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A CONSTRUCTIVE PROOF THAT
THE HANOI TOWERS GROUP

HAS NON-TRIVIAL RIGID KERNEL

RACHEL SKIPPER

Abstract. In 2012, Bartholdi, Siegenthaler, and Zalesskii com-
puted the rigid kernel for the only known group for which it is
non-trivial, the Hanoi towers group. There they determined the
kernel was the Klein four-group. In this note, we present a simpler
proof of this theorem. In the course of the proof, we also com-
pute the rigid stabilizers and present proofs that this group is a
self-similar, self-replicating, regular branch group.

1. Introduction

Since the construction of the first Grigorchuk group in 1980, the study
of branch groups has developed into an important area in group theory.
Branch groups derive their value from the unusual properties that groups
in this class can exhibit. Amenable but not elementary amenable groups,
groups of finite width, groups with intermediate growth, and finitely gen-
erated infinite torsion groups are a few of the types that can arise. As a
result, these groups have been heavily studied in recent years [1].

Showing that these groups have interesting properties and understand-
ing why are equally important tasks as the latter can be used to gain a
deeper understanding of these groups and eventually used to construct
groups with additional noteworthy properties. For this reason, construc-
tive proofs using the underlying geometry and properties of the group as
opposed to more abstract techniques are essential.
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In this note we give a short proof of the theorem of [3], namely that the
rigid kernel for the Hanoi Towers Group is the Klein four-group. Along
the way we establish various other properties of that group. Since this
is the only branch group thus far shown to have non-trivial rigid kernel,
acquiring a deeper understanding of the Hanoi towers group is desirable,
a task we seek to achieve here.

In section 2, we describe various properties of branch groups as well as
provide the necessary terminology and notation for the rest of the paper.
In section 3, we present the congruence subgroup problem for branch
groups. In section 4, we describe the “Towers of Hanoi” game and present
the Hanoi towers group which models this game for any number of disks.
And finally, in section 5, we prove a number of properties of this group
along with the main theorem.

2. Branch groups

Branch groups are defined in terms of their actions on trees, so for this
reason we introduce some initial vocabulary and notation to aid in the
discussion of groups of this type.

For any vertex u in a rooted tree, its level will be defined as the length
of the geodesic from the root to u and denoted |u|. The tree is called
spherically homogeneous if every vertex on a given level has the same
valency.

An infinite, spherically homogeneous, rooted tree is fully determined by
a sequence of integers m “ pm1,m2, . . . q where each vertex of level n´ 1
has mn adjacent vertices of level n. Tm will denote the tree with defining
sequence m. The tree is called regular when the defining sequence is
constant, d :“ m1 “ m2 “ ¨ ¨ ¨ . Such a tree is referred to as a d-ary tree.
When the defining sequence is either arbitrary or clear from the context,
the subscript will be dropped. With this notation, we will write H for
the root and we will identify a vertex u of level n with a sequence of
integers u “ pu1, u2, . . . , unq where 1 ď ui ď mi and where the prefixes
of the sequence correspond to the vertices on the geodesic between u and
H. Then the set of vertices of level n in T can be ordered linearly using
the lexicographical ordering. Thus when convenient, we will number the
vertices of level n by the indexing set t1, 2, . . . ,m1 ¨ ¨ ¨mnu.

When we wish to indicate that the tree is a d-ary tree, an alternate
notation will be used. We will use X for the set t1, 2, . . . , du, Xn for for
sequences of length n in X (the vertices of level n in the tree), and X˚
for the infinite d-ary tree.
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V pTmq will denote the set of vertices of Tm. The automorphism
group of Tm, denoted AutpTmq, consists of bijections from V pTmq to
V pTmq that preserve the root and preserve edge incidences. Thus, vertices
of the same level in Tm can only be permuted among themselves. Because
of this, an element g in AutpTmq can be regarded as a labeling of the
vertices of Tm by permutations, tgpvquvPV pTmq, where if |v| “ n then
gpvq P Smn

, the symmetric group on mn letters. Then for a vertex u “
pu1, u2, . . . , unq, the action of g is computed as

ug :“ pu
gpHq
1 , u

gpu1q

2 , . . . , ugpu1,...,un´1q
n q.

We say a vertex v P V pTmq is a descendant of u if the geodesic
from v to ∅ includes the geodesic from u to ∅. The set of descendants
of u forms the subtree rooted at u, denoted Tu. If Tm is a spherically
homogeneous, rooted tree then for any n, each subtree of Tm rooted at
a vertex of level n is canonically isomorphic to Tψnpmq, where ψnpmq “
pmn`1,mn`2, . . . q. As a result, there is a natural isomorphism AutpTmq –
AutpTψnpmqq o Mn “ p

ś

AutpTψnpmqqq ¸ Mn where Mn “ p¨ ¨ ¨ pSmn o
Smn´1

q o ¨ ¨ ¨ q o Sm1
with Sk signifying the symmetric group on k letters.

The iterated wreath product Mn is the automorphism group of the finite
subtree of Tm consisting of vertices of level less than or equal to n. When
the tree is a regular d-ary tree, then the subtree rooted at any vertex is
isomorphic to the full tree and we get the natural isomorphism AutpX˚q –
AutpX˚q oMn with Mn “ p¨ ¨ ¨ pSd o Sdq o ¨ ¨ ¨ q o Sd.

Following the notation of [3], for g PAutpTmq and for u a vertex of
level n, we will denote by g@u the uth coordinate of g in the canonical
identification AutpTmq – pAutpTψnpmqq ˆ ¨ ¨ ¨AutpTψnpmqqq o Mn, and we
will call it the state of g at u. Any element g PAutpTmq, can be described
as g “ pg1, . . . , gm1qσ where σ the permutation labeling at the root and
gi, 1 ď i ď m1, is the state of g at the ith subtree rooted at the first level.
In the case of the d-ary tree, for g P AutpX˚q, the states of g are also in
Aut(X˚).

For any subgroup G of AutpTmq, four families of subgroups arise nat-
urally. For a vertex u P V pTmq, the vertex stabilizer of u, StabGpuq,
is the set of elements in G which fix the vertex u. In terms of the label-
ing of the vertices by elements in a symmetric group, this consists of the
elements that necessarily have trivial labeling on all vertices on the path
between u and ∅, except possibly at u. For a non-negative integer n, the
nth level stabilizer, StabGpnq, is the normal subgroup

č

|u|“n

StabGpuq.

In terms of the labelings, this consists of the elements of G with trivial
labeling on all vertices v where |v| ď n´ 1. Note that for all n, StabGpnq
has finite index in G.
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When g P StabGpnq, it can be defined by g “ pg1, . . . , gm1¨¨¨mn
qn where

each gi, 1 ď i ď m1 ¨ ¨ ¨mn, describes the state of g at the ith sub-
tree rooted at the nth level. In addition, we can canonically identify
StabGpnq{StabGpn ` 1q with a subgroup of pSmn`1

qm1¨¨¨mn . Hence ele-
ments in this quotient will be described by a m1 ¨ ¨ ¨mn-tuple of permuta-
tions.

Next, the rigid stabilizer of a vertex u, RistGpuq, consists of the
elements of G which act trivially outside of the subtree rooted at u. In
terms of the labeling, this consists of elements that have trivial labeling
on all vertices outside of Tu. If G acts transitively on all the levels of Tm,
then for any two vertices u and v such that |u| “ |v|, RistGpuq – RistGpvq
(and in fact are conjugate in G). And finally, for a non-negative integer
n, the nth level rigid stabilizer is the normal subgroup RistGpnq “
xRistGpuq| |u| “ ny “

ź

|u|“n

RistGpuq, the internal direct product of the

rigid stabilizers of the vertices of level n. For any group G acting faithfully
on Tm, RistGpnq ď StabGpnq.

A subgroup G of Aut(T q is said to be a branch group if G acts
transitively on each level of T and for all n, RistGpnq has finite index in
G.

3. The congruence subgroup problem for branch
groups

The congruence subgroup property for branch groups derives its name
from the congruence subgroup problem for SLpn,Zq which asks if every
subgroup of finite index in SLpn,Zq contains a principal congruence sub-
group, the kernel of the map SLpn,Zq Ñ SLpn,Z{mZq for some m. This
is false for n “ 2 but was answered affirmatively for n ě 3 in [4]. Similarly,
we say that a branch group G has the congruence subgroup property
if every subgroup of finite index contains the nth level stabilizer for some
n. We can restate this in terms of profinite completions as follows.

Since StabGpnq has finite index in G for all n and since this
collection forms a descending collection of normal subgroups, taking
tStabGpnq|n P Nu as a basis for the neighborhoods of t1u produces a
profinite topology on G (see Section 3.1 [11]) called the congruence
topology. Likewise RistGpnq has finite index for all n, and in the same
way produces a profinite topology called the branch topology. Fur-
ther, G has a third natural topology, the full profinite topology where
N “ tN � G | |G : N | ă 8u is taken as a basis for the neighborhoods
of t1u. Observe that the congruence topology is weaker than the branch
topology which is weaker than the full profinite topology. We can com-
plete G in terms of these topologies and obtain three profinite groups:



A CONSTRUCTIVE PROOF 5

G “ lim
ÐÝ
ně1

G{StabGpnq the congruence completion

rG “ lim
ÐÝ
ně1

G{RistGpnq the branch completion

pG “ lim
ÐÝ
NPN

G{N the profinite completion

As G is a subgroup of AutpT q, we see
Ş

ně1 StabGpnq “ t1u, G is
residually finite and embeds into G, rG, and pG.

Thus G has the congruence subgroup property if and only if the con-
gruence kernel, kerp pG Ñ Gq, is trivial. The congruence subgroup
problem for branch groups asks not only whether a branch group has
the congruence subgroup property but also to quantitatively describe the
congruence kernel. Since there is a third topology at play, namely the
branch topology, we can instead study two pieces of the congruence ker-
nel, namely the branch kernel, kerp pG Ñ rGq, and the rigid kernel,
kerp rG Ñ Gq. Although a group may have many realizations as a branch
group, each of these kernels are invariants of the group and are not de-
pendent on the choice of realization [6].

Many of the most studied branch groups have been shown to have a
trivial congruence kernel, including the Fabrykowsky-Gupta group and
the Gupta-Sidki group [1], the Grigorchuk group and an infinite family
of generalizations of the Fabrykowsky-Gupta group [8], and GGS-groups
with non-constant accompanying vectors [10], [5].

Pervova [10] constructed the first branch groups without the congru-
ence subgroup property. Nevertheless, the groups in her infinite family,
periodic EGS groups with non-symmetric accompanying vector, have non-
trivial branch kernel but trivial rigid kernel. Likewise, the twisted twin
of the Grigorchuk group was found to have non-trivial branch kernel but
trivial rigid kernel [2].

Despite the existence of infinite families of groups having either trivial
branch and trivial rigid kernel or non-trivial branch kernel but trivial rigid
kernel, only one group appearing in the literature has been shown to have
non-trivial rigid kernel. It is the Hanoi towers group on three pegs [3]. For
this reason, we explore the various properties of the Hanoi towers group.

Remark 3.1. Since the writing of this paper, the author has constructed
new examples of branch groups with non-trivial rigid kernel. They appear
as finite index subgroups of a generalization of the Hanoi towers group
[12].
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4. The game and the group

The Hanoi towers group Γ was first introduced by Grigorchuk and
S̆uniḱ [9]. The action of Γ on the first n levels of the tree models the
“Towers of Hanoi” game with n disks, hence the name. We start by
describing the game.

The “Towers of Hanoi” game for three pegs and n disks works as follows.
It begins with 3 pegs and n disks each of varying size organized from
largest to smallest on the first peg. Figure 1 shows this initial game state
for n “ 6. The goal of the game is to move each of the disks from the
first peg to the third peg through a series of moves. Each move consists
of taking the top disk from one peg and placing it atop another peg with
the restriction that at no point can a disk be on top of a smaller disk.

Figure 1. The beginning game state for the “Towers of Hanoi”.

The restriction on the moves in the game limits a player’s options to
three possibilities. The first move, which will be called move a, transfers
the smallest disk on pegs 2 and 3 between them. Likewise, move b transfers
the smallest disk on pegs 1 and 3 between them and move c transfers the
smallest disk on pegs 1 and 2 between them.

Any sequence of moves yields a game state which consists of the disks
distributed across the three pegs such that on each peg, starting at the
bottom and working up, the disks decrease in size. Thus, every game state
in the n-disk game can be encoded as a sequence of n integers between
1 and 3 in the following way: the first integer indicates the location of
the smallest disk, the second integer indicates the location of the next
smallest disk and so forth until the final integer indicates the location of
the largest disk. For example, the Figure 2 shows a possible game state
for the 6-disk game corresponding to the sequence p2, 1, 3, 2, 2, 1q.

Integer sequences of length n where the integers are between 1 and 3
can also be thought of as a vertex on the nth level in a rooted ternary
tree as described in Section 2 and as seen in Figure 3.
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Figure 2. The game state corresponding to p2, 1, 3, 2, 2, 1q.

∅

1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Figure 3. The rooted ternary tree

Since any move in the game takes one game state to another game
state, i.e. takes one vertex on the nth level in the tree to another vertex
on the nth level, each move can be thought of as an automorphism of
the rooted ternary tree. Move a should search for the first time a 2 or
3 appears in the path, and then switch them. Moves b and c should act
similarly but instead with the numbers 1 and 3 and the numbers 1 and
2 respectively. For example, move b takes the sequence p2, 1, 3, 2, 2, 1q to
p2, 3, 3, 2, 2, 1q.

In the same way we can define elements a, b and c acting on the whole
ternary tree X˚. They are as follows:

a :“ pa, 1, 1qσ23 b :“ p1, b, 1qσ13 c :“ p1, 1, cqσ12

where we are using the isomorphism AutpX˚q – AutpX˚q o S3.
Figure 4 shows the labeling of the vertices by elements in S3 for a, b,

and c respectively. Then the Hanoi towers group is Γ :“ xa, b, cy. In [3]
a full presentation for Γ is obtained. It is:

(4.1) Γ “ xa, b, c|a2, b2, c2, τnpw1q, τ
npw2q, τ

npw3q, τ
npw4q for all n ě 0y
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σ23

σ23 1 1

σ23 1 1

σ23 1 1

σ13

1
σ13 1

1 σ13 1

1 σ13 1

1

σ12

1 σ12

1 1 σ12

1 1 σ12

Figure 4. The generators a, b, and c of the Hanoi towers group

where τ is an endomorphism of Γ defined by the substitution

a ÞÑ a b ÞÑ bc c ÞÑ cb

and where
w1 “ rb, asrb, csrc, asra, cs

bra, bscrc, bs

w2 “ rb, cs
arc, bsrb, asrc, asra, bsra, csb

w3 “ rc, bsra, bsrb, cs
arc, bs2rb, asrb, csarb, csa

w4 “ rb, cs
ara.bscrb, as2ra, csra, bscrc, asrc, bs

5. Properties of the Hanoi towers group and the
proof of the main theorem

In this section we compute the rigid kernel for Γ. For any branch group
G, the rigid kernel is

kerp rGÑ Gq “ lim
ÐÝ
ně1

StabGpnq{RistGpnq

where the maps ρn,n`k : StabGpn`kq{RistGpn`kq Ñ StabGpnq{RistGpnq
come from the natural inclusions StabGpn` kq ãÑ StabGpnq and
RistGpn` kq ãÑ RistGpnq. This is because, by definition, rG is the sub-
group of

ź

ně1

G{RistGpnq consisting of sequences pgnRistGpnqqně1 where

gn`1RistGpnq “ gnRistGpnq

for all n. Likewise, G is the subgroup of
ź

ně1

G{StabGpnq consisting of

tuples phnStabGpnqqně1 where

hn`1StabGpnq “ hnStabGpnq

for all n. Thus the kernel of the map rGÑ G is precisely those sequences
pgnRistGpnqqně1 where for all n, gn PStabGpnq, i.e. lim

ÐÝ
ně1

StabGpnq{RistGpnq.
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Note that the maps ρn,n`k are far from being surjective and most of
our work in computing the rigid kernel for Γ will be in determining the
image ρn,n`kpStabΓpn` kq{RistΓpn` kqq for all n and k.

First we observe that since each generator of Γ has order 2, any element
in Γ can be expressed as a word in a, b, and c using only the positive
alphabet. Further, since each relator in (4.1) can be written as a product
of commutators, Γ{Γ1 – pC2q

3 where C2 is a cyclic group of order 2. Thus
a word in a, b, and c is in Γ1 if and only if the sum of the exponents on
each letter is congruent to 0 modulo 2.

Using the Reidemeister-Schreier method, we obtain a generating set
for StabΓp1q:

α :“ acab “ pa, cb, aq1 β :“ abac “ pa, a, bcq1

δ :“ bcba “ pca, b, bq1 γ :“ babc “ pb, b, acq1.

A group G ďAutpT q is level transitive if it acts transitively on each
level of AutpT q. If T “ X˚, the infinite d-ary tree, then G ď AutpX˚q is
called self-replicating if StabGpuq@u “ G for any vertex u. If G is both
self-replicating and acts transitively on the first level of the tree, then G
is level transitive.

As Γ{StabΓp1q “ S3, Γ clearly acts transitively on the first level of the
ternary tree. Thus to show it is level transitive, it is sufficient to show it
is self-replicating.

Lemma 5.1. Γ is self-replicating.

Proof. From the generators obtained for StabΓp1q above we see
StabΓpuq@u “ Γ for any vertex u of level 1. Now suppose for any vertex
v of level n, StabΓpvq@v “ Γ and let w be an immediate descendant of
v. Then let p, q, r, and s be the elements in StabΓpvq that act as α, β,
δ, and γ on the subtree rooted at v. Then, p, q, r, and s are in StabΓpwq
and p@w, q@w, r@w, and s@w generate Γ. Thus, StabΓpwq@w “ Γ. �

G ď AutpX˚q is said to be self-similar if G@u is contained in G for
any u P V pX˚q.

For a vertex u P V pX˚q and for an element g P AutpX˚q, u ˚ g will be
used to denote the automorphism ofX˚ described by p1, . . . , 1, g, 1, . . . , 1qn
where n “ |u| and g is in the uth coordinate; in other words u ˚ g acts
as g on the subtree rooted at u and acts trivially outside this subtree.
For a subgroup K ď AutpX˚q, u ˚K :“ tu ˚ k|k P Ku. Further, as Xn

represents the set of vertices of level n in the tree, Xn ˚K will be used to
denote

ź

|u|“n

u ˚K where K ď AutpX˚q. A group G ď AutpX˚q is said

to be regular branch if it is level transitive and there is a subgroup K
with finite index in G such that u ˚K ď K for all u P V pX˚q and such
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that Xn ˚ K has finite index in G for all n. In this case, K is called a
branching subgoup. If a group is regular branch then it is also branch
as Xn ˚K ď RistGpnq.

An important observation that will be used frequently in the remainder
of the paper is that if Xn ˚H ď G, then

(5.1) StabGpn`mq XXn ˚H “ Xn ˚ StabHpmq.

This is becauseXn˚H describes a disjoint action on each subtree rooted
at the nth level, and so on each of these subtrees StabGpn`mqXXn ˚H
describes the collection of elements that are contained in H and stabilize
the mth level.

Lemma 5.2. Γ is a self-similar, regular branch group with branching
subgroup Γ1.

Proof. The definition of the generators of Γ easily implies that Γ is self-
similar. We will show by induction that Xn ˚Γ1 ď Γ1. For n “ 1, observe
that

pacbcq2 “ pabab, 1, 1q1 “ pra, bs, 1, 1q1

pabcbq2 “ pacac, 1, 1q1 “ pra, cs, 1, 1q1

cpbacaq2c “ pbcbc, 1, 1q1 “ prb, cs, 1, 1q1

and pacbcq2, pabcbq2, and cpbacaq2c are all in Γ1 since Γ{Γ1 is an elementary
abelian 2-group.

From the description of the generators for StabΓp1q, we see that for all
g P Γ there is an element g̃ P StabΓp1q whose state in the first coordinate is
g. Conjugating pacbcq2 by g̃ produces the element pra, bsg, 1, 1q1. Likewise,
we can obtain the element that has any conjugate of ra, cs or rb, cs in
the first coordinate and 1 in the second and third coordinates. As Γ is
transitive on all levels of T , we obtain X ˚ Γ1 ď Γ1.

Now assume for some n ě 1, that Xn ˚Γ1 ď Γ1. By the base case, each
copy of Γ1 contains a copy ofX˚Γ1. Therefore, Xn˚pX˚Γ1q ď Xn˚Γ1 ď Γ1.
But Xn ˚ pX ˚ Γ1q “ Xn`1 ˚ Γ1. �

Lemma 5.3. For all n ě 1, RistΓpnq “ Xn ˚ Γ1.

Proof. The proof is by induction on the level. By Lemma 5.2, X ˚ Γ1 ď
RistΓp1q ď StabΓp1q ď X ˚ Γ. Note that pX ˚ Γq{pX ˚ Γ1q – pΓ{Γ1q3 –
rpZ{2Zq3s3 – pZ{2Zq9. Consider H, the rigid stabilizer of the first vertex
of level 1. The image H in pZ{2Zq9 is contained in the subspace W
consisting of vectors which have 0 in the ith coordinate for i ě 4. On the
other hand, the image U of StabΓp1q in pZ{2Zq9 is spanned by the images
of α, β, δ, and γ which are
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rα “ p1, 0, 0, 0, 1, 1, 1, 0, 0q

rβ “ p1, 0, 0, 1, 0, 0, 0, 1, 1q

rδ “ p1, 0, 1, 0, 1, 0, 0, 1, 0q

rγ “ p0, 1, 0, 0, 1, 0, 1, 0, 1q.

It is a simple exercise to see that W X U “ t0u. It follows that H ď

X ˚ Γ1 and thus RistΓp1q “ X ˚ Γ1.
Now assume for some n ě 1 that RistΓpnq “ Xn ˚ Γ1. Then, again, by

Lemma 5.2, Xn`1 ˚ Γ1 ď RistΓpn ` 1q “ RistΓpn ` 1q XXn ˚ Γ1 “ Xn ˚

RistΓ1p1q ď Xn ˚RistΓp1q “ Xn`1 ˚ Γ1, giving Xn`1 ˚ Γ1 “ RistΓpn` 1q.
�

Corollary 5.4. For all n, RistΓpnqStabΓpn ` 1q{StabΓpn ` 1q “ pA3q
3n

where A3 is the alternating group on 3 letters.

Proof. The projection Γ Ñ Γ{StabΓp1q – S3 takes Γ1 onto A3, hence
Γ1{StabΓ1p1q – A3. Further,

RistΓpnqStabΓpn` 1q{StabΓpn` 1q – Xn ˚ Γ1{rpXn ˚ Γ1q X StabΓpn` 1qs

– Xn ˚ Γ1{Xn ˚ StabΓ1p1q – pΓ
1{StabΓ1p1qq

3n

– pA3q
3n

.

�

Corollary 5.5. The rigid kernel for Γ is an elementary abelian 2-group.

Proof. Since StabΓpnq ď Xn ˚ Γ, we have

StabΓpnq{RistΓpnq “ StabΓpnq{X
n ˚ Γ1

is a subspace of Xn ˚Γ{Xn ˚Γ1 – pΓ{Γ1q3
n

which is an elementary abelian
2-group. An inverse limit of elementary abelian 2-groups is an elementary
abelian 2-group. �

Corollary 5.6. |StabΓp1q{RistΓp1q| “ 16 and |StabΓ1p1q{RistΓ1p1q| “ 4.

Proof. We have seen in the proof of Lemma 5.3 that StabΓp1q{RistΓp1q “
StabΓp1q{X ˚ Γ1 “ U is a four dimensional vector space over F2 (the
images of α, β, δ, and γ form a basis). Hence U has 16 elements.

Now, by Lemmas 5.2 and 5.3, we see that RistΓpnq “ RistΓ1pnq “
Xn ˚ Γ1. This gives StabΓ1p1q{RistΓ1p1q “ pStabΓp1q X Γ1q{RistΓp1q “
U X pΓ1{RistΓp1qq. Moreover, since a word in a, b, and c is in Γ1 if and
only if each generator appears in it an even number of times, a word in
α, β, δ, and γ is in Γ1 if and only if the number of appearances of α and
β have the same parity and the number of appearances of δ and γ have
the same parity. It follows that U X pΓ1{RistΓp1qq is the two dimensional
subspace spanned by rα` rβ and rδ ` rγ. �
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As Γ is self-replicating, if g P StabΓpuq, then g@u must also be an
element of Γ. Corollary 5.6 and the following lemma serve to elucidate
the action of Γ on the top levels of T .
Lemma 5.7. (1) Γ{StabΓp1q – S3, the symmetric group on three let-

ters.
(2) StabΓp1q{StabΓp2q considered as a subgroup of pS3q

3 is the kernel
of the homomorphism φ : pS3q

3 Ñ C2 where φ sums the signs
of the permutation in each coordinate. This quotient has order
22 ¨ 33.

Proof. a) We have already observed that Γ{StabΓp1q – S3.

b) The images of α, β, δ, and γ in StabΓp1q{StabΓp2q are

α “ pσ23, σ123, σ23q β “ pσ23, σ23, σ132q

δ “ pσ123, σ13, σ13q γ “ pσ13, σ13, σ132q.

Thus α, β, δ, and γ are in kerpφq. Further δ
2
“ pσ132, 1, 1q and, by

spherical transitivity, this implies that pA3q
3 ď StabΓp1q{StabΓp2q. Also,

αβ “ p1, σ13, σ13q and δγ “ pσ23, 1, σ23q. Collectively, these elements
generate kerpφq. �

Now we apply our knowledge of the permutations appearing on the top
levels of the tree to gain an understanding of action on subtrees rooted
at the lower levels.
Lemma 5.8. For n ě 1, we have isomorphisms StabΓ1pnq{StabΓ1pn` 1q –
StabΓpnq{StabΓpn` 1q – Xn´1 ˚ StabΓp1q{X

n´1 ˚ StabΓp2q. In particu-
lar, all three groups have order 22¨3n´1

¨ 33n

.
Proof. Since

StabΓ1pnq{StabΓ1pn` 1q “ StabΓ1pnq{pStabΓ1pnq X StabΓpn` 1qq,

the group StabΓ1pnq{StabΓ1pn` 1q can be considered as a subgroup of
StabΓpnq{StabΓpn` 1q. By self-similarity, StabΓpnq{StabΓpn` 1q can be
considered as a subgroup of pXn´1˚StabΓp1qq{pX

n´1˚StabΓp2qq, a group
of order 22¨3n´1

¨ 33n

. Therefore it suffices to prove that

|StabΓ1pnq{StabΓ1pn` 1q| ě 22¨3n´1

¨ 33n

.

Observe that Γ1{StabΓ1p1q – A3, generated by the image of ra, bs “
pab, a, bqσ123 and recall that RistΓpnq “ Xn ˚ Γ1 ď Γ1. It follows that
StabΓ1pnq{StabΓ1pn ` 1q contains pXn ˚ Γ1qStabΓ1pn ` 1q{StabΓ1pn ` 1q.
Note that

pXn ˚Γ1qStabΓ1pn` 1q{StabΓ1pn` 1q – Xn ˚Γ1{pStabΓ1pn` 1qXXn ˚Γ1q

“ Xn ˚ Γ1{Xn ˚ StabΓ1p1q – pΓ
1{StabΓ1p1qq

3n

– pA3q
3n

.
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Therefore, StabΓ1pnq{StabΓ1pn` 1q has a subgroup of order 33n

.
Now, StabΓ1pnq{StabΓ1pn ` 1q also contains a subgroup isomorphic to

pXn´1 ˚ Γ1 X StabΓ1pnqq{pX
n´1 ˚ Γ1 X StabΓ1pn` 1qq. Moreover, by (5.1)

this subgroup is isomorphic to pStabΓ1p1q{StabΓ1p2qq
3n´1

which has order
22¨3n´1

by Corollary 5.6. �

Now, we have all the tools needed to prove the main theorem.

Theorem 5.9. The rigid kernel kerprΓ Ñ Γq is the Klein four-group.

Proof. By Corollary 5.5, the rigid kernel is an elementary abelian 2-group,
so we only need to show that it has order 4.

For notational simplicity, for all n ě 1, define Γn :“ StabΓpnq{RistΓpnq.
Further, under the natural map from Γn`k to Γn, let Hn,n`k be the image
of Γn`k in Γn, let Kn,n`k be the kernel of this map, and let Qn,n`k be
the cokernel of this map (note that Hn,n`k � Γn).

Recall that the rigid kernel is lim
ÐÝ
ně1

Γn. We will show that for all n,

Hn,n`1 “ Hn,n`2 and that both have order 4. This implies that for each
n, the maps Hn`1,n`2 Ñ Hn,n`1 are isomorphisms and hence lim

ÐÝ
ně1

Γn “

lim
ÐÝ
ně1

Hn,n`1 also has order 4, completing the proof.

The first step in doing this is to determine Hn,n`1. We have the exact
sequence

1 Ñ Kn,n`1 Ñ Γn`1 Ñ Γn Ñ Qn,n`1 Ñ 1.(5.2)

Now

Kn,n`1 “ pStabΓpn` 1q X RistΓpnqq{RistΓpn` 1q

“ pStabΓpn` 1q XXn ˚ Γ1q{Xn`1 ˚ Γ1 “ Xn ˚ StabΓ1p1q{X
n`1 ˚ Γ1

– pStabΓ1p1q{RistΓ1p1qq3
n

,

hence |Kn,n`1| “ 22¨3n

from Corollary 5.6.
Also, Qn,n`1 “ StabΓpnq{RistΓpnqStabΓpn ` 1q has 22¨3n´1

elements
by Lemma 5.8 and Corollary 5.4.

Since sequence (5.2) is exact, |Γn`1|

|Γn|
“
|Kn,n`1|

|Qn,n`1|
“ 24¨3n´1

. Further, by
Corollary 5.6, |Γ1| “ 16. Collectively, we obtain

|Γn| “ 24
n

ź

i“2

24¨3i´2

“ 22¨p3n´1
`1q

and the size of Hn,n`1 is |Γn`1|

|Kn,n`1|
“ 22p3n`1q

22¨3n “ 4.
Now it remains to show that Qn,n`2 “ Qn,n`1 as this would imply

Hn,n`2 “ Hn,n`1 and moreover that Hn`1,n`2 maps isomorphically to
Hn,n`1 for all n.
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Now
Qn,n`i “ StabΓpnq{pX

n ˚ Γ1qStabΓpn` iq.

Thus showing Qn,n`1 “ Qn,n`2 is the same as showing

pXn ˚ Γ1qStabΓpn` 1q “ pXn ˚ Γ1qStabΓpn` 2q.

By Lemma 5.8,

StabΓpn` 1q{StabΓpn` 2q – Xn ˚ StabΓp1q{X
n ˚ StabΓp2q

– Xn ˚ StabΓ1p1q{X
n ˚ StabΓ1p2q.

Hence, StabΓpn` 1q “ StabΓpn` 2qpXn ˚ StabΓ1p1qq and we obtain

pXn ˚ Γ1qStabΓpn` 1q “ pXn ˚ Γ1qpXn ˚ StabΓ1p1qqStabΓpn` 2q

“ pXn ˚ Γ1qStabΓpn` 2q. �
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