We now give a
direct proof to (b) ⇔ (b′) by using the facts of this section.

(b) ⇒ (b′): Assume (b) and let Φ and Ψ be operators as in (b). Let
f : X → Y be a u.s.c. map. By Corollary 3.8(1), pe ◦ f : X → R+ is
u.s.c. Hence, it follows from (b) that Φ(pe ◦ f) : X → R+ is l.s.c. and
Ψ(pe ◦ f) : X → R+ is u.s.c. Then je ◦ Φ(pe ◦ f) : X → Y is l.s.c. and
je ◦ Ψ(pe ◦ f) : X → Y is u.s.c. by Corollary 3.8(2). It follows from
propositions 3.4(2) and 3.3(1) that f(x) ≤ je ◦ (pe ◦ f)(x) ≤ je ◦ Φ(pe ◦
f)(x) ≤ je◦Ψ(pe◦f)(x). Since pe and je are order-preserving (propositions
3.2(3) and 3.3(1)), we can check that je ◦ Φ(pe ◦ f) ≤ je ◦ Φ(pe ◦ f ′) and
je ◦ Ψ(pe ◦ f) ≤ je ◦ Ψ(pe ◦ f ′) whenever f ≤ f ′. Thus, the operators
assigning to each u.s.c. map f an l.s.c. map je ◦ Φ(pe ◦ f) and a u.s.c.
map je ◦Ψ(pe ◦ f) are required ones in (b′).

(b′) ⇒ (b): To prove (b′) ⇒ (b), assume (b′) and let Φ and Ψ be
operators as in (b′). Let f : X → R be a u.s.c. function. By Corollary
3.8(2), je ◦f : X → Y is u.s.c.; it follows from (b′) that Φ(je ◦f) : X → Y
is l.s.c. and Ψ(je ◦ f) : X → Y is u.s.c. Then pe ◦ Φ(je ◦ f) : X → R+ is
l.s.c. and pe ◦Ψ(je ◦ f) : X → R+ is u.s.c. by Corollary 3.8(1). It follows
from propositions 3.4(1) and 3.2(3) that f ≤ pe ◦(je ◦f) ≤ pe ◦Φ(je ◦f) ≤
pe ◦Ψ(je ◦ f). Also, by using propositions 3.2(3) and 3.3(1), we can check
that pe ◦ Φ(je ◦ f) ≤ pe ◦ Φ(je ◦ f ′) and pe ◦ Ψ(je ◦ f) ≤ pe ◦ Ψ(je ◦ f ′)
whenever f ≤ f ′. Thus, the operators assigning to each u.s.c. function
f an l.s.c. function pe ◦ Φ(je ◦ f) and a u.s.c. function pe ◦Ψ(je ◦ f) are
required ones in (b).
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Let us introduce another example. Let Y be a topological vector space
and a vector lattice. Then Y is called a topological vector lattice [5] if Y
possesses a 0-neighborhood base of solid sets A; that is, sets A satisfying
that “x ∈ A and |y| ≤ |x|” imply y ∈ A. Note that the positive cone Y +

of the topological vector lattice is normal [5, V.7.1].
For a topological vector lattice Y with positive interior points, the

following condition (d′) is equivalent to X being monotonically countably
paracompact [7, Theorem 3.1]. To show this, it suffices to show that (d′)
⇔ (d), because it is known that (d) is equivalent to X being monotonically
countably paracompact ([4, Theorem 25] and [3, Theorem 2]).

(d) There exists an operator Φ assigning to each locally bounded func-
tion f : X → R a locally bounded l.s.c. function Φ(f) : X → R
with |f | ≤ Φ(f) such that Φ(f) ≤ Φ(f ′) whenever |f | ≤ |f ′|.

(d′) There exists an operator Φ assigning to each locally bounded map
f : X → Y a locally bounded l.s.c. map Φ(f) : X → Y with
|f | ≤ Φ(f) such that Φ(f) ≤ Φ(f ′) whenever |f | ≤ |f ′|.

Indeed, to show (d) ⇒ (d′), assume (d) and let Φ be an operator in
(d). For each locally bounded map f : X → Y , by Proposition 3.6(3) and
Corollary 3.8(2), we can check that je ◦Φ(p[−e,e] ◦ f) : X → Y is a locally
bounded l.s.c. We have that |f | ≤ je ◦ p[−e,e] ◦ f ≤ je ◦ Φ(p[−e,e] ◦ f) by
propositions 3.3(1) and 3.4(2), and that je ◦Φ(p[−e,e] ◦f) ≤ je ◦Φ(p[−e,e] ◦
f ′) whenever |f | ≤ |f ′| by using propositions 3.1(3) and 3.3(1). Thus,
the operator assigning to each locally bounded map f : X → Y a locally
bounded l.s.c. map je ◦ Φ(p[−e,e] ◦ f) is a required one in (d′).

Similarly, to show (d′) ⇒ (d), assume (d′) and let Φ be an operator
in (d′). We now define another operator Φ′ by assigning to each locally
bounded map g : X → Y , Φ′(g) : X → Y by Φ′(g)(x) = Φ(g)(x) + e. For
each locally bounded function f : X → R, it follows from 0 ≤ |je◦f(x)| ≤
Φ(je ◦ f)(x) that Φ′(je ◦ f)(x) = Φ(je ◦ f)(x) + e ∈ Y + + e ⊂ intY Y +.
Note that, for each locally bounded map g : X → Y , Φ′(g) is also a
locally bounded l.s.c., |g| ≤ Φ′(g), and that Φ′(g) ≤ Φ′(g′) whenever
|g| ≤ |g′|. By propositions 3.6(3) and 3.7(2) and Corollary 3.8(2), we
can check that p[−e,e] ◦ Φ′(je ◦ f) : X → R is a locally bounded l.s.c. It
follows from propositions 3.1(3) and 3.4(1) that |f | = p[−e,e] ◦ je ◦ f ≤
p[−e,e] ◦Φ′(je ◦ f). Also, by using propositions 3.1(2) and 3.3(2), we have
that p[−e,e] ◦Φ′(je ◦f) ≤ p[−e,e] ◦Φ′(je ◦f ′) whenever |f | ≤ |f ′|. Thus, the
operator assigning to each locally bounded function f : X → R a locally
bounded l.s.c. function p[−e,e] ◦ Φ′(je ◦ f) is a required one in (d).

Other corresponding equivalences can be proved similarly, for example,
[7, Theorem 3.1(2)and conditions on theorems 3.2, 4.1, 4.2, and 4.3]. A
similar proof of (c′) ⇒ (c) provides an alternative proof to [8, Theorem
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2.2]. On the other hand, it should be noted that our technique cannot
work on our remaining problem [7, Question 5.1.3], which actually asks if
(c) ⇒ (c′), for the technical reason that “je◦pe(y) ≤ y does not necessarily
hold.”
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