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CATEGORICAL PROPERTIES ON THE HYPERSPACE
OF NONTRIVIAL CONVERGENT SEQUENCES

S. GARCÍA-FERREIRA, R. ROJAS-HERNÁNDEZ, AND Y. F. ORTIZ-CASTILLO

Abstract. In this paper, we shall study categorial properties of
the hyperspace of all nontrivial convergent sequences Sc(X) of a
Fréchet-Urysohn space X equipped with the Vietoris topology. We
mainly prove that Sc(X) is meager whenever X is a crowded space;
as a corollary, we obtain that if Sc(X) is Baire, then X has a dense
subset of isolated points. As an interesting example, Sc(ω1) has
the Baire property, where ω1 carries the order topology. (This
answers a question from The hyperspace of convergent sequences,
Topology Appl. 196 (2015), part B, 795–804.) We can give more
examples like this one by proving that the Alexandroff duplicate
A(Z) of a space Z satisfies that Sc(A(Z)) has the Baire property
whenever Z is a Σ-product of completely metrizable spaces and Z
is crowded. Also, we show that if Sc(X) is pseudocompact, then X
has a relatively countably compact dense subset of isolated points,
every finite power of X is pseudocompact, and every Gδ-point in X

must be isolated. We also establish several topological properties
of the hyperspace of nontrivial convergent sequences of countable
Fréchet-Urysohn spaces with only one non-isolated point.

1. Introduction

All our spaces will be Tychonoff (completely regular and Hausdorff).
The letters P and N will denote the irrational numbers and the natural
numbers, respectively. The positive natural numbers will be denoted by
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N+. The Greek letter ω stands for the first infinite cardinal number and
ω1 stands for the first uncountable cardinal number endowed with the
order topology. If A,B ⊆ N, then A ⊆∗ B means that A \B is finite.

For a topological space X, CL(X) will denote the set of all nonempty
closed subsets of X. For a nonempty family U of subsets of X let

⟨U⟩ = {F ∈ CL(X) : F ⊆
∪
U and F ∩ U ̸= ∅ for every U ∈ U}.

If U = {U1, . . . , Un}, in some convenient cases, ⟨U⟩ will be denoted by
⟨U1, . . . , Un⟩. A base for the Vietoris topology on CL(X) is the family of
all sets of the form ⟨U⟩, where U runs over all nonempty finite families of
nonempty open subsets of X. In the sequel, any subset D ⊆ CL(X) will
carry the relative Vietoris topology as a subspace of CL(X). Given D ⊆
CL(X) and a nonempty family U of subsets of X, we let ⟨U⟩D = ⟨U⟩∩D.
For simplicity, if there is no possibility of confusion, we simply write ⟨U⟩
instead of ⟨U⟩D. All topological notions whose definition is not included
here should be understood as in [3].

Some of the most studied hyperspaces on a space X have been

K(X) = {K ∈ CL(X) : K is compact} and

F(X) = {F ⊆ X : F is finite and F ̸= ∅};
see, for instance, Valentin Gutev’s survey paper [8]. In [13], Jan van Mill,
Jan Pelant, and Roman Pol consider the hyperspace consisting of all finite
subsets together with all the Cauchy sequences without limit point of a
metric space. In a different context, Liang-Xue Peng and Zhi-Fang Guo
[14] consider the set FS(X) of all convergent sequences of a space X and
study the existence of a metric d on the set X such that d metrizes all
subspaces of X which belong to FS(X); that is, the restriction of d to A
generates the subspace topology on A for every A ∈ FS(X) (these kinds
of problems have been analyzed in [2]).

The hyperspace of nontrivial convergent sequences was studied in [5]
and, more recently, in [6], [9], [10], and [11]. This hyperspace is formally
defined as follows:

Given a space X, a nontrivial convergent sequence
of X is a subset S ⊆ X such that |S| = ω; S has a unique
non-isolated point, denoted by xS ; and |S \ U | < ω for
each neighborhood U of xS . By using this notion, we define
Sc(X) = {S ∈ CL(X) : S is a nontrivial convergent sequence}.

It is pointed out in [11] that the family of all subsets of Sc(X) of the
form ⟨U⟩, where U is a finite family of pairwise disjoint open subsets of X,
is a base for the Vietoris topology on Sc(X). We will refer to this family
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as the canonical basis of Sc(X) and its elements will be called canonical
open sets.

Throughout this paper, it is evident why we shall only consider non
discrete Fréchet-Urysohn spaces. Thus, the hyperspace Sc(X) will be
always nonempty.

A fundamental task in the study of the hyperspace Sc(X) is to deter-
mine its topological relationship with the base space X and vice versa.
For instance, the connection between the connectedness in X and Sc(X)
is explored in [5], [6], and [11]. The category property on Sc(X) is another
of the topological properties studied in [5]; it is proved that Sc(X) is never
a Baire space when the space X is crowded and that Sc(X) is even meager
if, in addition, X is second countable. Following this direction, our main
purpose of this article is to continue studying the category properties on
Sc(X).

Section 2 is devoted to studying the hyperspace of countable Frećhet-
Urysohn spaces with just one accumulation point. We show that if X is
such a space, then Sc(X) is homeomorphic to the rational numbers if and
only if X has a countable base.

Section 3 is devoted to studying categorical properties of the hyper-
space of nontrivial convergent sequences. Concerning this topic, in [5,
questions 3.4 and 3.5], the authors ask about the meager property in
Sc(X) when X is a metrizable crowded space and about the meager prop-
erty of the space Sc(ω1). We answer both questions by showing that Sc(X)
is meager whenever X is crowded and that Sc(ω1) has the Baire property.
Finally, we prove that if Sc(X) is pseudocompact, then X has a relatively
countably compact dense subset of isolated points, every finite power of
X is pseudocompact, and every Gδ-point in X must be isolated. The last
result of this paper is that if Z is a Σ-product of completely metrizable
spaces and Z is crowded, then Sc(A(Z)) has the Baire property, where
A(Z) is the Alexandroff duplicate of Z. For further research, we list some
open questions related our results.

2. Countable Fréchet-Urysohn Spaces

The main result of this section is to give two non-homeomorphic spaces
X and Y such that Sc(X) and Sc(Y ) are homeomorphic.

Since Sc(X) is, in general, a dense proper subset of CL(X), it cannot
be compact. However, we can say more.

Lemma 2.1. For every space X, Sc(X) is nowhere locally compact.

Proof. Fix S ∈ Sc(X) and let O be a neighborhood of S. Choose a
canonical open set ⟨U1, ..., Un⟩ so that S ∈ ⟨clX(U1), ..., clX(Un)⟩ ⊆ O;
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the sets {clX(U1), ..., clX(Un)} are pairwise disjoint; {xi} = S ∩ clX(Ui)
for each 1 ≤ i < n; and xS ∈ Un. Choose a local base B at xS and one
more Bi at xi for each 1 ≤ i < n. Notice that

⟨clX(U1 ∩B1), ..., clX(Un−1 ∩Bn−1), clX(Un ∩B))⟩

is a closed subset of Sc(X) for each (B1, ..., Bn−1, B) ∈ B1×B2×· · · Bn−1×
B. Therefore,

{⟨clX(U1 ∩B1), ..., clX(Un−1 ∩Bn−1), clX(Un) ∩B)⟩ :

(B1, ..., Bn−1, B) ∈ B1 × B2 × · · · Bn−1 × B}
is a family of closed subsets of ⟨U⟩ with the finite intersection property.
But ∩

{⟨clX(U1 ∩B1), ..., clX(Un−1 ∩Bn−1), clX(Un) ∩B)⟩ :

(B1, ..., Bn−1, B) ∈ B1 × B2 × · · · Bn−1 × B} = ∅.
Therefore, neither ⟨clX(U1), ..., clX(Un)⟩ nor clX(O) can be compact. �

The space that we are looking for will be countable with only one non-
isolated point. To deal with this kind of spaces we shall need the following
terminology.

To each free filter F on N, we associate the space ξ(F) whose underlying
set is N ∪ {F}; all elements of N are isolated and the neighborhoods
of F are of the form A ∪ {F} where A ∈ F . It is evident that the
space ξ(F) is zero-dimensional and Hausdorff for every free filter F on
N. A free filter F on N is said to be a Fréchet-Urysohn filter if the
space ξ(F) is Fréchet-Urysohn (there are plenty of this kind of filter; see
[7]). The simplest example of a Fréchet-Urysohn filter is the Fréchet filter
Fr = {A ⊆ N : |N \ A| < ω}, and notice that ξ(Fr) is a convergent
sequence with its limit point. One more example of a Fréchet-Urysohn
filter with a countable base is the filter P = {A ⊆ N : ∃m ∈ N∀n ≥
m(Pn ⊆ A)}, where {Pn : n ∈ N} is a partition of N in infinite subsets.
At this point, we can say that these two Fréchet-Urysohn filters are the
only ones, up to homeomorphism, with a countable base. These two filters
can be characterized as follows.

Theorem 2.2. Let F be a Fréchet-Urysohn filter. Then Sc(ξ(F)) is
homeomorphic to P if and only if F has a countable base.

Proof. Necessity. If Sc(ξ(F)) is homeomorphic to P, then Sc(ξ(F)) is
second countable. Hence, by applying [11, Theorem 6.5], we obtain that
ξ(F) is also second countable. Thus, we conclude that the filter F has a
countable base.
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Sufficiency. Assume that B is a countable base of F . It then follows
from [11, Corollary 6.15] that the space Sc(ξ(F)) is separable. Since every
open subset of ξ(F) is closed, we may apply [11, Proposition 3.2] to see
that the canonical basis of Sc(ξ(F)) consists of clopen subsets. So we also
obtain that Sc(ξ(F)) is zero-dimensional. In order to see that Sc(ξ(F)) is
homeomorphic to P, in virtue of [12, Theorem 1.9.8], it is enough to show
that it is nowhere locally compact and completely metrizable. Indeed, by
Lemma 2.1, we know that Sc(ξ(F)) is nowhere locally compact.

Let us show that Sc(ξ(F)) is completely metrizable. Enumerate B as
{Bn : n ∈ N} and, without loss of generality, assume that Bn+1 ⊆ Bn

for each n ∈ N. Let En = Bn \ Bn+1 for each n ∈ N. Without loss of
generality, we may assume that {En : n ∈ N} is a partition of N. Consider
the map f : ξ(F) → R defined as f(m) = 1/2n for m ∈ En and f(F) = 0.
Define a metric d on ξ(F) as follows: For x, y ∈ ξ(F), if x, y ∈ En

for some n ∈ N and x ̸= y, then we let d(x, y) = 1/2n, and we define
d(x, y) = |f(x)− f(y)| otherwise. Notice that d is a complete metric
compatible with the topology of ξ(F). It is well known that the Hausdorff
metric induced by d on CL(ξ(F)) is also complete (see [16]). Thus, we
obtain that CL(ξ(F)) is completely metrizable. To show that Sc(ξ(F)) is
completely metrizable, it is enough to prove that Sc(ξ(F)) is a Gδ-set in
CL(ξ(F)). For each B ∈ B, we let OB = {S ∈ CL(ξ(F)) : |S \B| < ω}
and note that this set is open in CL(ξ(F)); indeed,

OB =
∪
{⟨{B} ∪ {{x} : x ∈ F}⟩ : F ∈ F(ξ(F) \B)∪ {∅}} ∪ F(ξ(F) \B).

On the other hand, since F(ξ(F)) is Fσ in CL(ξ(F)), it follows that
Sc(ξ(F)) =

∩
{OB : B ∈ B} \ F(ξ(F)) is a Gδ-subset of Sc(ξ(F)). �

Example 2.3. There are two spaces X and Y such that Sc(X) is home-
omorphic to Sc(Y ), but X is not homeomorphic to Y .

Proof. By Theorem 2.2, we know that Sc(ξ(Fr)) is homeomorphic to
Sc(ξ(P)), but it is clear that the spaces ξ(Fr) and ξ(P) cannot be home-
omorphic. �

Both spaces X and Y considered in the previous example have a dense
set of isolated points. However, we still do not know any counterexample
in the realm of crowded (Fréchet-Urysohn) spaces.

Problem 2.4. Find two non-homeomorphic crowded spaces X and Y
such that Sc(X) and Sc(Y ) are homeomorphic.

Addressing Problem 2.4, we would like to make some comments about
the following class of sequential, non-Fréchet-Urysohn crowded spaces.
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The symbol FF (N) will denote the set of all free filters on N and
Seq =

∪
n∈N Nn. If s ∈ Seq and n ∈ N, then the concatenation of s and n

is the function s⌢n = s∪{(dom(s), n)}. For a function δ : Seq → FF (N),
we define a topology τδ on Seq by defining V ∈ τδ if and only if {n ∈ N :
s⌢n ∈ V } ∈ δ(s) for every s ∈ V . It is well known that Seq(δ) = (Seq, τδ)
is an extremally disconnected, zero dimensional Hausdorff space for every
function δ : Seq → FF (N). Besides, Seq(δ) is a sequential space provided
that δ(s) is a Fréchet-Urysohn filter for each s ∈ Seq. It is not hard to
see that Seq(δ) cannot be Fréchet-Urysohn.

Question 2.5. Are Sc(Seq(Fr)) and Sc(Seq(P)) homeomorphic?

After having Theorem 2.2, we shall give next a necessary condition
when the space Sc(Seq(F)) is Baire.

Following A. V. Arhangel’skii [1], we say that x ∈ X is an α2-point
if, for every family {Sn : n ∈ N} of sequences converging to x, there is
S ∈ Sc(X) converging to x such that |S ∩Sn| = ω for all n ∈ N. We shall
say that a filter F is an α2-filter if every point of the space ξ(F) is an
α2-point.

Lemma 2.6. Let F be a Fréchet-Urysohn filter, S ∈ Sc(ξ(F)), and n ∈ N.
Then Dn

S = {T ∈ Sc(ξ(F)) : |T ∩ S| ≥ n} is a dense open subset of
Sc(ξ(F)).

Proof. Fix S ∈ Sc(ξ(F)) and n ∈ N. Assume that ⟨U ∪{A}⟩ is a canonical
open set of Sc(ξ(F)), where U consists of singletons which are elements
of N and A ∈ F . Since S ⊆∗ A, we can easily find T ∈ ⟨U ∪ {A}⟩ so that
|T ∩S| ≥ n. To prove that Dn

S is open, fix T ∈ Dn
S . Then choose a family

of singletons U consisting of n elements of T ∩ S. It is then clear that
T ∈ ⟨U ∪ {N}⟩ ⊆ Dn

S . �

Theorem 2.7. Let F be a Fréchet-Urysohn filter. If the hyperspace
Sc(ξ(F)) is not meager, then F is an α2-filter.

Proof. Let {Sm : m ∈ N} be a countable subset of Sc(ξ(F)). According
to Lemma 2.6, the set Dn

Sm
is open and dense for each n,m ∈ N. Hence,

we can find T ∈
∩

n,m∈N Dn
Sm

. It is then clear that |T ∩Sm| = ω for every
m ∈ N. �

To give another example of a Frechét-Urysohn filter we need the char-
acterization of the Frechét-Urysohn filters given in [15]: A free filter F
is Frechét-Urysohn if and only if there is an AD-family A maximal with
respect to the following properties:

(1) F ∈ F if and only if A ⊆∗ F for all A ∈ A, and
(2) A is an AD-family.



CATEGORICAL PROPERTIES ON CERTAIN HYPERSPACES 271

As a consequence, we have that if S ∈ Sc(ξ(F)), then |S∩A| = ω for some
A ∈ A. When F is a Frechét-Urysohn filter and A is the AD-family given
by its characterization, we shall put F = FA. If Q is a partition of N,
then FQ is the well-known FAN -filter. Since the FAN -filter FQ cannot
be an α2-filter, it follows from the previous theorem that Sc(ξ(FQ)) is
meager.

The following problem is then natural.

Problem 2.8. Determine the Fréchet-Urysohn filters F on N for which
the space Sc(ξ(F)) is Baire.

3. Category in Sc(X)

Theorem 2.2 provides an example of a space X for which Sc(X) is
Baire. In what follows, we shall describe more examples of spaces for
which Sc(X) has this property. To do this we list some easy facts and
introduce some useful notation.

Remark 3.1. Let Y be a non discrete subspace of X, then we have that
(a) Y is dense in X if and only if Sc(Y ) is dense in Sc(X).
(b) Y is open in X if and only if Sc(Y ) is open in Sc(X).

As a consequence, if Y is open and dense in X, then Sc(Y ) is Baire if and
only if Sc(X) is Baire.

For a space X, S ⊆ Sc(X), and D ⊆ X, we define

G(S, D) = {S ∪ F : S ∈ S and F ∈ F(D) ∪ {∅}}.
The set G(S, X) will be simply denoted by G(S). If S ⊆ Sc(X), then we
have that S ⊆ G(S, D) for all D ⊆ X. The following properties can be
easily verified.

(c) If S ⊆ Sc(X) is dense, then G(S, D) is dense in Sc(X) for all
D ⊆ X.

(d) If Y ⊆ X is open and D ⊆ X is discrete, then G(Sc(Y ), D) is
open in Sc(X).

In the next theorem, we state several conditions on a space X that
guarantee the Baire property of the hyperspace Sc(X). We shall need the
following lemmas.

Lemma 3.2. Let X be a space such that its set D of isolated points is
dense in X. If Y is a nonempty open subset of X such that Sc(Y ) is
Baire, then G(Sc(Y ), D) is Baire.

Proof. Assume that {Dn : n ∈ N} is a family of open and dense sub-
sets of G(Sc(Y ), D). Let ⟨U⟩ be a nonempty canonical open subset of
G(Sc(Y ), D). Without loss of generality, suppose that U = U ′∪UD where
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U ′ is a family of pairwise disjoint infinite open subsets of Y and UD is a
family of singleton sets with elements in D. Set F =

∪
UD and observe

that (S ∩ Y ) ∪ F = S for each S ∈ ⟨U⟩. For each n ∈ N, define En =
{S∩Y : S ∈ Dn∩⟨U⟩}. It is straightforward to verify that En is open and
dense in ⟨U ′⟩ for all n ∈ N. Since Sc(Y ) is Baire and ⟨U ′⟩ is a nonempty
open subset of Sc(Y ), we can find T ∈ ⟨U ′⟩ ∩

(∩
{En : n ∈ N}

)
. Then we

have that T ∪ F ∈ ⟨U⟩ ∩
(∩

{En : n ∈ N}
)
⊆ ⟨U⟩ ∩

(∩
{Dn : n ∈ N}

)
.

Since ⟨U⟩ was arbitrary, the space G(Sc(Y ), D) is Baire. �
We omit the proof of the following well-known results.

Lemma 3.3. Let X be a space.
(1) If {Vi : i ∈ I} is a family of open Baire nonempty open subsets of X,

then
∪

i∈I Vi is also Baire.
(2) If X has a family U consisting of pairwise disjoint nonempty open

meager subsets and
∪
U is dense in X, then X is also meager.

Theorem 3.4. Let X be a space such that its set D of isolated points is
dense in X, and let {Xγ : γ ∈ Γ} be a family of clopen subspaces of X.
If the following conditions are satisfied

(i) the set {xS : S ∈
∪

γ∈Γ Sc(Xγ)} is dense in X \D,
(ii) Sc(Xγ) is Baire for each γ ∈ Γ,
(iii) the family {G(Sc(Xγ), D) : γ ∈ Γ} is pairwise disjoint, and
(iv) Sc(X) =

∪
{G(Sc(Xγ)) : γ ∈ Γ},

then Sc(X) is a Baire space.

Proof. First, we shall prove that D =
∪
{G(Sc(Xγ), D) : γ ∈ Γ} is dense

in Sc(X). Indeed, let O = ⟨U⟩ be a nonempty canonical open subset of
Sc(X). By condition (i), we may choose S ∈ O so that xS ∈ Xγ for
some γ ∈ Γ. Notice that S ∩ Xγ ∈ Sc(Xγ). For each U ∈ U , select
a point dU ∈ D ∩ U and consider the convergent sequence S0 = (S ∩
Xγ) ∪ {dU : U ∈ U}. Then we have that S0 ∈ O ∩ G(Sc(Xγ), D) and so
D ∩ O ̸= ∅. By Remark 3.1(d), we obtain that D is open in Sc(X) and
D =

∪
{G(Sc(Xγ), D) : γ ∈ Γ}. By condition (ii) and Lemma 3.2, we

know that G(Sc(Xγ), D) is Baire for each γ ∈ Γ. Thus, Lemma 3.3(1)
implies that D is Baire and so Sc(X) is also Baire. �
Example 3.5. The space Sc(ω1) is Baire.

Proof. Let D be the set of all isolated points of ω1 and

Y = {α < ω1 : α is a limit ordinal and (β, α) ⊆ D for some β < α}.
Set X = Y ∪D. Since X is open and dense in ω1, according to Remark
3.1(a),(b), it is enough to show that Sc(X) is Baire. For each α ∈ Y , pick
βα so that (βα, α) ⊆ D, and let Xα = (βα, α]. According to Theorem 2.2,
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we have that the space Sc(Xα) is Baire for each α ∈ Y . Thus, D and the
family {Xα : α ∈ Y } satisfy all the conditions of Theorem 3.4. Therefore,
Sc(X) is a Baire space. �

For the description of our next example, we recall that an almost dis-
joint family A is an infinite family of infinite subsets of N such that
|A ∩ B| < ω for distinct A,B ∈ A. The Ψ-space associated with an
AD-family A, denoted by Ψ(A), is the space whose underlying set is
N∪A; N is discrete and, for each A ∈ A, (A \F )∪{A} with F ∈ F(N) is
a basic neighborhood of A. It is easy to see that the space Ψ(A) is always
first countable and zero dimensional.

Example 3.6. For every almost disjoint family A, the space Sc(Ψ(A))
is Baire.

Proof. Let D = N and, for every A ∈ A, define XA = A ∪ {A}. Theorem
2.2 asserts that the space Sc(XA) is Baire for each A ∈ A. Since D and
the family {XA : A ∈ A} satisfy all the conditions of Lemma 3.4, we
conclude that Sc(X) is Baire. �

We point out that the spaces just considered above have a dense subset
of isolated points. The next result shows that without the presence of
isolated points in X, the space Sc(X) can never have the Baire property
([5, Theorem 3.2] shows that if X is a crowded metric space, then Sc(X)
is not Baire).

Theorem 3.7. If X is crowded, then Sc(X) is meager.

Proof. As X is crowded, we have that the family of all canonical nonempty
open subsets ⟨U⟩ of Sc(X) such that |U| ≥ 2 is a base for Sc(X). Thus,
in virtue of Lemma 3.3(2), it suffices to prove that every such open set
is meager. Indeed, fix a canonical open set ⟨U⟩ such that |U| ≥ 2 and
⟨U⟩ =

∪
{N (U, n) : U ∈ U and n ∈ N+}, where N (U, n) = {S ∈ ⟨U⟩ :

|S \ U | = n} for each U ∈ U and n ∈ N+. Let us prove that each set
N (U, n) is nowhere dense. Indeed, pick U ∈ U and n ∈ N+. Let O
be a nonempty open set of Sc(X). Choose a canonical nonempty open
set ⟨V⟩ ⊆ O so that ⟨V⟩ ∩ N (U, n) ̸= ∅. Since |U| ≥ 2, we can find
U0 ∈ U \ {U} and V0 ∈ V such that V0 ∩ U0 ̸= ∅. Since X is crowded,
we can find a family W of disjoint nonempty open subsets of X such
that

∪
W ⊆ V0 ∩ U0 and |W| = n + 1. Then ⟨V ∪W⟩ ⊆ ⟨V⟩ ⊆ O and

⟨V ∪W⟩ ∩ N (U, n) = ∅. So, N (U, n) is nowhere dense. Therefore, ⟨U⟩ is
meager. �

The presence of a dense set of isolated points in the above examples is
not a causality, as the next corollary shows.
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Corollary 3.8. If Sc(X) is Baire, then X must have a dense set of
isolated points. In particular, X has the Baire property.

Proof. Assume that the set of isolated points of X is not dense in X.
Thus, we can find a nonempty crowded open set U ⊆ X. It then follows
that Sc(U) = ⟨U⟩ is a nonempty meager open subset of Sc(U), which is a
contradiction. Therefore, X must have a dense set of isolated points. �

As we have seen after Theorem 2.7, if FQ is the FAN -filter, then
Sc(ξ(FQ)) is meager. Thus, the hyperspace of nontrivial convergence
sequence of a Baire space with a dense set of isolated points is not nec-
essarily Baire. To get a space X with Sc(X) of the second category
but not Baire is now easy. Consider the disjoint union X = Y ⊕ Z
where Sc(Y ) is Baire and Sc(Z) is meager. It follows from the equality
Sc(X) = Sc(Y )⊕Sc(Z)⊕⟨Y, Z⟩ that Sc(X) is of the second category but
not Baire.

Let us remark that Sc(X) can never be countably compact. In fact, if
S ∈ Sc(X), then {S \ F : F ∈ F(S \ {xS})} converges to {xS} in CL(X),
but {xS} ̸∈ Sc(X). It follows that {S \ F : F ∈ F(S \ {xS})} is closed
and discrete in Sc(X). On the other hand, we have proved that Sc(X)
may have the Baire property. Since pseudocompact implies Baire, it is
natural to analyze the pseudocompactness on Sc(X).

Theorem 3.9. If Sc(X) is pseudocompact, then X has a relatively count-
ably compact dense set of isolated points, every finite power of X is pseu-
docompact, and every Gδ-point in X must be isolated.

Proof. Assume that Sc(X) is pseudocompact and let D be the set of
isolated points of X. Hence, Sc(X) has the Baire property and so, by
applying Corollary 3.8, we obtain that D is dense in X. We claim that D
is relatively countably compact in X. Assume the contrary, that D is not
relatively countably compact. Then there exists a countable infinite set
N ⊆ D which is clopen in X. For each F = {x1, . . . , xn} ∈ F(N) consider
the clopen set UF = {X \ N, {x1}, . . . , {xn}} and let U∅ = {X \ N}.
Notice that Sc(X) =

⊕
{⟨UF ⟩ : F ⊆ N is finite}, but this contradicts

the pseudocompactness of Sc(X). Thus, we have that D is a relatively
countably compact subset of X.

Now, we shall verify that X is pseudocompact. Suppose that there
exists an infinite family {Un : n ∈ N} of nonempty open subsets of X
such that clX(Un+1) ⊆ Un and

∩
{Un : n ∈ N} = ∅. Since D is discrete,

dense, and relatively countably compact in X, X is pseudocompact. Be-
sides, since X is Fréchet, by [3, Theorem 3.10.26] and induction, Xn is
pseudocompact for all n ∈ N.
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Finally, assume that X has a non-isolated Gδ-point x. By the regularity
of X, we can find a family {Un : n ∈ N} of nonempty open subsets of X
such that cl(Un+1) ⊆ Un and

∩
{Un : n ∈ N} = {x}. Then we must have

that Un is an infinite sets for all n ∈ N. So, {⟨Un⟩ : n ∈ N} is a family
of nonempty open subsets of Sc(X) such that cl(⟨Un+1⟩) ⊆ ⟨Un⟩ and∩
{⟨Un⟩ : n ∈ N} = ∅, contradicting the pseudocompactness of Sc(X).

Therefore, the point x is isolated. �
There are plenty of spaces satisfying the conclusions from Theorem

3.9; a concrete example is the Alexandroff duplicate of the Σ-product
of ω1 copies of the discrete space of cardinality two. However, we do
not know whether the hyperspace of convergent sequences of this space is
pseudocompact. In a more general setting, we have the following question.

Question 3.10. Is there a space X for which Sc(X) is pseudocompact?

We will see in the next theorem that the Alexandroff duplicate will pro-
vide examples of spaces with a Baire hyperspace of convergent sequences.
For the first example, let us prove a preliminary lemma.

For the next lemma, for a space X, we let A(X) = X × {0, 1} denote
its Alexandroff duplicate, where X ×{1} is discrete. For each U ⊆ X, we
define Û = U × {0, 1}.

Lemma 3.11. If B is a π-base of a space X and B∗ is a π-base of the
set of all non-isolated points of X consisting of non discrete sets, then the
family of all canonical sets of the form

⟨{B} ∪ U⟩,
where B ∈ B∗ and U ⊆ B, is a π-base of Sc(A(X)) consisting of nonempty
open sets.

Proof. Let ⟨V⟩ be a canonical nonempty open subset of Sc(A(X)). Note
that there exists a non discrete set V0 ∈ V . Pick B ∈ B∗ such that B ⊆ V0

and BV ∈ B such that BV ⊆ V for each V ∈ V \ {V0}. Then it is clear
that ∅ ̸= ⟨{B} ∪ U⟩ ⊆ ⟨V⟩. �

For the next result, the diameter of a subset A of a metric space (X, d)
will be denoted by δ(A) := sup{d(x, y) : x, y ∈ A}.

Theorem 3.12. If X is a complete metrizable crowded space, then
Sc(A(X)) has the Baire property.

Proof. Equip X with a complete compatible metric. Set B = {{(x, 1)} :

x ∈ X} and B∗ = {Û : U ⊆ X is open}. Note that B is a π-base for A(X)
because X does not have isolated points, and B∗ is a base for X × {0}.
Suppose that {Di : i ∈ N} is a decreasing sequence of dense open subsets
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of Sc(A(X)) and let ⟨U⟩ be a canonical open subset of Sc(A(X)), where
U = {U1, . . . , Uk} and {U1, . . . , Uk} are pairwise disjoint nonempty open
subsets of A(X). By inductively applying Lemma 3.11, we can find a
strictly increasing sequence (ni)i∈N in N, a sequence of points (xi)i∈N,
and, for every i ∈ N, a nonempty open subset Wi of X such that

(a) clX(Wi+1) ⊆ Wi, for every i ∈ N;
(b) δ(Wi) <

1
2i , for every i ∈ N;

(c) Ŵi ∩ {(x1, 1), . . . , (xni , 1)} = ∅, for every i ∈ N;
(d)

⟨
Ŵi, {(x1, 1)}, . . . , {(xni , 1)}

⟩
⊆ ⟨U⟩ ∩ Di, for every i ∈ N;

(e) xj ∈ Wi, for all i, j ∈ N with ni < j.
It follows from (b) and (e) that (xi)i∈N is a Cauchy sequence and since
X is complete, there is x ∈

∩
i∈N Wi such that xi → x. Consider the

sequence s = {x} ∪ {xi : i ∈ N}. It is evident from the construction that
s ∈ ⟨U⟩ ∩

(∩
i∈N Di

)
. Therefore, Sc(A(X)) has the Baire property. �

Theorem 3.12 can be generalized as follows.

Theorem 3.13. If Z is a Σ-product of completely metrizable spaces and
Z is crowded, then Sc(A(Z)) has the Baire property.

Proof. Assume that Z = {x ∈ X : |suppt(x)| ≤ ω}, where X =
∏

i∈I Xi

is a product of completely metrizable spaces, a = (ai)i∈I ∈ X is a fixed
point, and suppt(x) := {i ∈ I : xi ̸= ai} for each x ∈ X. For each i ∈ I,
we equip Xi with a complete metric. Set B = {{(x, 1)} : x ∈ Z} and
note that B is a π-base for A(Z) because Z does not have isolated points.
Now, for each n ∈ N, consider the family Bn of all nonempty canonical
open subsets B of Z such that the projection πi[B] has diameter smaller
than 1

2n for all i ∈ supp(B). (For a canonical open set B of X, we define
supp(B) = {i ∈ I : πi[B] ̸= Xi}.) It is clear that each Bn is a base for the
space Z consisting of crowded sets. As a consequence, B̂n = {B̂ : B ∈ Bn}
is a family of open non discrete sets which is a π-base at each non-isolated
point of A(Z) for each n ∈ N. To show that Sc(A(Z)) is a Baire space,
suppose that {Dn : n ∈ N} is a family of open dense subsets of Sc(A(Z)).
Fix an arbitrary nonempty canonical open subset ⟨U⟩ of Sc(A(Z)). Let
{Nn : n ∈ N} be a partition of N in infinite subsets. We will construct
recursively, for each n ∈ N, a set Bn ∈ Bn and a finite subset Un of B as
follows:

By using Lemma 3.11, we can find a set B1 ∈ B1 and a finite subset U1

of B such that ⟨{B̂1} ∪ U1⟩ is a canonical open set contained in ⟨U⟩ ∩D1.
We may assume that the cardinality of U1 is at least two. Let F1 =

∪
U1

and A1 =
∪
{suppt(x) : (x, 1) ∈ F1}. Enumerate A1 as {im : m ∈ N1},

repeating the elements of F1 if necessary. Assume that for each k ≤ n we
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have defined Bk ∈ Bk and Uk ∈ B satisfying the corresponding conditions
(1)–(4) below. To prepare the next induction step, for every k ≤ n−1, we
define Fk+1 =

∪
(Uk+1 \ Uk) and enumerate Ak :=

∪
{suppt(x) : (x, 1) ∈

Fk} as {im : m ∈ Nk} allowing repetition if necessary. Then, by applying
Lemma 3.11 again, we can find a set Bn+1 ∈ Bn+1 and a finite subset
Un+1 of B so that

(1) ⟨{B̂n+1} ∪ Un+1⟩ is a canonical open set contained in ⟨{B̂n} ∪
Un⟩ ∩ Dn+1,

(2) clZ(Bn+1) ⊆ Bn,
(3) Un+1 \ Un has at least two elements, and
(4) {im : m ∈

(∪
k≤n Nk

)
∩ n} ⊆ supp(Bn+1).

Thus, we have defined Bn and Un for each n ∈ N. It follows from (4)
that A :=

∪
n∈N An = {im : n ∈ N} ⊆

∪
n∈N supp(Bn) =: C. On the

other hand, we deduce from (1) that if Gn := {x : (x, 1) ∈ Fn} for every
n ∈ N, then Gn+1 ⊆ Bn. Fix i ∈ C. Since {cl(πi[Bn]) : n ∈ N} is a
deceasing sequence of closed subsets of Xi whose diameters converge to
0, there exists a unique point bi ∈

∩
n∈N cl[πi(Bn)]. Next we proceed to

define z ∈ Z as

zi =

{
bi if i ∈ C

ai if i ∈ I \ C.
Our desired sequence is S = {(z, 0)} ∪

(∪
n∈N Fn

)
. Indeed, it is evident

from (3) that
∪

n∈N Fn is infinite and discrete. Let us see that the se-
quence

∪
n∈N Fn converges to (z, 0). First, when i ∈ I \ C, the fact that∪

{suppt(x) : x ∈
∪

n∈N Gn} = A ⊆ C implies that πi[
∪

n∈N Gn] = {ai},
and so πi[

∪
n∈N Gn] trivially converges to ai = zi. Second, when i ∈ C,

it is clear from the construction that πi[
∪

n∈N Gn] converges to bi = zi.
It then follows that

∪
n∈N Gn converges to z. Since Z is crowded, we

conclude that
∪

n∈N Fn converges to (z, 0). �
It is evident that Theorem 3.12 follows directly from Theorem 3.13,

but we decided to include the proofs of both since the proof of the former
is illustrative and didactic, and after reading it, the proof of the latter
will be more understandable.

We list several open questions which are closely related to the results
of this article.

Question 3.14. Is there a space X for which Sc(A(X)) is pseudocom-
pact?

Examples 3.5 and 3.6 suggest the following question.

Question 3.15. Characterize the Baire spaces X for which Sc(X) is
Baire.
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Based on Corollary 3.8, we have formulated the next question.

Question 3.16. What are the properties of a space X when Sc(X) is
second category?

Following [4], we say that a space X is weakly pseudocompact if it is
Gδ-dense in some compactification. We know that every pseudocompact
space is weakly pseudocompact and every weakly pseudocompact space
is Baire (for the details of these facts, see [4]). Thus, we may weaken
Question 3.17.

Question 3.17. Is there a space X for which Sc(X) is weakly pseudo-
compact?
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