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ON STIEFEL–WHITNEY CLASSES OF VECTOR
BUNDLES OVER REAL STIEFEL MANIFOLDS

PRATEEP CHAKRABORTY AND AJAY SINGH THAKUR

Abstract. In this article, we show that there are at most two
integers up to 2(n− k), which can occur as the degrees of nonzero
Stiefel–Whitney classes of vector bundles over the Stiefel manifold
Vk(Rn). In the case when n > k(k + 4)/4, we show that if w2q (ξ)
is the first nonzero Stiefel–Whitney class of a vector bundle ξ over
Vk(Rn), then wt(ξ) is zero if t is not a multiple of 2q . In addition,
we give relations among Stiefel–Whitney classes whose degrees are
multiples of 2q .

1. Introduction

The real Stiefel manifold Vk(Rn) is the set of all orthonormal k-frames
in Rn, and it can be identified with the homogeneous space SO(n)/SO(n−
k). The main aim of this article is to study Stiefel–Whitney classes of
vector bundles over a real Stiefel manifold.

Recall that the degree of the first nonzero Stiefel–Whitney class of a
vector bundle over a CW-complex X is a power of 2 (see, for example, [8, p.
94]). In the case when X is a d-dimensional sphere Sd, M. F. Atiyah and F.
Hirzebruch [2, Theorem 1] show that d can occur as the degree of a nonzero
Stiefel–Whitney class of a vector bundle over Sd if and only if d = 1, 2, 4, 8.
The possible Stiefel–Whitney classes of vector bundles over Dold manifold
and stunted real projective space are completely determined by R. E.
Stong [11] and Ryuichi Tanaka [12], respectively. In this article, we shall
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deal with the case X = Vk(Rn) and derive certain results on Stiefel–
Whitney classes.

Recall from [3] that the reduced cohomology groups H̃j(Vk(Rn);Z2)
vanishes for j < n − k, so the first possible nontrivial Stiefel–Whitney
class of a vector bundle over Vk(Rn) occurs in degree n − k. In [6], it
is observed that for a vector bundle ξ over Vk(Rn), n > k, the Stiefel–
Whitney class wn−k(ξ) = 0 if n − k ̸= 1, 2, 4, 8 and wn−k+1(ξ) = 0 if
n − k = 2, 4, 8. We extend this observation to get the following theorem
where we show that there are at most two integers up to 2(n− k), which
can occur as the degrees of nonzero Stiefel–Whitney classes of any vector
bundle over Vk(Rn).

Theorem 1.1. Let ξ be a vector bundle over Vk(Rn), n > k. Let i be a
positive integer with i ≤ 2(n− k). Then wi(ξ) = 0 if one of the following
conditions is satisfied:

(1) n− k ̸= 1, 2, 4, 8 and i ̸= 2φ(n−k−1).
(2) n− k = 1, 2, 4, 8 and i ̸= n− k, 2(n− k).

In Theorem 1.1, φ(m) for a non-negative integer m is the number of
integers l such that 0 < l ≤ m and l ≡ 0, 1, 2, 4 (mod 8).

As a corollary (see Corollary 2.1 below) to Theorem 1.1, we observe
that if i is the first nonzero Stiefel–Whitney class of a vector bundle ξ
over Vk(Rn), where n ≥ 2k, and i ≤ n−1, then i is of the form 2φ(n−k−1).
Now in the next theorem, for a vector bundle over Vk(Rn), we derive the
vanishing of certain Stiefel–Whitney classes whose degrees depend on the
degree of the first nonzero Stiefel–Whitney class.

Theorem 1.2. Let n > k(k+4)/4. Let ξ be a vector bundle over Vk(Rn)
with the first non-zero Stiefel Whitney class in degree 2q. If i is a multiple
of 2q and is written as i = 2q+t1 +2q+t2 + · · ·+2q+tm with tj ≥ 0 and tj <
tj+1, then wi(ξ) = w2q+t1 (ξ) · w2q+t2 (ξ) · · ·w2q+tm (ξ). Further, if i is not
a multiple of 2q, then wi(ξ) = 0.

Recall from [10] that the ucharrank(X) of X is the maximal degree
up to which every cohomology class of X is a polynomial in the Stiefel–
Whitney classes of a vector bundle over X. The ucharrank of Vk(Rn)
is computed in [6], except for the cases n − k = 4, 8, in which it is
shown that ucharrank(Vk(Rn)) is bounded above by n − k. In Exam-
ple 2.3, we construct a vector bundle ξ over Vk(Rn) when n − k = 4, 8,
such that wn−k(ξ) ̸= 0 and, hence, improve the result in [6] to obtain
ucharrank(Vk(Rn)) = n− k.

To prove our results, we need the Steenrod algebra action on the mod-
2 cohomology ring H∗(Vk(Rn);Z2). Recall from [3, Proposition 9.1 and
Proposition 10.3] that the cohomology ring H∗(Vk(Rn);Z2) has a simple
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system of generators an−k, an−k+1, . . . , an−1, where ai ∈ Hi(Vk(Rn) with
the following relations:

a2i =

{
a2i if 2i ≤ n− 1
0 otherwise.

The action of Steenrod algebra is completely determined by knowing that:

Sqi(aj) =


(
j

i

)
aj+i if j + i ≤ n− 1,

0 otherwise.

(see [3, §10, Remarques(2)]).

In this article we shall only consider real Stiefel manifold. The coho-
mology ring will always be with Z2-coefficients, unless specified otherwise.

2. Proof of Theorem 1.1

We first recall the description, due to Tanaka [12], of Stiefel–Whitney
classes of vector bundles over stunted real projective space. For n >
k, let Pn,k be the stunted real projective space obtained from RPn−1

by collapsing the subspace RPn−k−1 to a point. Consider the following
cofibration sequence

RPn−k−1 −→ RPn−1 g−→ Pn,k.

The induced map in cohomology g∗ : Hj(Pn,k) → Hj(RPn−1) is an iso-
morphism when n−k ≤ j ≤ n−1. Therefore, for any vector bundle ξ over
Pn,k, the Stiefel–Whitney class wj(ξ) ̸= 0 if and only if wj(g

∗(ξ)) ̸= 0.
From [1] (see also [12]), we know that the image g∗ : K̃O(Pn,k) →
K̃O(RPn−1) is generated by 2φ(n−k−1)γ, where γ is the canonical line
bundle over RPn−1 and, for a non-negative integer m, φ(m) is as de-
fined in the introduction. If we denote the generator of H∗(RPn−1) by
t, then, for any integer d, the total Stiefel–Whitney class of the element
d2φ(n−k−1)γ in the image of g∗ is given as

w(d2φ(n−k−1)γ) = (1 + t)d2
φ(n−k−1)

= (1 + t2
φ(n−k−1)

)d.

Therefore, the nonzero Stiefel–Whitney classes of any vector bundle ξ over
Pn,k can occur only in degrees r2φ(n−k−1) for some integer r.

To prove Theorem 1.1, we shall use the following observation. For a
non-negative integer m, we note that if m ≡ 1, 2, 3, 4, 5 (mod 8), then
φ(m) = [m/2] + 1, and if m ≡ 0, 6, 7 (mod 8), then φ(m) = [m/2]. From
here we can conclude that for a positive integer m, we have 2φ(m−1) ≥ m,
and the equality holds only if m = 1, 2, 4, 8.
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Proof of Theorem 1.1. Recall (see [4]) that there is a cellular embedding
f : Pn,k ↪→ Vk(Rn) such that the cellular pair (Vk(Rn), Pn,k) is 2(n − k)
connected (see [4, Proposition 1.3]). Hence, the induced map in cohomol-
ogy f∗ : Hj(Vk(Rn)) → Hj(Pn,k) is injective for j ≤ 2(n− k). Therefore,
for a vector bundle ξ over Vk(Rn), the Stiefel–Whitney class wj(ξ) ̸= 0
if and only if wj(f

∗(ξ)) ̸= 0 when n − k ≤ j ≤ 2(n − k). By the descrip-
tion of Stiefel–Whitney classes of vector bundles over Pn,k, as discussed
above, it follows that wj(ξ) = 0 if n− k ≤ j ≤ min{n− 1, 2(n− k)} and
j ̸= r2φ(n−k−1) for any integer r. Since 2φ(n−k−1) ≥ (n−k) and the equal-
ity holds only if n − k = 1, 2, 4, 8, the only multiples of 2φ(n−k−1) that
can occur between (n − k) and 2(n − k) are 2φ(n−k−1) and 2φ(n−k−1)+1.
Moreover, both of these multiples will occur in this range only when
n−k = 1, 2, 4, 8. Now the proof of the theorem follows if 2(n−k) ≤ n−1.
If n− 1 < 2(n− k), then the injectivity of the map f∗ gives Hj(Vn,k) = 0
and, hence, wj(ξ) = 0 for n − 1 < j ≤ 2(n − k). This completes the
proof. �

If we assume n ≥ 2k, then n − 1 < 2(n − k). Then the proof of
the following corollary follows from Theorem 1.1 and from the fact that
2ϕ(m−1) = m if m = 1, 2, 4, 8. The following corollary will be used in the
proof of Theorem 1.2.

Corollary 2.1. Let Vk(Rn) be a Stiefel manifold with n ≥ 2k. Then
wi(ξ) = 0 for i ≤ n − 1 and i ̸= 2φ(n−k−1) for any vector bundle ξ over
Vk(Rn).

If we fix k and vary n, then we have the following corollary.

Corollary 2.2. Let k be fixed. Then, except for finitely many values of
n, the Stiefel–Whitney classes wi(ξ) = 0 for i ≤ n − 1 and any vector
bundle ξ over Vk(Rn).

Proof. The proof follows from Corollary 2.1 by using the fact that n−1 <
2φ(n−k−1) except for finitely many values of n. �

In view of Theorem 1.1, it will be interesting to know whether there
exists a vector bundle ξ over Vk(Rn) such that w2φ(n−k−1)(ξ) ̸= 0. We
have the complete answer when 2φ(n−k−1) = n − k. We observed in the
above proof that 2φ(n−k−1) = n−k if and only if n−k = 1, 2, 4, 8. For the
case n− k = 1, 2, we first note that there is a one-to-one correspondence
between the set of isomorphism classes of real line bundles over a CW-
complex X and the group H1(X;Z2) via the map which sends a line
bundle L to Stiefel–Whitney class w1(L). Similarly, there is a one-to-one
correspondence between the set of isomorphism classes of complex line
bundles over a CW-complex X and the group H2(X;Z) via the map which
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sends a complex line bundle L to Chern class c1(L). Now, in the case when
n−k = 1, 2, the existence of a vector bundle ξ such that wn−k(ξ) ̸= 0 is a
consequence of the fact that H1(Vk(Rk+1);Z2) ̸= 0, and that the mod-2
reduction map H2(Vk(Rk+2);Z) → H2(Vk(Rk+2);Z2) is the projection
map Z → Z2 (see [6]). In the following example, when n − k = 4, 8, we
construct a vector bundle ξ over Vk(Rn) such that wn−k(ξ) ̸= 0.

Example 2.3. Let α : Spin(n) → Vk(Rn) be the principal Spin(n − k)-
bundle over Vk(Rn) = Spin(n)/Spin(n − k). If R̃OSpin(n − k) and
R̃Spin(n − k) are the reduced real and complex representation rings, re-
spectively, then we have the following commutative diagram:

(2.1)

R̃OSpin(n− k) //

��

K̃O(Spin(n)/Spin(n− k))

f∗
ssggggg

ggggg
ggggg

ggggg

K̃O(Spin(n− k + 1)/Spin(n− k)).

Here, f : Sn−k = Spin(n− k+1)/Spin(n− k) → Spin(n)/Spin(n− k) is
the natural inclusion. When n − k = 8, the map R̃OSpin(8) → K̃O(S8)
in (2.1) is surjective (see [7, p. 195]) and, hence, the map f∗ is surjective.
If [ξ] ∈ K̃O(S8) is the class of the Hopf bundle over S8, then there exists
a bundle η over Vk(Rn) such that f∗([η]) = [ξ]. Since w8(ξ) ̸= 0, we have
w8(η) ̸= 0.

Next, when n− k = 4, we use the following diagram:
(2.2)

R̃Spin(n− k) //

��

K̃(Spin(n)/Spin(n− k))

f∗
sshhhhh

hhhhh
hhhhh

hhhh

K̃(Spin(n− k + 1)/Spin(n− k)).

The map R̃Spin(4) → K̃(S4) in (2.2) is surjective ([7, p. 195]). Using
the fact that the Hopf bundle ξ over S4 is a complex vector bundle with
w4(ξ) ̸= 0, we proceed as above to conclude that there exists a complex
vector bundle η over Vk(Rn) such that the Stiefel–Whitney class w4(ηR)
of the underlying real bundle ηR is nonzero.

3. Proof of Theorem 1.2

Recall the description of the cohomology ring H∗(Vk(Rn)) as in the in-
troduction. Because of the relations among the generators an−k, an−k+1,
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. . . , an−1, any nonzero cohomology class x ∈ Hj(Vk(Rn)) can be written
as

x =
∑

ai1 · ai2 · · · air
such that it < it+1. If a monomial ai1 · ai2 · · · air in the above summand
represents a nonzero cohomology class, then we have

(n− k) + (t− 1) ≤ deg ait ≤ n− 1− r + t.

This implies that
r∑

t=1

(n− k) + (t− 1) ≤
r∑

t=1

ait ≤
r∑

t=1

n− 1− r + t.

Hence, r(n− k) + r(r − 1)/2 ≤ j ≤ r(n− 1)− r(r − 1)/2.
For 0 ≤ p ≤ k, we define Tp as the set {j ∈ N : p(n− k)+ p(p− 1)/2 ≤

j ≤ p(n− 1)− p(p − 1)/2}. Therefore, by the above discussion, we have
the following lemma.

Lemma 3.1. If x = ai1 · ai2 · · · air with it < it+1 represents a nonzero
cohomology class of Vk(Rn), then deg x ∈ Tr.

If we assume n > k(k+4)/4, then, in the following lemma, we give an
upper bound for the length of each Tp.

Lemma 3.2. Let n > k(k + 4)/4. Then |r1 − r2| < n− k for any p and
r1, r2 ∈ Tp.

Proof. For any r1, r2 ∈ Tp, we have |r1 − r2| ≤ p(n − 1) − p(p − 1)/2 −
p(n−k)−p(p−1)/2 = p(k−p). The maximum value of the set {p(k−p) :
1 ≤ p ≤ k} is k2/4 if k is even and is (k2 − 1)/4 if k is odd. Since
n > k(k+4)/4 if and only if n− k > k2/4, we have |r1 − r2| < n− k. �

In the following lemma, we derive some results involving binomial co-
efficients which we shall use in the proof of Theorem 1.2.

Lemma 3.3. Let s be an odd number and r ≤ 2t. Then the binomial
coefficient

(1)
(
2ts+r−1

r

)
is even if and only if r ̸= 0, 2t and

(2)
(
2ts−1
2t+1

)
is odd if s ≡ 3 (mod 4).

Proof. To prove (1), we note that if r ̸= 0, then
(2ts + r − 1

r

)
=

(
2ts

r

)[(r−1)/2]∏
l=1

2ts + 2l

2l

[r/2]∏
l=1

2ts + 2l − 1

2l − 1

 .

Now it is easy to see that the third product in the right-hand side of
the above equality can be written as ratios of two odd integers. Further,
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(2ts/r) can be written as a ratio of two odd integers if and only if r = 2t.
We next show that the product

[(r−1)/2]∏
l=1

2ts+ 2l

2l

is a ratio of odd integers. Let 2l = 2t1s1 where s1 is an odd integer and
t1 < t. Then

2ts+ 2l

2l
=

2ts+ 2t1s1
2t1s1

=
2t−t1s+ s1

s1

is a ratio of odd integers. From here we conclude (1).
Next, we prove (2). We first note that

(2ts − 1

2t+1

)
=

 2t∏
l=1

2ts − 2l

2l

 2t∏
l=1

2ts − 2l + 1

2l − 1

 .

Now, if l ̸= 2t−1 or 2t, then
2ts− 2l

2l

can be written as a ratio of two odd integers. On the other hand, if
l = 2t−1 and 2t, then the product(

2ts − 2t

2t

)(
2ts − 2t+1

2t+1

)
= (s − 1)(s − 2)/2,

which is an odd number because s ≡ 3 (mod 4). This completes the proof
of (2), and the proof of the lemma is complete. �

We now prove Theorem 1.2. Before starting the proof, we first note
that the hypothesis n > k(k + 4)/4 implies that n ≥ 2k. This follows
because n ≥ [k(k + 4)/4] + 1 ≥ 2k.

Proof of Theorem 1.2. Let i = 2q+t1 +2q+t2 + · · ·+2q+tm with tj ≥ 0 and
tj < tj+1. If i is a power of 2 (i.e., when m = 1) or Hi(Vk(Rn)) = 0, then
the first statement of the theorem follows easily. Next, we assume that
m > 1 and H2qr(Vk(Rn)) ̸= 0. By Wu’s formula, we get

Sq2
q+t1

(w
i−2q+t1 (ξ)) =

2q+t1∑
r=0

(i − 2q+t1+1 + r − 1

r

)
w

2q+t1−r
(ξ) · w

i−2q+t1+r
(ξ)

= w
2q+t1 (ξ) · wi−2q+t1 (ξ) + wi(ξ) .

The last equality above follows by Lemma 3.3(1).
Next, we prove that the left-hand side of the above equation is zero.

For this, it is enough to prove that if x = ai1 ·ai2 · · · aip , with ij < ij+1, is
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a nonzero cohomology class of degree i− 2q+t1 , then the Steenrod square
Sq2

q+t1
(x) = 0. For this, first note that

Sq2
q+t1

(x) = Sq2
q+t1

(ai1 ·ai2 · · · aip) =
∑

l1+···+lp=2q+t1

Sql1(ai1) · · ·Sqlp(aip).

We shall show that each summand in the right-hand side of the above
equation is zero.

As the monomial ai1 ·ai2 · · · aip represents a nonzero cohomology class,
it follows, by Lemma 3.1, that its degree i − 2q+t1 ∈ Tp. If a summand
Sql1(ai1) · · ·Sqlp(aip) is nonzero, then, for all j, we have lj + ij ≤ n − 1

and Sqlj (aij ) = aij+lj . Moreover, since n ≥ 2k, we have a2ij = 0 for all j,
and this will imply that lj1 + ij1 ̸= lj2 + ij2 for j1 ̸= j2. Hence,

p(n− k) + p(p− 1)/2 ≤
p∑

j=1

ij + lj = i ≤ p(n− 1)− p(p− 1)/2.

This implies that i ∈ Tp. Since i − 2q+t1 also belongs to Tp, the dif-
ference, i − (i − 2q+t1) = 2q+t1 ≥ 2q ≥ n − k, gives a contradiction to
Lemma 3.2; hence, we conclude that Sq2

q+t1
(x) = 0. This proves that

wi(ξ) = w2q+t1 (ξ) · wi−2q+t1 (ξ). The proof of the first statement follows
by induction on m.

Now we prove the last statement of the theorem by applying induction
on the set {i : i is not a multiple of 2q}. If 2q = 1, then the last statement
is vacuously true. If 2q > 1, then w1(ξ) = 0 since the first non-zero Stiefel
Whitney class occurs in degree 2q. This will serve as the base of the
induction. To apply the induction, we assume that if j < i and j is not
a multiple of 2q, then wj(ξ) = 0. Now we shall prove for i, where i is not
a multiple of 2q. If i < 2q, then wi(ξ) = 0 by hypothesis. Next, assume
that i > 2q, Hi(Vk(Rn) ̸= 0, and i is not a multiple of 2q. We can write
i as i = 2ts where s is odd, s ≥ 3, and t < q. Applying Lemma 3.3(1) in
Wu’s formula, we get

Sq2
t

(w2t(s−1)(ξ)) =
2t∑
r=0

(
2t(s− 2) + r − 1

r

)
w2t−r(ξ) · w2t(s−1)+r(ξ)

= w2t(ξ) · w2t(s−1)(ξ) + w2ts(ξ).

Therefore, Sq2
t

(w2t(s−1)(ξ)) = w2ts(ξ) since w2t(ξ) = 0. If 2t(s − 1) is
not a multiple of 2q or H2t(s−1)(Vk(Rn)) = 0, then by induction, we have
wi(ξ) = 0. Now assume that H2t(s−1)(Vk(Rn)) ̸= 0 and 2t(s − 1) is a
multiple of 2q. Let 2t(s− 1) = 2q+t1 +2q+t2 + · · ·+ 2q+tm with tj < tj+1.
We have the following two cases:
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Case 1: m > 1. Since 2t(s−1) is a multiple of 2q, by the first statement
of the theorem, we have

(3.1)
wi(ξ) = Sq2

t

(w2q+t1 (ξ) · w2q+t2 (ξ) · · ·w2q+tm (ξ))

=
∑

l1+···lm=2t
Sql1(w2q+t1 (ξ)) · · ·Sqlm(w2q+tm (ξ)).

Now observe that for each j, we have lj ≤ 2t < 2q and, hence, the Steenrod
square

Sqlj (w
2
q+tj

(ξ)) =

lj∑
r=0

(2q+tj + r − lj − 1

r

)
wlj−r(ξ) · w

2
q+tj +lj

(ξ)

=
(2q+tj − 1

lj

)
w

2
q+tj +lj

(ξ) .

The last equality in the above equation is because wlj−r(ξ) = 0 for r > 0
since 0 < lj − r < 2q. Since m > 1, we have 2q+tj < 2t(s− 1). Therefore,
2q+tj + lj < 2ts. Further, if, for some j, we have lj > 0, then 2q+tj + lj
is not a multiple of 2q and, hence, by induction, w2q+tj+lj

(ξ) = 0. Now
observe that in each summand on the right-hand side of equation (3.1),
there is at least one lj such that lj > 0. Therefore,

w2ts(ξ) =
∑

l1+···lm=2t

Sql1(w2q+t1 (ξ)) · · ·Sqlm(w2q+tm (ξ)) = 0.

Case 2: m = 1. In this case, 2t(s − 1) = 2q+t1 for some t1 ≥ 0. Thus,
s − 1 is a power of 2. First, we consider the case when s ≥ 5. Here we
observe that 2t+1 < 2ts−2t+1. Since s−1 ≡ 0 (mod 4), by Lemma 3.3(2),
we have

Sq2
t+1

(w2ts−2t+1 (ξ)) =

2t+1∑
r=0

(2t(s − 4) + r − 1

r

)
w2t+1−r(ξ) · w2ts−2t+1+r(ξ)

= w2t+1 (ξ) · w2ts−2t+1 (ξ) +
(2t(s − 2) − 1

2t+1

)
w2ts(ξ)

= w2t+1 (ξ) · w2ts−2t+1 (ξ) + w2ts(ξ) .

Because 2ts − 2t+1 = 2t(s − 1) − 2t = 2q+t1 − 2t = 2t(2q−t+t1 − 1), we
have that 2ts − 2t+1 is not a multiple of 2q and, hence, by induction,
w2ts−2t+1(ξ) = 0. Therefore, w2ts(ξ) = 0. Next, we deal with the case
s = 3. In this case, we observe that t = q−1 and t1 = 0. Thus, we obtain,
by Lemma 3.3(1),

Sq2
q−1

(w2q (ξ)) =

2q−1∑
r=0

(2q + r − 2q−1 − 1

r

)
w2q−1−r · w2q+r

=
(2q−1 + 2q−1 − 1

2q−1

)
w2q−13(ξ)

= wi(ξ) .
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If 2q ∈ T1, then, by Lemma 3.1, w2q (ξ) = aj for some j since w2q (ξ) ̸= 0.
Therefore, wi(ξ) = Sq2

q−1

(aj). So wi(ξ) = 0 if i > n − 1. If i ≤ n − 1,
then wi(ξ) is again zero since w2q (ξ) is the only nonzero Stiefel–Whitney
class up to degree n−1 (see Corollary 2.1). Next, we assume that 2q ̸∈ T1.
Because w2q (ξ) ̸= 0, we have that 2q ∈ Tp for some p such that p ≥ 2. To
prove w2q−13(ξ) = 0, we consider the Steenrod square operation

(3.2) Sq2
q−1

(ai1 · ai2 · · · aip) =
∑

l1+···+lp=2q−1

Sql1(ai1) · · ·Sqlp(aip)

on a monomial ai1 · ai2 · · · aip such that ij < ij+1, which represents a
nonzero cohomology class of degree 2q. By Lemma 3.1, the degree of the
monomial 2q is in Tp. If a summand Sql1(ai1) · · ·Sqlp(aip) is nonzero,
then, for all j, we have lj + ij ≤ n− 1 and Sqlj (aij ) = aij+lj . Moreover,
since n ≥ 2k, we have lj1 + ij1 ̸= lj2 + ij2 for j1 ̸= j2. Hence,

p(n− k) + p(p− 1)/2 ≤
p∑

j=1

ij + lj = 2q−13 ≤ p(n− 1)− p(p− 1)/2.

This implies that 2q−13 ∈ Tp. Because p ≥ 2, we have 2q ≥ 2(n− k) + 1,
and this implies that 2q−1 > n−k. Therefore, 2q−13−2q = 2q−1 > n−k, a
contradiction to Lemma 3.2. This shows that each summand in the right-
hand side of equation (3.2) is zero. Hence, w2q−13(ξ) = 0 if p ≥ 2. �
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