http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

μ -Expansive Measure for Flows

by

Alireza Zamani Bahabadi

Electronically published on April 26, 2018

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on April 26, 2018

μ -EXPANSIVE MEASURE FOR FLOWS

ALIREZA ZAMANI BAHABADI

ABSTRACT. In this paper, we show that if X is in the C^1 -interior of the set of μ -measure expansive divergence free vector fields, then X admits a dominated splitting. We also show that in dimension 3, the above result would be Anosov by considering δ - μ -measure expansiveness.

1. INTRODUCTION

Let M be a closed, connected, and smooth Riemannian manifold endowed with a volume form, which has a measure μ , called the Lebesgue measure. We denote by $\mathcal{X}^1_{\mu}(M)$, the set of divergence-free vector fields endowed with the C^1 Whitney topology.

Let $X \in \mathcal{X}^1_{\mu}(M)$ and let $x \in M$ be a regular point. Let $N_x = X(x)^{\perp} \subset T_x M$ denote the normal bundle of X at x.

We define the linear Poincaré flow

$$P_X^t(x) := \sqcap_{X^t(x)} \circ D_x X^t,$$

where $\sqcap_{X^t(x)} : T_{X^t(x)}M \longrightarrow N_{X^t(x)}$ is the canonical orthogonal projection.

A vector field X has an associated flow, denoted by $X^t, t \in \mathbb{R}$. Denote by Sing(X) the union of the singularities of X and by Crit(X) the set of the closed orbits and the singularities of X. For $x \in X$, the set $O_X(x) = \{X^t(x) : t \in \mathbb{R}\}$ is said to be the orbit of X^t through the point x.

²⁰¹⁰ Mathematics Subject Classification. 37A05, 37C20.

Key words and phrases. Anosov, dominated splittings, free divergence vector field, measure expansive.

^{©2018} Topology Proceedings.

A. ZAMANI BAHABADI

Let Λ be a compact, X^t -invariant, and regular set. If N_{Λ} admits a P_X^t invariant splitting $N_{\Lambda} = N_{\Lambda}^s \oplus N_{\Lambda}^u$, such that there is l > 0 satisfying

$$||P_X^l|_{N_x^s}|| \le \frac{1}{2}$$
 and $||P_X^{-l}(X^l(x))|_{N_{X^l(x)}^u}|| \le \frac{1}{2}$

for any $x \in \Lambda$, then we say that Λ is hyperbolic. A vector field X is said to be Anosov if the whole manifold M is hyperbolic.

We say that a vector field X without singularity admits an l-dominated splitting if there exists a continuous P_X^t invariant splitting $N = N^1 \oplus N^2$ and an integer l > 0 such that

$$||P_X^l|_{N_x^1}||.||P_X^{-l}(X^l(x))|_{N_{X^l(x)}^2}|| \le \frac{1}{2}.$$

The notion of measure expansivity for flows is introduced in [9] by D. Carrasco-Olivera and C. A. Morales and they extend some properties of measure expansive homeomorphisms to flows. Jumi Oh [10] shows that C^1 -stably measure expansive flows satisfy quasi-Anosov. Let $X \in$ $\chi^1_{\mu}(M)$ and $\Lambda \subset M$ be a compact invariant set. A flow X^t on Λ is called expansive if for any $\varepsilon > 0$ there is $\delta > 0$ such that if $x, y \in X$ satisfy $d(X^t(x), X^{h(t)}(y)) \leq \delta$ for every $t \in \mathbb{R}$ and for some $h \in B$, then $y \in X^{[-\varepsilon,\varepsilon]}(x)$ where $B = \{h : \mathbb{R} \to \mathbb{R} \text{ is an increasing continuous map},$ $h(0) = 0\}$. For $\delta > 0$, put

$$\Gamma_{\delta}(x) = \bigcup_{h \in B} \bigcap_{t \in \mathbb{R}} X^{-h(t)}(N[X^{t}(x), \delta])$$

where $N[x, \delta] = \{y \in M, d(x, y) \le \delta\}.$

Denote by $\mathcal{M}(M)$ the set of Borel's probability measures on M endowed with weak^{*} topology.

Definition 1.1. Let $\mathcal{M}_{X^*}(M) = \{\mu \in \mathcal{M}(M) \text{ and } \mu(O_X(x)) = 0 \text{ for any } x \in M\}$. Let $\mu \in \mathcal{M}(M)$. We say that X is δ - μ -measure expansive if $\mu(\Gamma_{\delta}(x)) = 0$ for every $x \in M$ and X is μ -measure expansive if X is δ - μ -measure expansive for some $\delta > 0$. If X is μ -measure expansive for all $\mu \in \mathcal{M}_{X^*}(M)$, then $X \in \chi^1_{\mu}(M)$ is said to be measure expansive.

Jiweon Ahn, Manseob Lee, and Oh [1] show that the C^1 -interior of measure expansive divergence free vector field is Anosov.

In this paper we work with the following definitions.

Definition 1.2. Let $\mu \in \mathcal{M}(M)$ and μ be positive on every open subset of M, and let $\delta > 0$ be given. We say that $X \in \chi^1_{\mu}(M)$ belongs to the C^1 interior of the set of μ -measure (δ - μ -measure) expansive if there exists a C^1 -neighborhood \mathcal{W} of X in $\chi^1_{\mu}(M)$ such that every $Y \in \mathcal{W}$ is μ -measure (δ - μ -measure) expansive.

342

Denote by $\operatorname{Int}(\mu)$ ($\operatorname{Int}(\mu, \delta)$) the set of all vector fields belonging to the C^1 -interior of the set of μ -measure (δ - μ -measure) expansive.

The following theorems are the main results of this paper.

Theorem 1.3. If $X \in Int(\mu)$, then X admits a dominated splitting.

Theorem 1.4. If dim(M) = 3 and $X \in Int(\mu, \delta)$, then X is Anosov.

Remark that μ -measure expansivity is strictly weaker than measure expansivity.

2. Proofs of Theorem 1.3 and Theorem 1.4

The following proposition is proved in [4] and is the volume-preserving version of [8].

Proposition 2.1. Let $X \in \chi^1_{\mu}(M)$ and $\varepsilon_0 > 0$ be given. There exist $\pi_0, l \in \mathbb{N}$ such that, for any closed orbit x with period $\pi(x) > \pi_0$, we have either

- (i) that p_X^t has an *l*-dominated splitting along the orbit of x or else,
- (ii) for any neighborhood U of $\bigcup_t X^t(x)$, there exists an ε -C¹-perturbation Y of X, coinciding with X outside U and on $\bigcup_t X^t(x)$ and such that $p_Y^{\pi(x)}(x)$ has all eigenvalues equal to 1 and -1.

Let $X \in \chi^1_{\mu}(M)$ and let $p \in M$ be a regular point of X. Consider a linear differential system [5] as follows:

$$s^t : \mathbb{R}^d_p \to \mathbb{R}^d_{X_t(p)},$$

such that

- $s^t \in sl(d, \mathbb{R})$ for every t;
- $s^o = id$ and $s^{t+r} = s^t \circ s^r$ for every s and t
- s^t is differentiable in t.

For the proof of Lemma 2.2 we use "good coordinates" obtained in [5, subsection 2.2] to get the following local linear representation of the flow Y, ε - C^1 -perturbation of X:

(2.1)
$$\hat{X}^t(q) = tv + s^t(q),$$

where $q \in N_p = X(p)^{\perp}$, s^t represents the action of the linear Poincaré flow p_Y^t .

Lemma 2.2. If $X \in Int(\mu)$, then any $Y \in \chi^1_{\mu}(M)$ sufficiently C^1 -close to X does not contain closed orbits with trivial real spectrum.

Proof. By contradiction, we assume that any Y which is C^1 -close to X has a non-hyperbolic closed orbit q of period π and with trivial real spectrum. We consider \hat{X}^t the linear coordinate given in (2.1). Thus, there exists an eigenvalue λ with $|\lambda| = 1$ for $S^{\pi}(p)$. So $\hat{X}^{2\pi}(q) = 2\pi\nu + S^{q\pi}(q) = id$ holds in a neighborhood v_p of p in N_p . We consider an open neighborhood wof p such that diam $(w \cap v_p) < \frac{\operatorname{diam}(v_p)}{2}$ and

$$d(\hat{X}^t(q), \hat{X}^t(p)) < \frac{\delta}{2}$$

for every $q \in w$ and $0 \leq t \leq 2\pi$ where δ is the expansivity constant of Y. One can see $w \subset \Gamma_{\delta}(p)$; therefore, $\mu(\Gamma_{\delta}(p)) > \mu(w) > 0$, which is a contradiction with $X \in \text{Int}(\mu)$.

Proof of Theorem 1.3. Let $X \in \text{Int}(\mu)$. Since topologically mixing vector fields are residual in $\chi^1_{\mu}(M)$ (see [3]), there exists $X_n \in \chi^1_{\mu}(M)$ which is C^1 -close to X which is topologically mixing. We can find $Z_n \in \chi^1_{\mu}(M) C^1$ close to X_n having a closed orbit $O(p_n)$ such that $d_H\left(\bigcup_t Z_n^t(O(p_n)), M\right)$ $< \frac{1}{n}$ where d_H is the Hausdorff distance. By Lemma 2.2 and Proposition 2.1, $O(p_n)$ admits an *l*-dominated splitting. Since $Z_n \xrightarrow{C^1} X$ and, in the Hausdorff metric, $\bigcup_t Z_n^t(O(p_n))$ converges to M, we obtain that $M \setminus$ Sing(X) has an *l*-dominated splitting. By [9], Sing(X) = ϕ , so the proof is complete. \Box

A C^1 -divergence-free vector field X is said to be a divergence-free star vector field if there exists a C^1 -neighborhood U of X in $\mathcal{X}^1_{\mu}(M)$ such that if $Y \in U$, then every point in Crit(Y) is hyperbolic. The set of divergence-free star vector fields is denoted by $\mathcal{G}^1_{\mu}(M)$.

The following theorem is proved in [6].

Theorem 2.3. Let M be a three-dimensional closed manifold. If $X \in \mathcal{G}^1_{\mu}(M)$, then X is Anosov.

In [7], Mário Bessa and Jorge Rocha obtain an upgrade of the C^{1} -pasting lemma for vector fields [2] as follows.

Lemma 2.4. Let M be a compact Riemannian manifold without boundary with dimension $n \ge 2$.

Given $\varepsilon > 0$, $X \in \mathcal{X}^1_{\mu}(M)$, K a compact subset of M, and an open neighborhood U of K, there are $\delta > 0$ and an open set $K \subset V \subset U$ such that if $Y \in \mathcal{X}^2_{\mu}(M)$ is δ - C^1 -close to X in U, then there exists $Z \in \mathcal{X}^1_{\mu}(M)$ satisfying

- (a) Z = Y in V,
- (b) Z is ϵ -C¹-close to X, and
- (c) Z = X outside U.

Proof of Theorem 1.4. Let $X \in \text{Int}(\mu, \delta)$ and let $p \in \text{Crit}(X)$ be an elliptic closed orbit of period π . Consider a small open neighborhood

 v_p of p such that $d(X^t(p), X^t(q)) < \frac{\delta}{2}$ for every $q \in v_p$ and $0 \le t \le \pi + 1$. Remark that we can take v_p sufficiently small such that for every $q \in v_p$, $\tau(q) \le \pi + 1$, where $\tau(q)$ is the first time that $X^t(q)$ meets N_p . We set k a small compact neighborhood of orbit p (a tabular neighborhood) such that diam $(k \cap v_p) < \frac{\dim(v_p)}{8}$ and, also, the linear flow induced by the periodic orbit restricted to k is C^1 -close to X. Use Lemma 2.4 to obtain a vector field $Y C^1$ -close to X which is DX(p) inside an invariant neighborhood wwhere diam $(w \cap v_p) < \frac{\dim(v_p)}{2}$. By choosing v_p and since w is invariant, one can see that $w \cap v_p \subset \Gamma_{\delta}(p)$. Therefore, $\mu(\Gamma_{\delta}(p)) \ge \mu(w \cap v_p) > 0$, which is a contradiction. Hence, since X has no singularities, we have $X \in \mathcal{G}^1_{\mu}(M)$. By Theorem 2.3, X is Anosov. \Box

References

- Jiweon Ahn, Manseob Lee, and Jumi Oh, Measure expansivity for C¹-conservative systems, Chaos Solitons Fractals 81 (2015), part A, 400–405.
- [2] Alexander Arbieto and Carlos Matheus, A pasting lemma and some applications for conservative systems. With an appendix by David Diica and Yakov Simpson-Weller, Ergodic Theory Dynam. Systems 27 (2007), no. 5, 1399–1417.
- [3] Mário Bessa, A generic incompressible flow is topological mixing, C. R. Math. Acad. Sci. Paris 346 (2008), no. 21-22, 1169–1174.
- [4] Mário Bessa and Jorge Rocha, On C¹-robust transitivity of volume-preserving flows, J. Differential Equations 245 (2008), no. 11, 3127–3143.
- [5] Mário Bessa and Jorge Rocha, Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows, J. Differential Equations 247 (2009), no. 11, 2913–2923.
- [6] Mário Bessa and Jorge Rocha, Three-dimensional conservative star flows are Anosov, Discrete Contin. Dyn. Syst. 26 (2010), no. 3, 839–846.
- Mário Bessa and Jorge Rocha, Topological stability for conservative systems, J. Differential Equations 250 (2011), no. 10, 3960–3966.
- [8] Christian Bonatti, Nikolas Gourmelon, and Thérèse Vivier, Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems 26 (2006), no. 5, 1307–1337.
- [9] D. Carrasco-Olivera and C. A. Morales, *Expansive measures for flows*, J. Differential Equations 256 (2014), no. 7, 2246–2260.
- [10] Jumi Oh, Measure expansive flows. PhD thesis. Mokwon University, 2014.

Department of Pure Mathematics; Ferdowsi University of Mashhad; P. O. Box 1159; Mashhad 91775, Iran

E-mail address: zamany@um.ac.ir