
Volume 52, 2018

Pages 329–340

http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Classification of Simply-Connected
Trivalent 2-Dimensional Stratifolds

by
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CLASSIFICATION OF SIMPLY-CONNECTED
TRIVALENT 2-DIMENSIONAL STRATIFOLDS

J. C. GÓMEZ-LARRAÑAGA, F. GONZÁLEZ-ACUÑA, AND WOLFGANG HEIL

Abstract. Trivalent 2-stratifolds are a generalization of 2-manifolds
in that there are disjoint simple closed curves where locally three
sheets meet. We obtain a classification of trivalent 1-connected
2-stratifolds in terms of their associated labeled graphs.

1. Introduction

A closed 2-stratifold is a 2-dimensional cell complex X that contains
a collection of finitely many simple closed curves, the components of the
1-skeleton X(1) of X, such that X −X(1) is a 2-manifold and a neighbor-
hood of each point in a component C of X(1) consists of n ≥ 3 sheets.
2-stratifolds X are a more restricted class than multibranched surfaces,
studied by Shosaka Matsuzaki and Makoto Ozawa in [9], and trivalent
2-stratifolds (defined in §2) are a more restrictive class than foams, which
have been studied by J. Scott Carter [2] and Mikhail Khovanov [8]. Foams
include special spines S that occur as spines of (closed) 3-manifolds M
(see, for example, [10] and [12]). Thus, π1(M) ∼= π1(S) for some special
spine S. But there are significant differences between the fundamental
groups of 2-stratifolds and 3-manifolds: 3-manifold groups are residu-
ally finite, but every Baumslag–Solitar group (some Hopfian, others non-
Hopfian) can be realized as the fundamental group of a 2-stratifold. Also,
with the exception of lens spaces and connected sums, closed 3-manifolds
are determined by their fundamental groups (see, for example, [1]), but
there are infinitely many non-homeomorphic 2-stratifolds with the same
fundamental group. However, it can be shown that fundamental groups
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of 2-stratifolds have solvable word problem [6]. Furthermore, closed 3-
manifolds that have 2-stratifolds as spines are classified in [7].

2-stratifolds arise in the study of categorical invariants of 3-manifolds.
For example, if G is a non-empty family of groups that is closed under
subgroups, one would like to determine which (closed) 3-manifolds have
G-category equal to 3. In [3], it is shown that such manifolds have a
decomposition into three compact 3-submanifolds H1, H2, and H3, where
the intersection of Hi ∩Hj (for i 6= j) is a compact 2-manifold and each
Hi is G-contractible (i.e., the image of the fundamental group of each
connected component of Hi in the fundamental group of the 3-manifold
is in the family G). The nerve of this decomposition, which is the union of
all the intersections Hi∩Hj (i 6= j), is a closed 2-stratifold and determines
whether the G-category of the 3-manifold is 2 or 3.

A 2-stratifold is essentially determined by its associated bipartite la-
beled graph (defined in §2), and a presentation for its fundamental group
can be read off from the labeled graph. Thus, the question arises when
a labeled graph determines a simply connected 2-stratifold. In [4], it is
shown that a necessary condition is that the underlying graph must be
a tree; if the graph is linear, then sufficient and necessary conditions on
the labeling are given, and if the graph is trivalent (defined in §2), an
algorithm on the labeled graph is developed for determining whether the
graph determines a simply connected 2-stratifold. In [5], an algorithm is
given that decides whether a given labeled graph (not necessarily triva-
lent) determines a 2-stratifold that is homotopy equivalent to S2.

The main result of this paper (Theorem 3.6) is a classification of all
trivalent labeled graphs that represent simply connected 2-stratifolds.

2. Properties of the Graph of a 2-Stratifold

We first review the basic definitions and some results given in [4] and
[5]. A 2-stratifold is a compact, Hausdorff space X that contains a closed
(possibly disconnected) 1-manifold X(1) with empty boundary as a closed
subspace with the following property: Each point x ∈ X(1) has a neigh-
borhood homeomorphic to R×CL where CL is the open cone on L for
some (finite) set L of cardinality > 2 and X −X(1) is a (possibly discon-
nected) 2-manifold.

A component C ≈ S1 of X(1) has a regular neighborhood N(C) =
Np(C) that is homeomorphic to (Y×[0, 1])/(y, 1) ∼ (h(y), 0), where Y
is the closed cone on the discrete space {1, 2, ..., d} and h : Y → Y
is a homeomorphism whose restriction to {1, 2, ..., d} is the permutation
p : {1, 2, ..., d} → {1, 2, ..., d}. The space Np(C) depends only on the con-
jugacy class of p ∈ Sd and, therefore, is determined by a partition of d.
A component of ∂Np(C) corresponds then to a summand of the partition
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determined by p. Here, the neighborhoods N(C) are chosen sufficiently
small so that, for disjoint components C and C ′ of X(1), N(C) is disjoint
from N(C ′). The components of N(C)− C are called the sheets of N(C).

For a given 2-stratifold (X,X(1)), there is an associated bipartite graph
G = G(X,X(1)) embedded in X as follows: In each component Cj of
X(1), choose a black vertex bj . In the interior of each component Wi of
M = X − ∪jN(Cj), choose a white vertex wi. In each component Sij of
Wi ∩N(Cj), choose a point yij , an arc αij in Wi from wi to yij , and an
arc βij from yij to bj in the sheet of N(Cj) containing yij . An edge eij
between wi and bj consists of the arc αij ∗ βij . For a fixed i, the arcs αij
are chosen to meet only at wi.

We label the graph G by assigning to a white vertex W its genus g
of W and by labeling an edge S by k, where k is the summand of the
partition p corresponding to the component S of ∂Np(C) where S ⊂
∂Np(C). (Here we use Walter D. Neumann’s convention [11] of assigning
negative genus g to nonorientable surfaces.) Note that the partition p of
∂Np(C) corresponding to a black vertex b is determined by the labels of
the adjacent edges of b. If G is a tree, then the labeled graph determines
X uniquely.

If G is a bipartite labeled graph corresponding to the 2-stratifold X,
we let XG = X and GX = G.

If G is not a tree, then one needs to assign an additional + or − sign to
non-terminal edges incident to non-negative labeled vertices in order for
the labeled graph GX to determine uniquely a 2-stratifold XG (see [4]).
However, this ambiguity does not affect the arguments in the present
paper; therefore, our edge labels are always positive.

An example is shown in Figure 1, where the labels n on the arrows
indicate that the corresponding boundary curve of Wi is attached to Cj
under the map z → zn. A white vertex on the graph corresponding
to a surface of genus 0 is not labeled. The fundamental group has a
presentation with generators b1, b2, b3, x, y, a1, a2, q1, q2, and q3 and
relations a1a2a

−1
1 a−1

2 q1q2q3 = 1, b21 = 1, b31 = x2, b41 = q1, b52 = q2, and
b63 = q3.

The following is shown in [4].

Proposition 2.1. There is a retraction r : X → GX .

Here, we may assume that for a black vertex b corresponding to a com-
ponent C ofX(1), r−1(b) = N(C), and for a white vertex w corresponding
to a component W of X − ∪jN(Cj), r−1(st(w)) = int(W ) where st(w)
is the open star of w in GX .
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Figure 1. A 2-stratifold with its labeled graph

Proposition 2.2. If X is simply connected, then GX is a tree, all white
vertices of GX have genus 0, and all terminal vertices are white.

The proof uses Proposition 2.1 and the following pruning construction.

2.1. Pruning at a subgraph.

Let Γ be a subgraph of G = GX and let st(Γ) be the star of Γ in G.
Denote by Γ̂ the union of Γ and the labeled edges (with their vertices) of
st(Γ)−Γ which are adjacent to a black vertex of Γ. The 2-stratifold XΓ̂ is
obtained from XG as follows: For the retraction r : XG → G, delete the
components of r−1(G − Γ̂) and for a white vertex w of Γ̂ ∩ G− Γ̂, fill in
the boundary curves of r−1(w) ∩ r−1(G− Γ̂) with disks. Note that there
is a quotient map XG → XΓ̂ . See Figure 2.

Definition 2.3. P is a pruned subgraph of G if P = Γ̂ for some subgraph
Γ of G.

Remark 2.4. For a connected pruned subgraph P of a connected graph
G, the quotient map XG → XP induces surjections π(XG)→ π(XP ) and
H1(XG;Z2) → H1(XP ;Z2). Therefore, if P is a pruned subgraph of G
and XG is simply connected, then XP is simply connected.

Example 2.5. Let B be a set of black vertices of G and let st(B) be the
open star of B in G. Then Γ = Γ̂ for each component Γ of G − st(B).
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Figure 2. G, Γ and Γ̂

Thus, Γ is a pruned subgraph of G and if XG is simply connected, then
XΓ is simply connected.

In this paper we consider trivalent graphs. A 2-stratifold X and its
labeled bicolored graph GX are trivalent if the sum of the edge weights
adjacent to any black vertex is 3. This means that a neighborhood of a
point of a component C of the 1-skeleton X(1) has three sheets, so the
permutation p : {1, 2, 3} → {1, 2, 3} of the regular neighborhood N(C) =
Nπ(C) has partition 1+1+1 or 1+2 or 3. We also allow a graph consisting
of a single white vertex to be a trivalent graph.

The fundamental group of XG when GX is a linear graph has been
computed in [4]. For trivalent graphs we have the following lemma.

Lemma 2.6 ([4, Lemma 4]). If all terminal edges of a trivalent graph G
(with a non-zero number of edges) have label 2, then H1(X;Z2) 6= 0.

One of the main results in [4, Theorem 5] is that a trivalent 2-stratifold
is simply connected if and only if H1(X;Z2) = H1(X;Z3) = 0. The
second condition is needed only to insure that GX has no terminal black
vertices; therefore, we get the following theorem.

Theorem 2.7. Let X be a trivalent 2-stratifold such that all terminal
vertices are white. Then X is simply connected if and only if H1(X;Z2) =
0.

3. Classification of Simply Connected
Trivalent 2-Stratifolds

The building blocks for constructing labeled trivalent graphs for 1-
connected 2-stratifolds are called b12-trees and b111-trees.
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Definition 3.1. (1) The b12-tree is the bipartite tree consisting of one
black vertex incident to two edges, one of label 1 and the other of label
2, and two terminal white vertices, each of genus 0.

(2) The b111-tree is the bipartite tree consisting of one black vertex
incident to three edges, each of label 1, and three terminal white vertices,
each of genus 0.

Figure 3. b12-tree and b111-tree

First, we consider special trivalent trees that do not contain b111-
subtrees, which we call (2, 1)-collapsible trees.

A (2, 1)-collapsible tree is constructed from a rooted tree T (which may
consist of only one vertex) with root r (a vertex of T ) as follows: color
with white and label 0 the vertices of T , take the barycentric subdivision
sd(T ) of T , color with black the new vertices (the barycenters of the edges
of T ) and, finally, label an edge e of sd(T ) with 2 (1, respectively) if the
distance from e to the root r is even (odd, respectively). This labeled
sd(T ) is the (2, 1)-collapsible tree determined by (T, r). Note that we
allow a one-vertex tree (with white vertex) as a (2, 1)-collapsible tree.

A typical example is shown in Figure 4, where regions enclosed by the
dashed curves are (2, 1)-collapsible trees, gray (blue, if viewed electroni-
cally) vertices are roots.

Lemma 3.2. Let XG be a trivalent 1-connected 2-stratifold. Then after
removing the open stars of all black vertices of degree 3, the components
Γ1, . . . ,Γn are (2, 1)-collapsible trees. Furthermore, for each black vertex
b of degree 3, at least one of its (three white) neighbors is the root of some
Γi.

Proof. From Example 2.5, each Γi is a pruned subgraph of G and so
π(XΓi

) = 1. Therefore, for the first part of the proposition, it suffices
to show that if Γ has no black vertices of degree 3 and XΓ is simply
connected, then Γ is a (2, 1)-collapsible tree.

Thus, assume Γ is not a single vertex graph and has no black vertices
of degree 3, and XΓ is simply connected. By Proposition 2.2, Γ is a tree
with all white vertices of genus 0 and all terminal vertices white. Then
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Figure 4

by Lemma 2.6, Γ contains a b12-subgraph L with terminal edge of label
1. Let w be the white vertex of L which is not a terminal vertex of Γ.
Let G0 = (Γ − L) ∪ {w}, let G′i (i = 1, . . . ,m) be the components of
G0 − {w}, and let Gi = G′i ∪ {w}. Then XGi is a pruned subgraph of Γ
and, therefore, simply connected for i = 0, . . . ,m. By induction on the
number of vertices, each Gi is a (2, 1)-collapsible tree with a root ri.

If ri = w for each i = 1, . . . ,m, then Γ is a (2, 1)-collapsible tree with
root w.

If ri 6= w, the label on the edge ei of Gi incident to w is 1. It follows
that there is at most one ri not equal to w; otherwise, if ri 6= w 6= rj , the
union of the edges and vertices of the simple path in Gi ∪Gj from ri to
rj is a pruned linear subgraph Γ′ = G(2, 1, . . . , 1, 1, 2, 1, . . . , 1, 2) of Γ for
which XΓ′ is not simply connected (by [4, Theorem 3]), a contradiction.
It follows that if ri 6= w, then Γ is a (2, 1)-collapsible tree with root ri.

For the second part of the proposition, suppose that G contains a b111-
subtree with black vertex b such that none of its white vertices w1, w2,
w3 is a root of any of the Γj , and let Γi be the pruned subgraph of G
containing wi (i = 1, 2, 3) and with roots ri 6= wi. Then the trivalent
pruned subgraph Γ′ of G, which is the union of the edges and vertices
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of the three simple paths in G from the roots ri to b (i = 1, 2, 3), has
all terminal edges of label 2. Then, by Lemma 2.6, π1(XΓ′) 6= 1, a
contradiction. �

The figure below shows that the converse of Lemma 3.2 is false. There
are two b111-vertices, all labels are 1 except as indicated, and H1(XG;Z2)
∼= Z2×Z2. Deleting the two b12-trees at the white center vertex (but not
the center vertex) yields a horned tree HT .

Figure 5. G and a horned tree HT

Definition 3.3. A horned tree HT is a trivalent finite connected bipartite
labeled tree such that all white vertices have label 0, all terminal vertices
are white, and

(1) every black vertex b which has distance 1 to a terminal white
vertex has degree 2; otherwise, b has degree 3;

(2) every nonterminal white vertex has degree 2;
(3) every terminal edge has label 2 and every nonterminal edge has

label 1;
(4) there is at least one black vertex of degree 3.

A horned tree HT may be constructed from a tree T that has at least
two edges and all of whose nonterminal vertices have degree 3 as follows:
Color a vertex of T white (black, respectively) if it has degree 1 (3, re-
spectively). Trisect the terminal edges of T and bisect the nonterminal
edges, obtaining the graph HT . Color the additional vertices v so that
HT is bipartite; that is, v is colored black if v is a neighbor of a terminal
vertex of HT and white otherwise. Then label the edges so that (3) holds.
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A main property of HT is that π1(XHT
) = Z2, which can be seen as

follows: Let w be a nonterminal white vertex of HT with black neighbors
b1 and b2 and denote by b1−w−b2 the two-edge path from b1 to b2. Let
Γb1 be the graph obtained from HT by collapsing b1−w−b2 to b1. Then
π1(XΓ) ∼= π1(XHT

) since the edge labels on b1−w−b2 are 1. Collapsing
successively all such two-edge paths yields a connected (not necessarily
trivalent) graph Γb with a single black vertex b and all terminal edges of
label 2. Then π1(XHT

) ∼= π1(XΓb
) ∼= Z2.

Finally, we consider a “reduced graph” of G which encodes information
on how the (2, 1)-collapsible trees of Lemma 3.2 are attached to the stars
of the black vertices of degree 3.

Denote by B the union of all the black vertices of degree 3 of G, let
St(B) be the (closed) star of B in G, and let st(B) be the open star of B.
Note that G− st(B) consists of the components Γ1, . . . ,Γn as in Lemma
3.2.

Definition 3.4. Let G be a bipartite labeled tree such that the compo-
nents of G−st(B) are (2, 1)-collapsible trees. The reduced subgraph R(G)
of G is the graph obtained from St(B) by attaching to each white vertex
w of St(B) that is not a root, a b12-graph such that the terminal edge
has label 2.

As an example, the reduced graph R(G) for the graph in Figure 4 is in
Figure 6.

Lemma 3.5. H1(XG,Z2) ≈ H1(XR(G),Z2).

Proof. H1(XG,Z2) is generated by the black vertices (more precisely by
the components of X(1)

G corresponding to the black vertices). Let w be a
white vertex of G of degree n ≥ 2 with incident edges e1, . . . , en. Suppose
the label on ei is 2 for i = 1, . . . , k (k ≤ n). Split w into k + 1 (disjoint)
vertices w1, . . . , wk, w

′ so that each wj has degree 1 with adjacent edge ej
and w′ has degree n− k with adjacent edges ek+1, . . . , en. This change of
the graph does not change H1(XG,Z2).

Now let Γ be a (2, 1)-collapsible component of G − st(B). If w is a
terminal (white) vertex of Γ that is also a terminal vertex of G, delete the
b12-subgraph of Γ that contains w, if there is one (Γ might consist of a
single vertex). Continue doing this operation until all terminal vertices of
Γ belong to St(B). This does not change π1(XG). If w is a non-terminal
white vertex of (the new Γ), then, if w is the root, all edges incident to w
have label 2; if w is not the root, all edges but one incident to w have label
2. Do the above construction on each such w to change Γ to Γ′. Then
each component of Γ′ that does not contain a terminal white vertex of Γ
is a linear graph of type w1−b1−· · ·−wk−bk with successive edge labels
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Figure 6

2 − 1 − · · · − 2 − 1 (or consists of a single white vertex). Deleting these
homologically trivial components from Γ′ does not change H1(XG,Z2).

Doing this for all (2, 1)-collapsible components Γ of G − st(B) results
in R(G). �

We now state the Classification Theorem.

Theorem 3.6. Let XG be a trivalent connected 2-stratifold. The follow-
ing are equivalent:

(1) XG is simply connected;
(2) GX is a tree with all white vertices of genus 0 and all terminal

vertices white such that the components of G − st(B) are (2, 1)-
collapsible trees and the reduced graph R(G) contains no horned
tree.

Proof. If XG is simply connected, then by Proposition 2.2 and Lemma
3.2, the components of G−st(B) are (2, 1)-collapsible trees. If the reduced
graph R(G) contains a horned tree H, let Γ be the component of R(G)
containing H. Note that H is a pruned subgraph of Γ and since π1(XH) =
Z2, it follows from Remark 2.4 thatH1(Γ;Z2) 6= 0. Lemma 3.5 then shows
that H1(XG;Z2) ∼= H1(XR(G);Z2) 6= 0. Hence, R(G) does not contain a
horned tree.

Conversely, suppose the components of G− st(B) are (2, 1)-collapsible
trees and R(G) contains no horned trees. Let Γ be a component of R(G).
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First, we show by induction on n := number of black vertices of degree
3 in Γ, that H1(XΓ;Z2) = 0. If n = 1, then Γ is a b111-tree with at most
two b21-trees attached to its terminal vertices, and so H1(XΓ;Z2) = 0.

Let n > 1. We claim that at least one terminal label of Γ is 1. If
not, then Γ satisfies conditions (1) and (3) of Definition 3.3. We can
find a sequence Γ = Γ0,Γ1, . . . ,Γm, where Γm is a horned tree and Γi+1

is obtained from Γi by deleting all but two components of Γi − {w} for
some nonterminal white vertex w of Γi, contradicting the assumption that
R(G) contains no horned trees. This proves the claim.

Now let Γ′ = Γ− st(b) where b− w is a terminal edge of Γ with label
1. Then H1(Γ;Z2) = H1(XΓ′ ;Z2) which by induction is 0. Therefore,
H1(XG,Z2) = H1(XR(G);Z2) = 0 and it follows from Theorem 2.7 that
XG is 1-connected. �
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