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ON SPACES WITH σ-CLOSED-DISCRETE DENSE SETS

RODRIGO R. DIAS AND DÁNIEL T. SOUKUP

Abstract. The main purpose of this paper is to study e-separable
spaces, originally introduced by Georges Kurepa as K′

0 spaces; we
call a space X e-separable if and only if X has a dense set which
is the union of countably many closed discrete sets. We primarily
focus on the behavior of e-separable spaces under products and the
cardinal invariants that are naturally related to e-separable spaces.
Our main results show that the statement “there is a product of
at most c many e-separable spaces that fails to be e-separable” is
overinsistent with the existence of a weakly compact cardinal.

1. Introduction

The goal of this paper is to study a natural generalization of separa-
bility. Let us call a space X e-separable if and only if X has a dense set
which is the union of countably many closed discrete sets. The definition
is due to Georges Kurepa [18], who introduced this notion as property
K ′

0 in his study of Souslin’s problem. Later, e-separable spaces appear in
multiple papers related to the study of linearly ordered and GO-spaces
[11], [25], [26], [30]. In particular, M. J. Faber [11] showed that e-separable
GO-spaces are perfect; however, whether the converse implication is true
is famously open: is there, in ZFC, a perfect GO-space (or even just a
perfect T3 space) which is not e-separable? Let us refer the interested
reader to a paper of Harold Bennett and David Lutzer [5] for more details
and results on this topic.
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Now, our interest lies mainly in studying e-separability with regards
to powers and products. Recall that the famous Hewitt–Marczewski–
Pondiczery theorem (see[10]) states that the product of at most c many
separable spaces is again separable. What can we say about e-separable
spaces in this matter? Historically, another generalization of separable
spaces received more attention: d-separable spaces, called K0 spaces in
Kurepa’s old notation, i.e., spaces with σ-discrete dense sets. Investi-
gated in great detail (see [1], [2], [17], [21], [28], and [29]), d-separable
spaces show very interesting behavior in many aspects, in particular, re-
garding products. A. V. Arhangel’skĭı proved in [1] that any product of
d-separable spaces is d-separable; in [17], the authors show that for every
space X there is a cardinal κ so that Xκ is d-separable. Motivated by
these results, one of our main objectives is to understand, as much as
possible, the behavior of e-separable spaces under products.

Our paper splits into three main parts. First, we make initial ob-
servations on e-separable spaces in §2. Then, in §3, we investigate if
the existence of many large closed discrete sets suffices for a space to
be e-separable. In particular, we prove that once an infinite power Xκ

has a closed discrete set of size d(Xκ) (the density of Xκ), then Xκ is
e-separable. As a corollary, we show that certain large powers of non-
countably-compact spaces are e-separable. Now an interesting open ques-
tion is whether a countably compact, non-separable space can have an
e-separable square.

Next, in §4, we compare two natural cardinal functions: d(X), the size
of the smallest dense set in X and with de(X), the size of the smallest
σ-closed-discrete dense set. In Theorem 4.2, we show that there is a
0-dimensional space X which satisfies d(X) < de(X). We show that a
similar example can be constructed for d-separable spaces, at least under
ℵ1 < c = 2ℵ0 ; we do not know how to remove this assumption. The
section ends with a few interesting open problems.

Our main results are presented in §5. We describe those cardinals κ
such that the product of κ many e-separable spaces is e-separable again,
and hence present the analogue of the Hewitt–Marczewski–Pondiczery
theorem for e-separable spaces. First, note that 2c

+

is not e-separable
(as a compact, non-separable space) and so the question of preserving
e-separability comes down to products of at most c terms. How could it
be possible that e-separability is not preserved by small products? The
reason must be that there are some large cardinals lurking in the back-
ground.
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Corollary 5.9. If the existence of a weakly compact cardinal is consistent
with ZFC, then so is the statement that there are less than c many discrete
spaces with non-e-separable product.

Corollary 5.11. If there is a non-e-separable product of at most c many
e-separable spaces, then there is a weakly compact cardinal in L.

As we shall see, the proof of these results nicely combines various ideas
from topology, set theory, and logic.

Throughout this paper, all spaces are assumed to be T1. Given a
product of discrete spaces X =

∏
{Xα : α < λ} and a function ε satisfying

dom(ε) ∈ [λ]<ℵ0 and ε(α) ∈ Xα for each α ∈ dom(ε), we write

[ε] = {x ∈ X : ε ⊆ x}.

Thus, if x ∈ X is such that x � dom(ε) = ε, then [ε] is a basic open
neighborhood of x in X. We let D(κ) denote the discrete space on a
cardinal κ.

In general, we use standard notation and terminology consistent with
Ryszard Engelking [10].

2. Preliminaries

In this section, after defining our main concept for the paper, we prove
a few general facts about e-separable spaces and state some results for
later reference.

Definition 2.1. A topological spaceX is e-separable if there is a sequence
(Dn)n∈ω of closed discrete subspaces of X such that

∪
n∈ωDn is dense in

X.

We begin with simple observations.

Observation 2.2. Every separable space is e-separable and every e-
separable space is d-separable.

Recall the following two well-known cardinal functions: The density of
X, denoted by d(X), is the smallest possible size of a dense set in X; the
extent of a space X, denoted by e(X), is the supremum of all cardinalities
|E| where E is a closed discrete subset of X.

Observation 2.3. Every e-separable space X satisfies d(X) ≤ e(X);
moreover, if cf(d(X)) > ω, then there is a closed discrete set of size d(X)
in X. In particular, a countably compact space is e-separable if and only
if it is separable.
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Example 2.4. The space 2c
+

is compact and d-separable but not e-
separable.

Proof. By Arhangel’skĭı [1], d-separability is preserved by products. Also,
2c

+

is not e-separable as d(2c
+

) > e(2c
+

) = ω; hence Observation 2.3 can
be applied. �

What can we say about metric spaces?

Observation 2.5. Every space with a σ-discrete π-base is e-separable.
Hence, every metrizable space is e-separable.

The following result shows that actually a large class of generalized
metric spaces is e-separable.

Proposition 2.6. Every developable space is e-separable.

Recall that a spaceX is developable if and only if there is a development
of X, i.e., a sequence (Gn)n∈ω of open covers of X such that for every
x ∈ X and open V containing x, there is an n ∈ ω so that st(x,Gn) =∪
{U ∈ Gn : x ∈ U} ⊆ V .

Proof. It is well known that any developable space is a σ-space, i.e., has
a σ-discrete network (see [7, Proposition 1.8]). Clearly, this implies e-
separability. �

It is worth comparing the above result with [2, Proposition 2.3], which
states that every quasi-developable space is d-separable. A few notable
non-e-separable spaces are

• the Michael line, which is a quasi-developable space (see [4]);
• the Alexandrov double circle, which is a hereditarily D-space (see,

e.g., [13, Proposition 2.5]).

Finally, for later reference, we would like to state two results on the
existence of closed discrete sets in products.

Theorem 2.7 (Łoś [19]). D(ω)2
κ

contains a closed discrete set of size κ
for every κ less than the first measurable cardinal.

The above result was first proved in [19], but [16] and [12] are more
accessible.

Theorem 2.8 (Mycielski [23]). D(ω)κ contains a closed discrete set of
size κ for every κ less than the first weakly inaccessible cardinal.
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3. Density and Extent for e-Separable Spaces

Our goal now is to elaborate further on the observation that if X is
e-separable, then d(X) ≤ e(X). In particular, in what context is the
implication reversible?

First, note that d(X) ≤ e(X) does not imply that there are closed
discrete sets of size d(X).

Example 3.1. There is a σ-closed-discrete (hence, e-separable) space X
which contains no closed discrete sets of size d(X).

Proof. Let X = ωω + 1 and declare all points in ωω isolated and let
{{ωω} ∪A : A ∈ [ωω]

<ℵω} form a neighborhood base at ωω. �

Next, we show that even a significant strengthening of d(X) ≤ e(X)
fails to imply e-separability in general.

Example 3.2. There is a 0-dimensional, non e-separable space X of size
ω1 such that every somewhere dense subset of X contains a closed discrete
subset of size ω1.

Proof. Let X = ω1
<ω and declare U ⊆ X to be open if and only if

x ∈ U implies that {α < ω1 : xa(α) ∈ U} contains a club. Now, X is a
Hausdorff, 0-dimensional, and dense-in-itself space.

Observe that a set E ⊆ X is closed discrete if and only if {α < ω1 :
xaα ∈ E} is non-stationary for every x ∈ X. This immediately implies
that the σ-closed-discrete sets are closed discrete; hence, X cannot be
e-separable.

Suppose that Y ⊆ X is dense in a non-empty open set V ; Ix = {α ∈
ω1 : xaα ∈ Y } must be stationary for any x ∈ V and so we can select
an uncountable but non-stationary I ⊆ Ix. Hence, {xaα : α ∈ I} is an
uncountable closed discrete subset of Y . �

Now, let us turn to powers of a fixed spaceX. Could it be that d(Xκ) ≤
e(Xκ) implies that Xκ is e-separable whenever κ is an infinite cardinal?
The answer is negative, at least under the assumption that there are
measurable cardinals.

Example 3.3. If κ is the first measurable cardinal, then d(ωκ) = e(ωκ);
however, ωκ is not e-separable.

Proof. It is clear that d(ωκ) = κ; also, 2λ < κ whenever λ < κ, and so
Theorem 2.7 implies that e(ωκ) = κ as well.

If we show that ωκ has no closed discrete sets of size κ, then ωκ cannot
be e-separable. Suppose that A = {xα : α < κ} ⊆ ωκ and that U is a
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σ-complete non-principal ultrafilter on κ. Note that

κ =
∪
n∈ω

{α < κ : xα(ξ) = n}

for each ξ < κ. So there is a unique n ∈ ω such that {α < κ : xα(ξ) =
n} ∈ U . In turn, we can define y ∈ ωκ by y(ξ) = n if and only if
{α < κ : xα(ξ) = n} ∈ U . It is easy to see that {α < κ : xα ∈ V } ∈ U for
every open neighborhood V of y, and so V ∩A has size κ. Hence, y is an
accumulation point of A. �

However, if we suppose a bit more than d(Xκ) ≤ e(Xκ), then we get
the following.

Theorem 3.4. Let X be any space and let κ be an infinite cardinal. If
Xκ contains a closed discrete set of size d(Xκ), then Xκ is e-separable.

The above theorem is an analogue of [17, Theorem 1]: If Xκ has a
discrete subspace of size d(X), then Xκ is d-separable. Example 3.3
shows that assuming “Xκ contains a closed discrete set of size d(X)” does
not imply that X is e-separable.

We will now prove a somewhat technical lemma which immediately
implies Theorem 3.4 and will be of use later as well.

Lemma 3.5. Let X be any space and let κ be an infinite cardinal. Suppose
that D ⊆ Xκ is dense in Xκ and Xκ contains a closed discrete set of size
|D|. Then there is a dense set E in Xκ such that

(1) |D| = |E|, d(D) = d(E), and
(2) E is σ-closed-discrete.

Proof. Pick a countable increasing sequence (In)n∈ω of subsets of κ such
that κ = |In| = |κ \ In| for each n ∈ ω and κ =

∪
n∈ω In. Fix closed

discrete sets En of size |D| in Xκ\In and bijections φn : D → En for each
n ∈ ω.

We define maps ψn : D → Xκ by

ψn(d)(ξ) =

{
d(ξ), for ξ ∈ In, and

φn(d)(ξ), for ξ ∈ κ \ In.

Let E =
∪

n∈ω ran(ψn). Clearly, |D| = |E| holds.
It is easy to see that E is dense in Xκ: If [ε] is a basic open set in Xκ,

then there is an n ∈ ω such that dom(ε) ⊆ In; hence, ran(ψn) ∩ [ε] ̸= ∅.
Next we show (2) by proving that ran(ψn) is closed discrete as well

for each n ∈ ω. Pick any x ∈ Xκ. There is a basic open set [ε] in
Xκ\In such that x �κ\In∈ [ε] and |[ε] ∩En| ≤ 1. Thus, the basic open set
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{y ∈ Xκ : ε ⊆ y} of Xκ, which we (by abuse of notation) also denote by
[ε], satisfies x ∈ [ε] and |[ε] ∩ ran(ψn)| ≤ 1.

Finally, we prove d(D) = d(E). Note that if D0 is dense in D, then∪
n∈ω ψn

′′D0 is dense in E; hence, d(E) ≤ d(D). Suppose that A ∈
[E]<d(D); we want to prove that A is not dense in E. If A is finite, there
is nothing to prove. If A is infinite, let

DA =
∪
n∈ω

{d ∈ D : ψn(d) ∈ A};

then DA cannot be dense in D as |DA| ≤ |A| < d(D).
Fix a basic open set U = [ε] such that [ε]∩DA = ∅. There is an n∗ ∈ ω

such that dom(ε) ⊆ In∗ .
Claim. If m ≥ n∗, then [ε] ∩ {ψm(d) : d ∈ DA} = ∅.
To see this, suppose that m ≥ n∗ and d ∈ DA. Then d � Im = ψm(d) �

Im, d /∈ [ε], and dom(ε) ⊆ Im; thus, ψm(d) /∈ [ε].

Hence,

U ∩
∪
n∈ω

ψn(DA) ⊆
∪

n<n∗

ψn(DA);

that is, U ∩
∪

n∈ω ψn(DA) is closed discrete as each ψn(DA) is closed
discrete. However, A ⊆

∪
n∈ω ψn(DA), which shows that A ∩ U cannot

be dense in U . �

Let us present two corollaries. The aforementioned [17, Theorem 1]
implies that Xκ is always d-separable for any κ ≥ d(X). We know that,
say, [0, 1]κ is not e-separable when κ ≥ c+ because of Observation 2.3; in-
deed, [0, 1]κ is compact so σ-closed-discrete sets are countable, but [0, 1]κ
is not separable. However, the following holds.

Corollary 3.6. Suppose that X is not countably compact. Then Xd(X)

is e-separable if d(X) is less than the first weakly inaccessible cardinal.

Proof. Let κ = d(X) and note that it suffices to find a closed discrete
subspace ofXκ of size d(Xκ) by Theorem 3.4. First, note that d(Xκ) = κ.
Second, X contains an infinite closed discrete subspace Y since X is not
countably compact. So Y κ is a closed copy of D(ω)κ in Xκ. Finally,
D(ω)κ does contain a closed discrete set of size κ by Theorem 2.8. �

Corollary 3.7. Suppose that X is not countably compact. Then X2d(X)

is e-separable if d(X) is less than the first measurable cardinal.

Proof. The proof is the same as for Corollary 3.6, but we are now using
Theorem 2.7 instead of Theorem 2.8. �
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Interestingly, ifX is compact Hausdorff, thenXω is d-separable already
(see [17, Corollary 5]). Furthermore, Justin Tatch Moore [21] shows that
there is an L-space X such that X2 is d-separable. Note that X itself
is not d-separable since each discrete subspace of X is countable, but X
has uncountable density. Moore’s example was improved by Yinhe Peng
[24]: There is an L-space X such that X2 is e-separable. We wonder if
the following related question is true.

Problem 3.8. Is there a non-separable, countably compact X so that X2

is e-separable?

4. The Sizes of σ-Discrete Dense Sets

Next, we investigate the size of the smallest σ-discrete dense set in
e-separable spaces.

Definition 4.1. For an e-separable space X, we define

de(X) = min{|E| : E is a dense σ-closed-discrete subset of X}.

Clearly, d(X) ≤ de(X) ≤ e(X) for any e-separable space X, and next
we show that d(X) = de(X) fails to hold in general.

Theorem 4.2. There is a 0-dimensional e-separable space X such that

c = d(X) < de(X) = e(X) = w(X) = 2c.

Before beginning the proof, note the following.

Claim 4.3. Suppose that a space X can be written as D ∪ E so that
(1) D is dense in X,
(2) E is dense and σ-closed-discrete in X,
(3) d(D) < d(E), and
(4) every A ∈ [D]≤e(D) is nowhere dense in X (or equivalently, in

D).
Then X is e-separable and d(X) < de(X).

Proof. X is e-separable by (2) and d(X) ≤ d(D) by (1). We prove that if
F ∈ [X]≤d(X) and F is σ-closed-discrete, then F is not dense in X; this
proves the claim. Take F ⊆ X as above and note that by (3), there is a
non-empty open set U ⊆ X such that U ∩E ∩F = ∅. As |F ∩D| ≤ e(D),
F ∩ D must be nowhere dense in X. Thus, there is a non-empty open
V ⊆ U such that V ∩F ∩D = ∅. Thus, V ∩F = ∅ showing that F is not
dense. �

Proof of Theorem 4.2. Now, it suffices to construct a 0-dimensional space
X = D ∪E, satisfying (1)–(4) of Claim 4.3. Let us constructX = D∪E ⊆
ω2c such that



ON SPACES WITH σ-CLOSED-DISCRETE DENSE SETS 253

(i) D is dense in ω2c ,
(ii) E is dense and σ-closed-discrete in ω2c ,
(iii) |D| = c and d(E) = 2c, and
(iv) e(D) = ω.
It is trivial to see that (i)–(iii) implies (1)–(3), respectively, while (iv)
implies (4) using the fact that d(ω2c) = c.

First, we construct D. Construct dense subsets Dn ⊆ n2
c

of size
c which are countably compact for each n ∈ ω; this can be done by
choosing a dense subset D0

n ⊆ n2
c

of size c and adding accumulation
points recursively (ω1 many times) for all countable subsets. Define D =∪

n∈ωDn. Then D is dense in ω2c as
∪

n∈ω n
2c is dense in ω2c and e(D) =

ω as e(Dn) = ω for all n ∈ ω; thus, D satisfies (i), (iv), and the first part
of (iii).

Now, we construct E satisfying (ii) and (iii), which finishes the proof.
Let S = σ(ω2c) = {x ∈ ω2c : |{α ∈ 2c : x(α) ̸= 0}| < ℵ0}; then d(S) = 2c

and S is dense in ω2c . Recall that ω2c contains a closed discrete set of
size 2c by Theorem 2.8. Now, by applying Lemma 3.5, we find a σ-closed-
discrete E which is dense in ω2c and satisfies d(E) = d(S) = 2c. �

Naturally, one can consider the same problem for d-separable spaces.
Let us present an example along the same lines under the assumption
ℵ1 < c.

Proposition 4.4. Suppose that ℵ1 < c. Then there is a d-separable space
X with d(X) = ℵ1 that contains no dense σ-discrete sets of size ℵ1.

Proof. Moore [20, Theorem 5.4] proves that there is a coloring c : [ω1]
2 →

ω such that for every n ∈ ω, uncountable pairwise disjoint A ⊆ [ω1]
n,

uncountable B ⊆ ω1, and h : n→ ω, there exist a ∈ A and β ∈ B\max(a)
such that c(a(i), β) = h(i) for every i < n, where a = {a(i) : i < n}.

Suppose that D = {dn : n ∈ ω} is any countable space.
Claim. There is a hereditarily Lindelöf dense subspace Y ⊆ Dω1 that

is not separable.
To prove this, for each β < ω1, we define yβ ∈ Dω1 as

(4.1) yβ(α) =

{
dc(α,β) if α < β,
d0 if α ≥ β.

Now let Y = {yβ : β < ω1}.
We claim that there is an α < ω1 so that Y � (ω1 \ α) is dense in

Dω1\α ≃ Dω1 . Suppose otherwise; then we can find basic open sets [εα]
in Dω1\α so that Y ∩ [εα] = ∅. By standard ∆-system arguments, we find
I ∈ [ω1]

ℵ1 , n ∈ ω, and h : n → ω so that dom(εα) = {aα(i) : i < n} are
pairwise disjoint for α ∈ I and dh(i) ∈ εα(aα(i)) for each i < n. Now,
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there exist α ∈ I and β ∈ ω1 \max(dom(εα)) so that c(aα(i), β) = h(i)
for all i < n. This means that dc(aα(i),β) ∈ εα(aα(i)) for i < n and so
yβ ∈ [εα]. This contradicts our assumption.

It is clear that d(Y � (ω1\α)) = ℵ1. It remains to prove that Y � (ω1\α)
is hereditarily Lindelöf.

Fix W ∈ [ω1]
ℵ1 and, for each γ ∈W , let [εγ ] be a basic open subset of

Dω1\α with yγ � (ω1 \ α) ∈ [εγ ]; we may assume that max(dom(εγ)) > γ.
Suppose, by way of contradiction, that for each η < ω1 we have {yγ �
(ω1 \ α) : γ ∈W} *

∪
{[εγ ] : γ ∈W ∩ η}. We can then recursively define,

for ζ < ω1,
• δ0 as the least element of W ;
• δζ+1 as the least δ ∈W satisfying δ > supη≤ζ max(dom(εδη )) and
yδ � (ω1 \ α) /∈

∪
{[εγ ] : γ ∈W ∩ (δζ + 1)};

• δζ as the least δ ∈ W satisfying δ > supη<ζ max(dom(εδη )) and
yδ � (ω1 \ α) /∈

∪
{[εγ ] : γ ∈W ∩ supη<ζ δη} if ζ is a limit ordinal.

Again by ∆-system arguments, there exist r ∈ [ω1 \ α]<ℵ0 , p : r → D,
Z ∈ [ω1]

ℵ1 , n ∈ ω, and h : n→ ω satisfying
(i) r ⊆ dom(εδζ ) for all ζ ∈ Z;
(ii) dom(εδζ ) \ r = {aζ(i) : i < n} are pairwise disjoint for ζ ∈ Z;
(iii) dh(i) ∈ εδζ (aζ(i)) for each i < n; and
(iv) p ⊆ yδζ for all ζ ∈ Z.

Now, there are ζ, ζ ′ ∈ Z such that δζ′ ≥ max(dom(εδζ )) and c(aζ(i), δζ′) =
h(i) for all i < n. Thus, dc(aζ(i),δζ′ )

∈ εδζ (aζ(i)) for i < n, whence yδζ′ �
(ω1 \ α) ∈ [εδζ ], which is a contradiction since δζ′ ≥ max(dom(εδζ )) > δζ
implies ζ < ζ ′ by construction.

Now, by c ≥ ℵ2, we can pick a countable dense D ⊆ ωω2 . Then Dω1 is
dense in (ωω2)ω1 ≃ ωω2 . By the claim, there is a dense Y ⊆ Dω1 such that
every discrete subset of Y is countable and, hence, nowhere dense (as Y
is non-separable). Now, by Lemma 3.5, there is a dense σ-closed-discrete
E ⊆ ωω2 satisfying d(E) = ℵ2, in view of Theorem 2.8 and the fact that,
e.g., σ(ωω2) = {x ∈ ωω2 : |{α ∈ ω2 : x(α) ̸= 0}| < ℵ0} is a dense subset
of ωω2 with density ℵ2.

Let X = Y ∪ E. An argument strictly analogous to what is done in
Claim 4.3. finishes the proof. �

The assumption ℵ1 < c is somewhat unnatural in Proposition 4.4, but
we do not know how to remove it.

Problem 4.5. Is there a ZFC example of a d-separable space X with the
property that every σ-discrete dense subset of X has cardinality greater
than d(X)?
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In particular, we cannot answer the following.

Problem 4.6. Is there, in ZFC, a dense Y ⊆ 2ω2 of size ℵ1 all of whose
σ-discrete subsets are nowhere dense?

Finally, recall that any compact, e-separable space satisfies d(X) =
de(X). We do not know if the analogue holds for d-separable spaces.

Problem 4.7. Is there a σ-discrete dense subset of size d(X) in any
compact, d-separable space X?

5. Preservation Under Products

As mentioned in the introduction, the behavior of separable and d-
separable spaces under products and powers is very well described: Sep-
arability is preserved by products of size ≤ c but not bigger; on the other
hand, the product of d-separable spaces is always d-separable. Hence, our
goal in this section is answering the following natural question: For which
cardinals κ is it true that every product of κ many e-separable spaces is
e-separable? As noted earlier in Example 2.4, any such κ is at most the
continuum.

Let us start with powers of a single e-separable space. We would like
to thank Ofelia T. Alas for pointing out the following to us in a private
conversation.

Proposition 5.1. Let X be an e-separable space and κ ≤ c. Then the
space Xκ is e-separable.

Proof. Let (Dn)n∈ω be a sequence of closed discrete subsets of X with∪
n∈ωDn dense in X. Fix a subspace Y ⊆ R with |Y | = κ, and let B

be a countable base for Y . Now consider T =
∪

n∈ω(Sn × nω), where
Sn = {(B0, . . . , Bn−1) ∈ nB : ∀i, j < n (i ̸= j ⇒ Bi ∩ Bj ̸= ∅)} for every
n ∈ ω.

Fix an arbitrary p ∈ X. For each t = ((B0, . . . , Bn−1), (k0, . . . , kn−1)) ∈
T , we define Et to be the set of those x ∈ XY so that there is an
(ai)i<n ∈

∏
{Dki : i < n} with

x(α) =

{
ai, for α ∈ Bi and i < n, and
p, for α ∈ Y \

∪n−1
i=0 Bi.

It is routine to verify that each Et is a closed discrete subspace of XY

and that
∪

t∈T Et is dense in XY . Since T is countable and |Y | = κ, it
follows that Xκ is e-separable. �

Now, we turn to arbitrary products of e-separable spaces. We will see
that the heart of the matter is whether we can find large closed discrete
sets in the product of small discrete spaces.
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In [22], S. Mrówka introduced a class of cardinals denoted by M∗. We
write λ ∈ M∗ if and only if there is a product of λ many discrete spaces
X =

∏
{Xα : α < λ} each of size < λ so that X has a closed discrete set

of size λ. Equivalently, the product
∏
{D(ν)λ : ν ∈ λ ∩ Card} contains a

closed discrete set of size λ.
If a cardinal λ is in M∗, then some degree of compactness fails for

λ. Let us make this statement precise: Recall that Lλ,ω is the infinitary
language which allows conjunctions and disjunctions of < λ formulas and
universal or existential quantification over finitely many variables. The
language Lλ,ω is weakly compact by definition if every set of at most λ
sentences Σ from Lλ,ω has a model provided that every S ∈ [Σ]<λ has a
model (see [15, p. 382]).

Theorem 5.2 (Mrówka [22], Chudnovsky [9]). λ /∈ M∗ if and only if
Lλ,ω is weakly compact.

Now, as expected, λ /∈ M∗, or equivalently, the statement “Lλ,ω is
weakly compact,” has some large cardinal strength. First, we mention
two classical results.

Lemma 5.3 ([15, exercises 17.17 and 17.18]). If Lλ,ω is weakly compact,
then λ is weakly inaccessible.

Lemma 5.4 ([15, Theorem 17.13]). λ is a weakly compact cardinal if and
only if it is strongly inaccessible and Lλ,ω is weakly compact.

For our current purposes, we can consider the above lemma the defini-
tion of weakly compact cardinals. Now, given a weakly compact cardinal
λ, we can enlarge the continuum while the language Lλ,ω remains weakly
compact.

Theorem 5.5 (Chudnovsky [9], Boos [6]). If λ is a weakly compact car-
dinal and Cλ+ is the poset for adding λ+ many Cohen-reals, then V Cλ+ |=
“Lλ,ω is weakly compact; hence, c \M∗ ̸= ∅.”

Finally, in [8], the authors recently showed that a weakly compact
cardinal can be recovered from Lλ,ω being weakly compact.

Theorem 5.6 (Hamkins [14], Cody et al. [8]). If Lλ,ω is weakly compact,
then λ is weakly compact in L.

Now, it is easy to derive our first main result about non-preservation.

Lemma 5.7. If λ ≤ c and λ /∈ M∗, then there is a non-e-separable
product of λ many discrete spaces.

Proof. If λ /∈ M∗, then Lλ,ω is weakly compact and, hence, λ is a reg-
ular limit cardinal. Now take discrete spaces Xα of size < λ such that
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sup{|Xα| : α < λ} = λ. The product X =
∏
{Xα : α < λ} contains no

closed discrete subsets of size λ as λ /∈ M∗. We claim that d(X) = λ,
which follows from the following more general observation.

Observation 5.8. Suppose that κ ≤ c and Xα is discrete for α < κ.
Then d(

∏
{Xα : α < κ}) = sup{|Xα| : α < κ}.

To prove this observation, simply apply the usual trick appearing in
the proof of Proposition 5.1.

Now, we claim that X cannot be e-separable. Indeed, if X is e-
separable, then Observation 2.3 implies thatX has a closed discrete subset
of size d(X) = λ = cf(λ) > ω; however, this is not the case. �

Hence, we immediately get the following.

Corollary 5.9. If the existence of a weakly compact cardinal is consistent
with ZFC, then so is the statement that there is a non-e-separable product
of less than c many discrete spaces.

Proof. Apply Lemma 5.7 and Theorem 5.5. �
Now, we will obtain that it is also consistent with ZFC that every

product of at most c many e-separable spaces is e-separable; we will do
so by showing that this last statement is implied by the non-existence of
weakly compact cardinals in L. It will suffice to prove the following.

Theorem 5.10. Suppose that λ ≤ c is minimal so that there is a family
of λ many e-separable spaces with non-e-separable product. Then λ /∈ M∗

and so Lλ,ω is weakly compact.

Let us mention that Lc,ω is not weakly compact [8] and so λ < c in
the previous theorem. In any case, if Lλ,ω is weakly compact, then λ is
weakly compact in L by Theorem 5.6. In turn, we have the following
result.

Corollary 5.11. If there is a non-e-separable product of at most c many
e-separable spaces, then there is a weakly compact cardinal in L.

By combining corollaries 5.9 and 5.11, we obtain the following.

Corollary 5.12. The following statements are overinsistent relative to
ZFC:

(a) there is a product of at most c many e-separable spaces that fails
to be e-separable;

(b) there is a weakly compact cardinal.

Let us now turn to proving Theorem 5.10. We start by reducing the
problem to products of discrete spaces again.
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Lemma 5.13. Suppose that κ ≤ c. Then the following are equivalent:
(a) every product of at most κ many e-separable spaces is e-separable;
(b) every product of at most κ many discrete spaces is e-separable.

Proof. The implication (a)⇒(b) holds trivially. We prove (b)⇒(a).
Let X =

∏
{Xα : α ∈ Y }, where Y ⊆ R has cardinality at most κ

and each Xα is e-separable. For each α ∈ Y , fix a point pα ∈ Xα and a
sequence (Eα

k )k∈ω of closed discrete subsets of Xα with
∪

k∈ω E
α
k = Xα.

Fix a countable base B for Y and, for each n ∈ ω, consider

Sn = {(Bi)i<n ∈ nB : ∀i, j < n (i ̸= j ⇒ Bi ∩Bj = ∅)};

now, for each t = ((Bi)i<n, (k0, . . . , kn−1)) ∈ Sn × nω, define Yt to be the
set of those x ∈ X so that

x(α) =

{
x′α for some x′α ∈ Eα

ki
for α ∈ Bi and i < n, and

pα, for α ∈ Y \
∪n−1

i=0 Bi.

Note that each Yt is homeomorphic to the product
∏

i<n

∏
α∈Bi

Eα
ki

.
Hence, Yt is e-separable by (b). Let (Dt

k)k∈ω be a sequence of closed
discrete subsets of Yt with

∪
k∈ωD

t
k = Yt. Since each Yt is closed in

X, we have that each Dt
k is a closed discrete subset of X. Finally, as∪

n∈ω

∪
r∈Sn×nω Yt is dense in X, it follows that∪

n∈ω

∪
t∈Sn×nω

∪
k∈ω

Dt
k = X,

thus showing that X is e-separable. �

Note that we immediately get the following easy corollary.

Corollary 5.14. The product of finitely many e-separable spaces is e-
separable.

Second, we show that as long as we take the product of large discrete
sets relative to the number of terms, we end up with an e-separable prod-
uct.

Lemma 5.15. Let κ be an infinite cardinal. Then the product of at most
κ many discrete spaces of cardinality at least κ is e-separable.

Proof. Let X =
∏
{Xα : α ∈ λ} where λ ≤ κ and each Xα is a discrete

space with cardinality at least κ. We can assume that λ is infinite and
that Xα = |Xα| for all α ∈ λ.

Define

P i
j = {(F, p) ∈ [λ]i × Fn(λ, κ) : |p| = j and F ∩ dom(p) = ∅}



ON SPACES WITH σ-CLOSED-DISCRETE DENSE SETS 259

for each i, j ∈ ω where Fn(λ, κ) denotes the set of finite partial functions
from λ to κ. Fix an injective function φ :

∪
i,j∈ω P

i
j → κ such that

φ(F, p) > max(ran(p)) for every (F, p) ∈
∪

i,j∈ω P
i
j .

Now, for every i, j ∈ ω, let Ei
j be the set of all x ∈ X for which there

is (F, p) ∈ P i
j satisfying

(1) x(ξ) ≥ κ for all ξ ∈ F ,
(2) x ∈ [p], and
(3) x(ξ) = φ(F, p) for all ξ ∈ λ \ (F ∪ dom(p)).

It is straightforward to verify that
∪

i,j∈ω E
i
j is dense in X. We claim

that each Ei
j is a closed discrete subset of X, which will conclude our

proof.
From this point on, let i, j ∈ ω be fixed.
To see that Ei

j is discrete, pick an arbitrary x ∈ Ei
j and let this be

witnessed by the pair (F, p) ∈ P i
j . Note that the choice of φ ensures that

this (F, p) is unique. Pick any η ∈ λ \ (F ∪ dom(p)) and let

V = [x � (dom(p) ∪ F ∪ {η})].

Then V is an open neighborhood of x in X satisfying Ei
j ∩ V = {x}.

It remains to show that Ei
j is closed in X. Let then y ∈ X \ Ei

j ; we
must find an open neighborhood V of y in X such that V ∩ Ei

j = ∅. We
shall do so by considering several cases.

Case 1: G = {ξ ∈ λ : y(ξ) ≥ κ} has more than i elements. Then we
may take any H ∈ [G]i+1 and define V = [y � H].

Case 2: G = {ξ ∈ λ : y(ξ) ≥ κ} has cardinality at most i.
We will split this case in two.

2.1: ran(y) ∩ κ is infinite. Then we can take A ∈ [κ]j+2 such that
y′′A ∈ [κ]j+2 and define V = [y � A].

2.2: ran(y) ∩ κ is finite. Let µ = max(ran(y) ∩ κ) and H = {ξ ∈ λ :
y(ξ) < µ}.

We divide this case into three subcases.

2.2.1: |H| > j. Pick H ′ ∈ [H]j+1 and β ∈ λ such that y(β) = µ.
Now take V = [g � (H ′ ∪ {β})].

2.2.2: |H| ≤ j and µ /∈ ran(φ). Let B ∈ [λ]j+1−|H| be such that
y′′B = {µ} and consider V = [g � (H ∪B)].

2.2.3: |H| ≤ j and µ ∈ ran(φ). Let (F, p) ∈ P i
j be such that

φ(F, p) = µ and, as in the previous case, take B ∈ [λ]j+1−|H| satisfying
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y′′B = {µ}. Now define

V = [g � (G ∪H ∪B ∪ F ∪ dom(p))].

In order to get a contradiction, suppose that there is x ∈ V ∩ Ei
j

and let (F ′, p′) ∈ P i
j witness that x ∈ Ei

j . Since |H ∪ B| = j + 1 and
x′′(H ∪ B) = y′′(H ∪ B) ⊆ κ, we have that φ(F ′, p′) = max(x′′(H ∪
B)) = max(y′′(H ∪ B)) = µ. Hence, (F ′, p′) = (F, p) by injectivity of
φ. Now, since F = {ξ ∈ λ : x(ξ) ≥ κ} and G = {ξ ∈ λ : y(ξ) ≥ κ},
it follows from x � (F ∪ G) = y � (F ∪ G) that F = G. Similarly, as
H = {ξ ∈ λ : y(ξ) < µ} and dom(p) = {ξ ∈ λ : x(ξ) < µ}, it follows from
x � (H ∪ dom(p)) = y � (H ∪ dom(p)) that H = dom(p). Thus, the pair
(G, y �H) = (F, p) ∈ P i

j witnesses that y ∈ Ei
j , a contradiction. �

Finally, we are ready to present the proof of Theorem 5.10.

Proof of Theorem 5.10. Suppose that λ ≤ c is minimal so that there are
e-separable spaces Xα such that X =

∏
{Xα : α < λ} is not e-separable.

By Lemma 5.13, we can suppose that each Xα is discrete.
Note that

X ≃
∏

{Xα : α < λ, |Xα| < λ} ×
∏

{Xα : α < λ, |Xα| ≥ λ}.

By Lemma 5.15, we know that the second term on the right-hand side is
e-separable. So, by Corollary 5.14, if X is not e-separable, then

∏
{Xα :

α < λ, |Xα| < λ} is not e-separable either.
Now, we define Yν =

∏
{Xα : α < λ, |Xα| = ν} for ν ∈ λ ∩ Card.

Note that, by Theorem 5.1, Yν is e-separable. Hence, the minimality
of λ implies that I = {ν ∈ λ ∩ Card : Yν ̸= ∅} has size λ; otherwise,
X ≃

∏
{Yν : ν ∈ I} is a smaller non-e-separable product of e-separable

spaces. Note that this already shows that λ = ωλ.
Let us suppose that λ ∈ M∗; we will arrive at a contradiction shortly.

Take a decreasing sequence (In)n∈ω of subsets of I so that
∩
{In : n ∈

ω} = ∅ and λ = |In| = |I \ In| for each n ∈ ω. Note that, by Observation
5.8, d(

∏
{Yν : ν ∈ I \ In}) = λ.

Claim.
∏
{Yν : ν ∈ In} contains a closed discrete set of size λ.

If λ ∈ M∗, then Z =
∏
{D(ν)λ : ν ∈ λ ∩ Card} contains a closed

discrete subset of size λ. Hence, it suffices to show that Z embeds into∏
{Yν : ν ∈ In} as a closed subspace. In order to do that, note that the

set {ν ∈ In : ν > ν0} has size λ for every ν0 ∈ λ∩Card. Now it is routine
to construct the embedding of Z.

Finally, we can apply Lemma 6.1 to see that the product X =
∏
{Yν :

ν ∈ I} must be e-separable. This contradicts our initial assumption on
X. �
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6. Final Remarks and Further Questions

First, referring back to §3, it is natural to ask if we can say something
similar to Theorem 3.4 about products. Let us present a result in this
direction.

Lemma 6.1. Suppose that κ is an infinite cardinal and there is a de-
creasing sequence (In)n∈ω of non-empty subsets of κ with empty intersec-
tion such that

∏
{Xα : α ∈ In} contains a closed discrete subset of size

δn = d(
∏
{Xα : α ∈ κ \ In}) for every n ∈ ω. Then X =

∏
{Xα : α < κ}

is e-separable.

Proof. Let X(J) denote
∏
{Xα : α ∈ J} for J ⊆ κ. Pick Dn = {dnξ : ξ <

δn} ⊆ X(κ \ In) dense and let Fn = {fnξ : ξ < δn} ⊆ X(In) be closed
discrete.

Now, for each n ∈ ω, we define enξ ∈ X for ξ < δn by

enξ (α) =

{
dnξ (α), for α ∈ κ \ In, and
fnξ (α), for α ∈ In.

We claim that the set En = {enξ : ξ < δn} is closed discrete. This comes
from the following observation. Suppose that E ⊆

∏
{Xα : α < κ} and

there is I ⊆ κ such that πI is 1-1 on E and the image πI ′′E is closed
discrete in

∏
{Xα : α ∈ I}. Then E is closed discrete.

Now it is clear that
∪
{En : n ∈ ω} is a dense and σ-closed-discrete

subset of X and the proof is complete. �

Second, recall that if D(λ) is the discrete space of size λ ≥ κ, then,
by Lemma 5.15, D(λ)κ is e-separable. Actually, we can say a bit more in
this case.

Lemma 6.2. Let (κi)i∈I be a sequence of cardinals and consider the
product space X =

∏
{D(κi) : i ∈ I}. Suppose that the set {i ∈ I : κi = κ}

is infinite where κ =
∑

i∈I κi. Then X has a σ-discrete π-base.

Proof. Let J be a countable infinite subset of {i ∈ I : κi = κ}. Note
that κj =

∑
i∈I\{j} κi for all j ∈ J . Now let {pjn(α) : α ∈ κj} be an

enumeration of the set

{p ⊆
∪

i∈I\{j}

({i} × κi) : p is a function and |p| = n}

for every j ∈ J and n ∈ ω. Consider

Aj
n = {pjn(α) ∪ {(j, α)} : α ∈ κj};

finally, define Vj
n = {[q] : q ∈ Aj

n}.
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Note that each Vj
n is a discrete family: If a = (ai)i∈I is any point of

X, then
U = {(xi)i∈I ∈ X : xj = aj}

is an open neighborhood of a in X such that

{V ∈ Vj
n : V ∩ U ̸= ∅} = {Vpj

n(aj)∪{(j,aj)}}.

Moreover, V =
∪

j∈J

∪
n∈ω Vj

n is a π-base for X, since any non-empty
open subset of X is determined by a finite number of coordinates which
constitutes a finite subset of I \ {j} for some j ∈ J . �
Corollary 6.3. If λ ≥ κ, then D(λ)κ has a σ-discrete π-base.

Finally, selection principles (see, e.g., [27]) and selective versions of
separability and d-separability (see, e.g., [3], [28]) were proved to be fas-
cinating notions to study. So let us introduce the selective version of
e-separability.

Definition 6.4. A topological space X is E-separable if, for every se-
quence of dense sets (Dn)n∈ω of X, we can select En ⊆ Dn so that En is
closed discrete in X and

∪
n∈ω En is dense in X.

Note that every space with a σ-discrete π-base is E-separable as well.
Let us point out that the example of Theorem 4.2 is an e-separable space
which is not E-separable.

We ask the following questions.

Problem 6.5. Suppose that X is an e-separable space which is the product
of discrete spaces. Is X E-separable as well?

Problem 6.6. How does E-separability behave under powers and prod-
ucts?

In particular, let us refer the interested reader to [3] for an in-depth
look at the general behavior of D-separability, the selective version of
d-separability.
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