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A BANACH-STONE TYPE THEOREM FOR
C1-FUNCTION SPACES OVER THE CIRCLE

KAZUHIRO KAWAMURA

Abstract. We prove and apply an elementary theorem in calculus
to improve the Banach-Stone type theorem on C1-function spaces
over the unit circle on the complex plane proved in [8, Theorem
3.1].

1. Introduction

This is a continuation of the paper [8]. The Banach-Stone theorem
states that every linear isometry on the space of continuous functions
over a compact Hausdorff space (with the sup norm) is a weighted com-
position operator with a unimodular weight. Various extensions of the
theorem have been studied by many authors (see monographs [3],[4]).
Banach-Stone type theorems for the C1-function spaces over [0, 1] have
been proved in [1], [6], [7], [11], [12], [13], [14] etc. Recently the author
obtained a similar theorem for C1(T), the space of C1-function space over
the unit circle T = {z ∈ C | |z| = 1} on the complex plane [8]. In [8,
Theorem 3.1] it was shown that every linear isometry T : C1(T) → C1(T)
with respect to a suitable norm is a weighted composition operator or its
variant if the isometry T satisfies an additional hypothesis:

(∗) T (idT) and T (idT) are C3-functions

where idT and idT denote the identity function on T and its complex
conjugate respectively. The above technical hypothesis was assumed only
to prove the following lemma.
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Lemma 1.1. [8, Lemma 3.12] Let ψ : T → T be a C2-diffeomorphism and
let β : T → T be a C1-map such that, for each C1-function f ∈ C1(T),
there exists a C1-function F ∈ C1(T) such that

F ′(z) = β(z)f ′(ψ(z)), z ∈ T.
Then β is a constant map and ψ is an isometry.

In this note we prove the above lemma without the C1- and C2-
hypotheses of the maps β and ψ. First we prove:

Theorem 1.2. Let β : R → C be a continuous function of period 1 and
let ψ : R → R be a homeomorphism with a constant γ ∈ {±1} such that

ψ(t+ 1) = ψ(t) + γ, t ∈ R.
Suppose that

(1.1)
∫ 1

0

β(t)f ′(ψ(t))dt = 0

for each periodic C1-function f : R → R of period 1. Then
(1) β is a constant function and
(2) there exists a constant c such that ψ(t) = γt+ c, t ∈ R.

Then we derive the same conclusion as that of Lemma 1.1 under a
weaker hypothesis. More precisely we have:

Proposition 1.3. Let ψ : T → T be a homeomorphism and let β : T → T
be a continuous map such that, for each C1-function f ∈ C1(T), there
exists a C1-function F ∈ C1(T) such that

F ′(z) = β(z)f ′(ψ(z)), z ∈ T.
Then β is a constant map and ψ is an isometry.

The above proposition enables us to generalize [8, Theorem 3.1]: re-
placing [8, Lemma 3.12] with Proposition 1.3, the argument in [8, Section
3, 3.1-3.2] works with no change to derive the same conclusion as that of
[8, Theorem 3.1] without the hypothesis (∗). In order to state the general-
ization, we fix our notation and define some terminologies. Let π : R → T
be the standard covering map defined by π(t) = exp(2πit) (t ∈ R). For a
function f : T → C, let

(1.2) f ′(e2πiθ) =
1

2π

d

dt

∣∣∣
t=θ

f(exp(2πit)).

We say that the function f is a C1-function if the above derivative
exists and is continuous. The space of all complex-valued C1-functions
on T is denoted by C1(T). Let pi : T × T → T be the projection to
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the i-th factor i = 1, 2. For a compact connected subset D of T × T
with p2(D) = T, we define a norm ∥ · ∥<D> on C1(T) which induces the
C1-topology by:

(1.3) ∥f∥<D> = sup
(x,y)∈D

(|f(x)|+ |f ′(y)|), f ∈ C1(T).

Theorem 1.4. (cf. [8, Theorem 3.1]) Let T : C1(T) → C1(T) be a
surjective C-linear ∥ · ∥<D>-isometry and let I = P, (D).

(1) Assume that I = {a}. Then there exist constants β, κ ∈ T and an
isometry φ : T → T such that

(1.4) Tf(z) = βf(φ(z)) + (κf(a)− βf(φ(a))) , z ∈ T

for each f ∈ C1(T).
(2) Assume that I is not a singleton. Then there exist a constant

κ ∈ T and an isometry φ : T → T such that φ(I) = I and

(1.5) Tf(z) = κf(φ(z)), z ∈ T

for each f ∈ C1(T).

As a corollary we obtain structure theorems on isometry groups with
respect to some typical norms on C1(T) defined below. For a C1-function
f ∈ C1(T) and a point c ∈ T, let

∥f∥Σ = ||f ||∞ + ||f ′||∞,
∥f∥C = sup

t∈T
(|f(t)|+ |f ′(t)|),

∥f∥σ,c = |f(c)|+ ||f ′||∞.(1.6)

For a norm ∥ · ∥ on C1(T), U(∥ · ∥) denotes the group of all surjective C-
linear ∥·∥-isometries. The groups of isometries on T is denoted by Isom(T)
and, for a subset J of T, let Isom(T; J) = {φ ∈ Isom(T) | φ(J) = J}.
Notice that Isom(T) ∼= T× Z2.

Corollary 1.5. (cf. [8, Corollary 3.3].)
(1) U(∥ · ∥Σ) = U(∥ · ∥C) ∼= T× Isom(T).
(2) U(∥ · ∥σ,c) ∼= T× T× Isom(T) for each c ∈ T.
(3) For an interval I of T which is not a singleton, U(∥ · ∥<I×T>) ∼=

T× Isom(T; I).

Recently Hatori and Oi [5] studied the space C1(T) with the norm ∥·∥Σ
in a much broader context. In particular they studied the function space
C1(T, C(Y )) of the C(Y )-valued C1-functions on T, where C(Y ) denotes
the Banach space of continuous functions on a compact Hausdorff space
Y . In particular Corollary 1.5 (1) for the norm ∥ · ∥Σ follows from their
result.
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The present note is devoted to prove Theorem 1.2 and Proposition 1.3.
Although the proof of Theorem 1.2 belongs to elementary calculus, the
author could not find it in the literature and a proof is supplied in detail.

2. Proofs

For a map φ : T → T, let φ̄ : R → R be a lift of φ, that is, a
map satisfying π ◦ φ̄ = φ ◦ π. If φ is a homeomorphism, then φ̄ is a
homeomorphism and there exists a constant dφ ∈ {±1} such that φ̄(t +
1) = φ̄(t) + dφ, t ∈ R.

Proof of Theorem 1.2. We assume at the outset that γ = 1. The case
γ = −1 can be proved similarly. Since ψ : R → R is a homeomorphism,
we see that ψ is, under the assumption γ = 1, a monotone increasing
function.

Step 1. First we show that β is a constant function. Applying (1.1) to

f1(t) =
1

2πn
sin(2πnt), f2(t) = − 1

2πn
cos(2πnt)

for n ∈ Z \ {0}, we have

(2.1)
∫ 1

0

β(t) cos(2πnψ(t))dt =

∫ 1

0

β(t) sin(2πnψ(t))dt = 0.

Suppose β(a) ̸= β(b) for some a, b ∈ [0, 1] and let ϵ = |β(a) − β(b)| > 0.
For simplicity let p = ψ(a), q = ψ(b) and take a δ > 0 so small that

(i) [a−δ, a+δ]∩[b−δ, b+δ] = ∅ and ψ([a−δ, a+δ])∩ψ([b−δ, b+δ]) = ∅,
(ii) diamβ([a− δ, a+ δ]) < ϵ/2 and diamβ([b− δ, b+ δ]) < ϵ/2.

Let Ip = ψ([a − δ, a + δ] ∩ [0, 1]), Iq = ψ([b − δ, b + δ] ∩ [0, 1]). Take a
real-valued smooth functions ga : Ip → R and gb : Iq → R such that
ga, gb ≥ 0, ga|∂Ip = gb|∂Iq ≡ 0 and

(2.2)
∫ a+δ

a−δ
ga(ψ(t)) =

∫ b+δ

b−δ
gb(ψ(t)) = 1.

Let ψ([0, 1]) = [A,A + 1]. Then we have Ip ∪ Iq ⊂ [A.A + 1]. Define a
C1-function g : [A,A+ 1] → R by

(2.3) g(t) =

 ga(t) t ∈ Ip
−gb(t) t ∈ Iq
0 t /∈ Ip ∪ Iq

The function g naturally extends to a periodic C1-function, denoted by
g : R → R, of period 1 which satisfies

(2.4)
∫ 1

0

g(t)dt =

∫ A+1

A

g(t)dt = 0.
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The function

f(t) =

∫ t

0

g(s)ds, t ∈ R

is a C1-function and has period 1 due to (2.4). Thus its Fourier series
converges uniformly on [0, 1]:

f(t) =
∞∑
n=0

an cos(2πnt) + bn sin(2πnt)

with a uniform convergent series of the derivative:

g(t) = f ′(t) =

∞∑
n=0

(−2πnan sin(2πnt) + 2πnbn cos(2πnt))

= lim
n→∞

Sn(t),

where Sn(t) =
∑n
k=0(−2πkak sin(2πkt) + 2πkbk cos(2πkt)). Applying

(2.1) we have
∫ 1

0
β(t)Sn(ψ(t))dt = 0 and by taking the limit we obtain

(2.5)
∫ 1

0

β(t)g(ψ(t))dt = 0.

On the other hand we see from (2.2) and (ii),∣∣∣∣∣
∫ a+δ

a−δ
β(t)ga(ψ(t))dt− β(a)

∣∣∣∣∣(2.6)

=

∣∣∣∣∣
∫ a+δ

a−δ
β(t)ga(ψ(t))dt−

∫ a+δ

a−δ
β(a)ga(ψ(t))dt

∣∣∣∣∣
≤

∫ a+δ

a−δ
|β(t)− β(a)|ga(ψ(t))dt

<
ϵ

2

∫ a+δ

a−δ
ga(ψ(t))dt = ϵ/2.

Similarly we have

(2.7)

∣∣∣∣∣
∫ b+δ

b−δ
β(t)gb(ψ(t))dt− β(b)

∣∣∣∣∣ < ϵ/2.

We also have by (2.5) and (2.3)∫ a+δ

a−δ
β(t)ga(ψ(t))dt−

∫ b+δ

b−δ
β(t)gb(ψ(t))dt =

∫ 1

0

β(t)g(ψ(t))dt = 0.

However since |β(a) − β(b)| = ϵ, the last equality contradicts (2.6) and
(2.7), which proves that β is a constant function.
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Step 2. We prove that ψ takes the form as in the conclusion. Since β is
a constant map by Step 1, (1.1) is reduced to

(2.8)
∫ 1

0

f ′(ψ(t))dt = 0

for each C1-function f : R → R of period 1. Recall ψ([0, 1]) = [A,A+ 1].
We prove:

Claim. Let p, r be two points of [A,A+1] with p < r and let q = 1
2 (p+r).

Then we have the equality

(2.9) ψ−1(q) =
1

2
(ψ−1(p) + ψ−1(r)).

First we show that Claim implies the desired conclusion. Let θ = ψ−1 and
note that θ is a monotone increasing function such that θ([A,A + 1]) =
[0, 1]. Fix p, q ∈ [A,A+ 1] with p ≤ q arbitrarily. Claim implies

θ(
p+ q

2
) =

θ(p) + θ(q)

2
.

By a straightforward induction, we can prove, for each n ≥ 1, the following
equality

θ

(
k

2n
p+ (1− k

2n
)q

)
=

k

2n
θ(p) + (1− k

2n
)θ(q), 0 ≤ k ≤ 2n.

The continuity of θ implies

θ(tp+ (1− t)q) = tθ(p) + (1− t)θ(q), 0 ≤ t ≤ 1.

Since p and q are arbitrary points in [A,A+ 1], we see that θ is an affine
function. Noticing θ(A) = 0 we see that θ(t) = t − A (A ≤ t ≤ A + 1)
and hence ψ(t) = t+A (0 ≤ t ≤ 1), as desired.

For the proof of Claim we make a preliminary construction. For u < v
and δ ∈ (0, u+v2 ) we define a function hu,vδ : [u, v] → [0, 1] by

(2.10) hu,vδ (t) =


1
δ (t− u) u ≤ t ≤ u+ δ,
1 u+ δ ≤ t ≤ v − δ,
1
δ (v − t) v − δ ≤ t ≤ v.

In what follows we assume that δ = v−u
K for a large integer K > 0. For

a positive integer m > 0, we define a partition ∆m(u, v) of [u, v] into
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subintervals of equal length δ/m:

(2.11)

u = u0 < u1 < · · · < um = u+ δ, uj = u+
δ

m
j, 0 ≤ j ≤ m,

u+ δ = w0 < w1 < · · · < wm(K−2) = v − δ,

wj = u+ δ +
δ

m
j, 0 ≤ j ≤ m(K − 2),

v − δ = v0 < v1 < · · · < um = v, vj = v − δ +
δ

m
j, 0 ≤ j ≤ m.

We use the partition ∆m(u, v) for an approximation of the integral∫ ψ−1(v)

ψ−1(u)

hu,vδ (ψ(t))dt

by a Riemannian sum Sm(hu,vδ ) as follows: let

aj = ψ−1(uj), bj = ψ−1(vj) (0 ≤ j ≤ m)
cj = ψ−1(wj) (0 ≤ j ≤ m(K − 2))

and notice
a0 = ψ−1(u), am = c0 = ψ−1(u+ δ),
cm(K−2) = b0 = ψ−1(v − δ), bm = ψ−1(v).

Let

Sm(hu,vδ ) =
m∑
j=1

hu,vδ (ψ(aj))(aj − aj−1)(2.12)

+

m(K−2)∑
j=1

hu,vδ (ψ(cj))(cj − cj−1)

+
m∑
j=1

hu,vδ (ψ(bj))(bj − bj−1).

Using (2.10) and (2.11), we obtain
m∑
j=1

hu,vδ (ψ(aj))(aj − aj−1) =

m∑
j=1

1

δ
(uj − u)(aj − aj−1)(2.13)

=
m∑
j=1

1

m
j(aj − aj−1)

= am − 1

m

m−1∑
j=0

aj .
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Similarly we have

(2.14)
m∑
j=1

hu,vδ (ψ(bj))(bj − bj−1) =
1

m

m−1∑
j=0

bj − b0,

and also
m∑
j=1

hu,vδ (ψ(cj))(cj − cj−1) =

m∑
j=1

(cj − cj−1)(2.15)

= cm(K−2) − c0 = b0 − am.

Using (2.12), (2.13), (2.14) and (2.15) we obtain

(2.16) Sm(hu,vδ ) =
1

m

m−1∑
j=0

bj −
1

m

m−1∑
j=0

aj .

Proof of Claim. Fix p, q, r ∈ [A,A+ 1] with

A ≤ p < r ≤ A+ 1, q =
1

2
(p+ r)

and let d = 1
2 (r − p). Take a large positive integer K and let δ = d/K.

Use (2.10) to define a continuous function gδ : [A,A+ 1] → [−1, 1] by

gδ(t) =

 hp,qδ (t) if p ≤ t ≤ q,
−hq,rδ (t) if q ≤ t ≤ r,
0 otherwise.

Since gδ(A) = gδ(A+ 1) = 0, gδ naturally extends to a periodic function,
denoted by gδ : R → [−1, 1], of period 1 such that

∫ 1

0
gδ(t)dt = 0. Define

a C1-function fδ : [A,A+ 1] → [0, 1] by

fδ(t) =

∫ t

A

gδ(s)ds, t ∈ [A,A+ 1]

and again take its natural extension fδ : R → [0, 1] as a C1-function of
period 1 so that f ′δ = gδ. By the hypothesis (2.8) we have

0 =

∫ 1

0

f ′δ(ψ(t))dt =

∫ 1

0

gδ(ψ(t))dt

=

∫ ψ−1(p)

0

+

∫ ψ−1(q)

ψ−1(p)

+

∫ ψ−1(r)

ψ−1(q)

+

∫ 1

ψ−1(r)

=

∫ ψ−1(q)

ψ−1(p)

hp,qδ (ψ(t))dt−
∫ ψ−1(r)

ψ−1(q)

hq,rδ (ψ(t))dt.
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Defining a = ψ−1(p), b = ψ−1(q), c = ψ−1(r), we have

(2.17)
∫ b

a

hp,qδ (ψ(t))dt =

∫ c

b

hq,rδ (ψ(t))dt.

Fix an ϵ > 0 arbitrarily and take a positive integer m so large that

|
∫ b
a
hp,qδ (ψ(t))dt− Sm(hp,qδ )| < ϵ/2,

|
∫ c
b
hq,rδ (ψ(t))dt− Sm(hq,rδ )| < ϵ/2,

and hence we have

(2.18) |Sm(hp,qδ )− Sm(hq,rδ )| < ϵ.

Let
p = p0 < · · · < pj < · · · < pm = x0 < · · ·
· · · < xj < · · · < xK(m−2) = q−0 < · · · < q−j < · · · < q−m = q,

q = q+0 < · · · < q+j < · · · q+m = y0 < · · ·
· · · < yj < · · · < yK(m−2) = r0 < · · · < rj · · · < rm = r

be the partitions ∆m(p, q) and ∆m(q, r) of [p, q] and [q, r] respectively
that appear in the definition of Sm(hp,qδ ) and Sm(hq,rδ ) (see (2.11)). By
(2.16) we have

Sm(hp,qδ ) =
1

m

m−1∑
j=0

ψ−1(q−j )−
1

m

m−1∑
j=0

ψ−1(pj),(2.19)

Sm(hq,rδ ) =
1

m

m−1∑
j=0

ψ−1(rj)−
1

m

m−1∑
j=0

ψ−1(q+j ).(2.20)

Since ψ−1 is monotone increasing, we have ψ−1(p) ≤ ψ−1(pj) ≤ ψ−1(p+δ)
and ψ−1(q − δ) ≤ ψ−1(q−j ) ≤ ψ−1(q), which imply

ψ−1(p) ≤ 1

m

m∑
j=1

ψ−1(pj) ≤ ψ−1(p+ δ),(2.21)

ψ−1(q − δ) ≤ 1

m

m∑
j=1

ψ−1(q−j ) ≤ ψ−1(q).(2.22)

Similarly we have

ψ−1(q) ≤ 1

m

m∑
j=1

ψ−1(q+j ) ≤ ψ−1(q + δ),(2.23)

ψ−1(r − δ) ≤ 1

m

m∑
j=1

ψ−1(rj) ≤ ψ−1(r).(2.24)
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Using (2.19) - (2.24) and (2.18), we obtain

ψ−1(q − δ) + ψ−1(q)− ψ−1(p+ δ)− ψ−1(r)

≤ 1

m

m∑
j=1

ψ−1(q−j ) +
1

m

m∑
j=1

ψ−1(q+j )−

− 1

m

m∑
j=1

ψ−1(pj)−
1

m

m∑
j=1

ψ−1(rj)

≤ Sm(hp,qδ )− Sm(hq,rδ ) ≤ ϵ.

Similarly we have

ψ−1(q) + ψ−1(q + δ)− ψ−1(p)− ψ−1(r − δ)
≥ Sm(hp,qδ )− Sm(hq,rδ )
≥ −ϵ,

and hence

ψ−1(q − δ) + ψ−1(q) ≤ ψ−1(p+ δ) + ψ−1(r) + ϵ,

ψ−1(q) + ψ−1(q + δ) ≥ ψ−1(p) + ψ−1(r − δ)− ϵ.

Taking the limit K → ∞, we have δ = d/K → 0. Taking into account of
the continuity of ψ−1 and taking the limit ϵ→ 0 we obtain

ψ−1(p) + ψ−1(r) ≤ 2ψ−1(q) ≤ ψ−1(p) + ψ−1(r),

and therefore ψ−1(p) + ψ−1(r) = 2ψ−1(q), as desired. This proves Claim
and hence completes the proof of the theorem. �

Proof of Proposition 1.3. Let ψ, β be functions as in the proposi-
tion and take a lift ψ̄ : R → R. Since ψ is a homeomorphism, ψ̄
is a homeomorphism and there exists a constant γ ∈ {±1} such that
ψ̄(t+1) = ψ̄(t)+ γ (t ∈ R). Let β̄ = β ◦π : R → C. For each C1-function
f : T → C, take a function F : T → C as in the hypothesis of the propo-
sition and let f̄ = f ◦ π : R → C and F̄ = F ◦ π : R → C. Then f̄ is a
periodic C1-function of period 1 and every C1-function R → C of period
1 is obtained in this way. By the choice of F we have

d

dt
F̄ (t) = β̄(t)

df̄

dt
(ψ̄(t))

and hence ∫ 1

0

β̄(t)
df̄

dt
(ψ̄(t))dt = F̄ (1)− F̄ (0) = 0.

Applying Theorem 1.2 we conclude that β̄ and hence β is a constant
function and ψ̄(t) = γt + c for some constant c. Recalling that γ = ±1,
we see that ψ is an isometry on T. This proves the proposition. �
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The above proof uses the metric feature of the unit circle T which
is locally isometric to the 1-dimensional Euclidean space R. It is not
known to the author whether a similar statement holds when the circle is
equipped with other metrics. The author recently proved a Banach-Stone
type theorem for C1-function spaces over compact Riemannian manifolds
in [9] under a “regularity-preserving-hypothesis” similar to (∗). It is not
known whether the same result holds without the hypothesis. See also
[10] for isometries with respect to the ∥ · ∥Σ-type norm.

Acknowledgement. The author is grateful to the referee for helpful
comments.
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