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OPEN INDUCED MAPPINGS, AN EXAMPLE

ALEJANDRO ILLANES

ABstrACT. For a Hausdorff space X, let S¢(X) denote the hyper-
space of all nontrivial convergent sequences in X, endowed with
the Vietoris topology. Given a mapping between Hausdorff spaces
f: X — Y, the induced mapping Sc(f) : Sc(X) — Sc(Y) is de-
fined by Sc(f)(A) = f(A) (the image of A under f). In this paper
we show an example of a strong light open mapping between Haus-
dorff Fréchet-Urysohn spaces f : X — Y such that Sc(f) is not
open. This answers a question by David Maya, Patricia Pellicer-
Covarrubias, and Roberto Pichardo-Mendoza.

1. INTRODUCTION

The symbol N denotes the set of positive integers. A mapping is a
continuous function.
All spaces in this paper are Hausdorff spaces. Given a space X, let

CL(X)={AC X : Ais closed and nonempty}.
Given n € N and open subsets Uy,...,U, in X, let
(Ur,...,U,) ={A€eCL(X): ACUU...UU, and ANU; # ( for each
ie{l,...,n}}.
We consider CL(X) with the Vietoris topology which has as a basis
the family of all sets of the form (Uy,...,U,).
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A nontrivial convergent sequence in X is a countably infinite subset S
of X for which there is € S such that for each open subset of X with
x € U, we have S\ U is finite. In this case we say that S converges to x
and we write lim .S = .

We consider the hyperspace of nontrivial convergent sequences in X
defined by

Sc(X)={S € CL(X) : S is a nontrivial convergent sequence in X}.

Recall that X is a Fréchet-Urysohn space if for each A C X and each
p € clx(A), there exists a sequence {p, }5°; in A such that lim, . p, =
p. The space X is sequential if for each A C X with clx(A) # A,
there exists a sequence {p,}52; in A and a point p € X \ A such that

A mapping between Hausdorff spaces f : X — Y is a strong light
mapping if for each y € Y, f~1(y) is a discrete subspace of X.

Given a strong light mapping f : X — Y one can consider the induced
function Sc(f) : Se(X) = Sc(Y) given by S.(f)(S) = f(S) (the image of
X under f). It is easy to show that S.(f) is continuous (see sections 2
and 3 in [5]).

The hyperspace of nontrivial sequences has been recently studied in
(2], [5], [6], and [7]. In [5], the authors introduced the study of induced
mappings Sc(f).

Given a family M of mappings, the authors of [5] consider the possible
implications between the conditions:

(a) feM,and

(b) S.(f) € M.

They studied implications for the following families of mappings: open,
almost-open, quotient, monotone, surjective, finite-to-1, homeomorphism,
closed, strong light, light, sequence-covering and 1-sequence covering.

In particular, they found [5, Theorem 4.20] equivalent conditions on
the mapping f in order that the mapping S.(f) is open. As a conse-
quence they showed [5, Corollary 4.21] that if X is sequential, the set of
points in X that are limit of a sequence is dense in X, and the mapping
Se(f) : Se(X) — Se(Y) is open, then f is open. They gave conditions [5,
Theorem 4.23 and Corollary 4.24] under which the openness of f implies
the openness of S.(f). They also asked the following [5, Question 5.9]:
Is there a strong light and open mapping f such that S.(f) is not open?
(where X is a sequential Hausdorff space such that it contains at least
one convergent sequence).

The aim of this paper is to answer this question by showing two Fréchet-
Urysohn Hausdorff spaces X and Y and a strong light open mapping
f: X — Y such that S.(f) is not open.
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For the openness of induced mappings in other hyperspaces, the reader
could be interested in the papers [1], [3], and [7].

2. AN AUXILIARY SPACE

Lemma 2.1. There exists a family F of subsets of N such that
(1) UF=N,
(2) N is not a finite union of elements of F,
(3) each infinite subset of N contains an element of F,
(4) each element of F is infinite.

Proof. Let Q be set of rational numbers in the real line. Since Q x Q is
countable, taking all the sets of one of the forms ([z,2+1) x Q)N (Q x Q)
and (Qx [z,2+1))N(Q x Q) (for integer numbers z) it is possible to find
an infinite family Fy of subsets of N, satisfying (1), (2), and (4) and the
property:

(5) each element of N belongs to two distinct elements of Fy.

Define

Z ={G : G is a family of subsets of N satisfying (4), Fo C G and no
element A of G is contained in a finite union of elements of G \ {A}}.

We consider Z with the order given by the inclusion.

A simple application of Zorn’s Lemma implies that Z contains a max-
imal element M.

Define

F ={A CN: Ais infinite and A is contained in an element of M}.

Since Fo C M C F, F satisfies (1). By definition, F satisfies (4).

If F does not satisfy (2), by the definition of F, there exist n € N and
My,...,M, € M such that N = M; U...U M,, since Fg C M, M is
infinite, so there exists M € M\ {My,...,M,} and M C My U...UM,.
This is a contradiction since M € Z. Hence, F satisfies (2).

In order to prove that F satisfies (3), take an infinite subset A of N. In
the case that A € M C F, we are done. Suppose then that A ¢ M. By
the maximality of M, the family My = M U {A} does not belong to Z,
so there are m € N and pairwise distinct elements Lq,...,L,,+1 € My
such that L,,+1 C Ly U...U L,,.

Since M € Z, there is i € {1,...,m + 1} such that A = L;.

In the case that ¢ = m + 1, we have that A ¢ Ly U...U L,, and
{L1,...,Ly} C M. Since A is infinite, there exists j € {1,...,m} such
that AN L; is infinite. By definition, AN L; € F and we are done.
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Now, we consider the case that ¢ < m. Without loss of generality, we
suppose that ¢ = 1. Notice that the set B = Ly,41 \ (Lo U ... U Ly,) is
contained in A. If B is finite, since Fy C M, by (5), B can be covered
by a finite number Ci,...,Cy of elements of M \ {L;,11} and Ly,41 C
CiuU...UuCyULyU...UL,,, which contradicts the fact that M € Z.
Thus, B is infinite. Therefore, B € F and B C A, and we are done.

This ends the proof that F has the required properties. ]

Consider N with the discrete topology and let Noo = NU {p} be the
one-point compactification of N (po ¢ N).

Let F be a family satisfying properties (1)—(4) in Lemma 2.1.

For each F € F,let Tp = F x {F} C Nx F.

Let 7y : N x F — N be the projection.

Define Zy = |{Tr C N x F : F € F}. Take a point pg ¢ Zp.

Set Z = Zo @] {po}

Let G = {B C Zy : BN Ty is finite for each F € F}, By = {Z \ B :
B e G}, and B =By U {{p}:p € Zo} U{0}. Notice that pg € U for each
U € By and By and B are closed under finite intersections.

We endow Z with the topology 7 that has B as a basis.

Given p € Zy, {p} € G, Z\ {p} is open and {p} € B C 7. This implies
that Z is a Hausdorff space.

Claim 2.2. Z is Fréchet-Urysohn.

Proof. Let A C Z and p € clx(A) \ A. Since for each point ¢ € Zy, {q}
is open in Z, we have p ¢ Zy. So, p = po.

If ANTp is finite for each F € F, then A € G, Z\ A € By C 7, and
A is closed, which is absurd. Thus, there exists F' € F such that the set
B = ANTy is infinite. Since Tr = F x{F'}, B is of the form B = Cx {F},
where C'is infinite and C' C N. Then there exists a sequence ny < ng < ...
in N such that C = {ny,na,...}. Notice that {(ng, F) : k € N} C A.

We claim that limy_,o (g, F)) = po. Let U € B be such that py € U.
Then U = Z \ D for some D € G. So DN T is finite. In particular,
Dn{(ng, F): k € N} is finite. So there exists K € N such that (ng, F) ¢
D for each k > K. Hence, (ny, F) € U for each k > K. Therefore, Z is
Fréchet-Urysohn. ]

With a similar argument as in the last paragraph it can be proved that
if FF € F, then limTr = py.
Let g : Z — N, be the function defined as

_ WN(p), iprZOa
9(p) {pom if p = po.
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Claim 2.3. g is continuous.

Proof. Since for each p € Zy, {p} is open, we have that g is continuous at
p. To see that g is continuous at pg, take n € Nand let R,, = {0,...,n—1}
and W,, = {n,n+1,...} U{pso}. Given F € F, g7 (R,,) N (N x {F}) is
finite. This implies that g~1(R,) N TF is finite. Thus, g~ 1(R,) is closed
and Z\ g~ 1(R,) = g~ 1(W,,) is open in Z. Therefore, g is continuous. [

Claim 2.4. g is strong light.

Proof. Givenn € N, g7!(n) is a subset of Zy. Since 7 induces the discrete
topology on Zy, we have that g=!(n) is discrete. On the other hand,
9 (pso) = {po} which is also discrete. Hence, g is strong light. O

Claim 2.5. g is open.

Proof. Let U be an open subset of Z and let ¢ = g(p) € g(U).

If p € Zy, since g(p) € N, {g(p)} is open in Ny, and ¢ is an interior
point of g(U).

If p = po, then ¢ = po,. In order to see that ¢ is an interior point of
g(U), we need to show that there exists N € N such that {N,N+1,...} C
g(U). Suppose to the contrary that there is no such an N. Then there
exists an infinite subset A of N such that AN g(U) = . Since F satisfies
(3) in Lemma 2.1, there exists F' € F such that F' C A. As we mentioned
before, imTr = po. So, there exists (n,F) € Tr, with n € F, such
that (n,F) € U. Thus, n = g((n,F)) € FNg(U) C Ang(U). This
contradiction proves that ¢ is an interior point of g(U). Therefore, g is
open. (]

Claim 2.6. Let {p,}>2, be a sequence in Zy such that lim, . pn = po-
Then N\ {g(pn) : n € N} is infinite.

Proof. Suppose to the contrary that the set N\ {g(p,) : n € N} is finite.
Let A= {p, € Zy : n € N}.

Let Fy ={F € F: AnTr # 0}. Notice that A C |J{Tr : F € Fa}
and {g(pn) :n € N} =g(A) CU{F : F € Fa}.

In the case that F,4 is infinite, since the elements of the family {7 :
F € F} are pairwise disjoint, there exists a subsequence {py,}3>, of
{Pn}52; and there exists a sequence {Fy}32, in F such that for each
k €N, p,, € Tr, and the sets Fi, Fs, ... are pairwise distinct. Consider
the set B = {p,, : k € N}. Notice that BN T is finite for each F' € F.
Thus, B € G and Z \ B is an open subset of Z containing py. Then there
exists (infinitely many) k¥ € N such that p,, € Z\ B. This contradicts
the fact that p,, € B and proves that F4 is finite.



42 A. ILLANES

Set Fa = {F1,...,Fy,}. Then {g(p,) : n € N} € FU...UF,,.
Since N\ {g(p») : n € N} is finite and |JF = N, there exist r € N and
Gi,...,G,. € F such that N\ {g(p,) : n € N} C G; U...UG,. Thus,
N=FU...UF,UG1U...UG,. This contradicts the fact that F satisfies
(2) in Lemma 2.1 and ends the proof. O

3. THE EXAMPLE

Now, we construct the spaces X and Y and the mapping f.

Consider the space Z C (N x F)U{po} defined in the previous section
and W = Z x N, where N is endowed with the discrete topology.

For each n,m € N, let S(m) = {m,m+1,...}, Z(n) = ZN ({n} x F),
Z*t(n) =[ZNn(S(n) x F)]U{po}, W(n,m) = Z(n) x S(m) C W, and
W(n) = Z*(n) x S(n).

Notice that Z(n) and Z* (n) are open in Z and W (n, m) and W+ (n) are
open in W. Notice also that Z(n1) N Zt(ng) =0 if ny < ng and Z(ny) N
Z*(n2) = Z(n1) if ng > ng. Moreover, W(ny, m)NW™(ng) = 0if ny < no
and W (ny, m)NWT(n2) = Z(n1) x S(max{m,na}) = W(ny, max{m,na})
if ny > no.

Consider the space N& = N x {Po}-

Define

X =W uNE).

We will define a topology for X by giving a local basis at each point
of X.

For a point p in W, the local basis is the family of open subsets of the
product W containing p.

For a point p = (n,pe0) € N X {poo}, the local basis is the family

{W(n,m)U{p}:me N}
And for the point (poo, Poo), the local basis is the family
{T'(n) : n € N}, where
T(n) =W*(n) U ([S(n) U{psc}] x {Pc})-
Let Bx be the family containing the empty set and all the basic sets
described above. It is easy to show that By is closed under finite inter-

sections. Thus, By is a basis for a topology 7x on X. Clearly, X is a
Hausdorff space.

Claim 3.1. X is Fréchet-Urysohn.

Proof. Let A C X and p € clx(A4) \ A. We need to consider three cases.

If p=(z,n) € Zy x N, since {z} is open in Z, {p} = {(z,n)} is open
in W, so {p} is also open in X. Thus, this case is impossible.
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If p=(po,n) € {po} x N, since Z x {n} is open in W, it is also open
in X. Then p is in the closure (in X) of AN (Z x {n}). Since Z x {n}
as subspace of X is homeomorphic to Z x {n} as subspace of Z x N, we
have that Z x {n} is homeomorphic to Z. By Claim 2.2, there exists a
sequence in AN (Z x {n}) converging to p.

Ifpe N((;;O ), by definition, X has a countable local basis at p. This
implies that there exists a sequence of points in A converging to p. This
completes the proof. O

Define the space Y as
Y = Ny X No.

We consider Y with the product topology.
Consider the mapping g : Z — N, defined in the previous section.
Define f: X — Y by

fp) = { (g(z),n), if p= (Z7n) ew,

D, ifpe N&Z"’.
Claim 3.2. f is continuous.

Proof. To prove that f is continuous we take appropriate basic open sub-
sets U of Y.

IfU = (S(n) U{ps}) x (S(n)U{po}), for some n € N, then f~1(U) =
T'(n), which is open in X.

If U = (S(n) U{ps}) x {m}, for some n,m € N, then f~1(U) =
72+ (m)x {m} = (1Z0(S(n) x F)| 0 {po}) x {m} = g~ (S()U{p}) X {m}.
By Claim 2.3, f~!(U) is open in W and then f~1(U) is open in X.

If U = {n} x (S(m) U {pxo}), for some n,m € N, then f~1(U) =
W (n,m) U {(n,peo)}, which is open in X.

Finally, if U = {(n, m)} for some n,m € N, then f~Y(U) = Z(n)x{m}.
Since Z(n) = Z N ({n} x F) C Zy, and every subset of Zj is open in Z,
f~Y(U) is open in W and then it is open in X. a

Claim 3.3. [ is strong light.

Proof. Take p = (u,v) €Y.

If u,v € N, then f~1(p) = Z(u) x {v} = g~ (u) x {v}. By Claim 2.4,
g~ (u) is discrete in Z, so f~1(p) is discrete in W, and then it is discrete
in X.

If u = ps and v € N, then f~1(p) = {(po,v)}, which is discrete.

If v = poo, then f~1(p) = {(u, poo)}, which is discrete. O
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Claim 3.4. f is open.

Proof. Let U be an open subset of X and let ¢ = f(p) € f(U).

If g € N x N, then {q} is open in Y and ¢ is an interior point of f(U).

If ¢ = (poo, n) for some n € N, then p = (po,n). Let V. =UN(Z x {n}).
Then V is an open subset of X containing p. Since V' is open in Z x {n},
there exists an open subset Vj of Z such that p € Vo x {n} C V. By
Claim 2.5, g(Vp) is open in N, and then g(Vp) x {n} is open in Y. Since
q € f(Vo x{n}) = g(W) x {n} C f(U), we conclude that ¢ is an interior
point of f(U).

If ¢ = (n,pxo) for some n € N, then p = (n,ps). Thus, there exists
m € N such that W(n,m)U{p} CU. Then g € ({n} x (S(m)U{p})) =
F(W(n,m)U{p}) C f(U). Since {n} x (S(m) U {ps}) is open in Y, we
conclude that ¢ is an interior point of f(U).

If ¢ = (Pooy Po), then p = (Poo, Poo). S0, there exists n € N such that
p € W)U (18(n) U {poct] X {pac}) C U. Then g € (S(n) U {poc}) %
(S()U{psc}) = F(WF (1) U([S(n) U{poc}] X {poc})) C f(U). Therefore,
¢ is an interior point of f(U). O

Claim 3.5. S.(f) is not open.

Proof. Suppose to the contrary that S.(f) is open. Then S.(f)(S.(X)) is
open in S.(Y). Let S = {(n,po) : 7 € N} U{(Poo,Poo)} be the sequence
in X which converges to the point (pso, Poo). Notice that S.(f)(S) is the
sequence T = {(n,pso) : N € N} U {(Poo, Poo)} in Y which converges to
(Poo, Pso)- For each m € N, let T}, be the sequence {(n,m) : n € N} U
{(poc,m)} in Y which converges to (poo,m). Since the sequence {7, }75_,
in S.(Y") converges to T, there exists m € N such that T,,, € S.(f)(S.(X)).
Then there exists a sequence S, in S.(X) such that S.(f)(Sm) = Tm.

Since Ty, is a sequence in Ny x {m} and f~1 (N, x{m}) = Z x{m}, we
have that Sy, is a sequence in Z x{m}. Since f(Sy,) = T, for each n € N,
there exists a point (sp,m) € Sy, such that f((s,,m)) = (n,m). This
implies that s, € Zy and f((sn,m)) = (9(sn),m). Since f(Sm) = T,
and f~1((poo,m)) = (po,m), we have (pg,m) € Sy,. Since the only non-
isolated point in Z x {m} is (pg, m), we have that lim S,,, = (po, m). Since
{(sn,m) : n € N} is an infinite subset of S,,, this set can be ordered in a
subsequence {(zx, m)}32, of Sy, converging to the point (pg, m).

Then the sequence {zk},;“;l is a sequence in Z; such that limy_, 2 =
po and with the property that {g(z) : k € N} x {m} = {f((zx,m)) : k €
N} = N x {m}. Thus, {g(zx) : ¥ € N} = N. This contradicts Claim 2.6
and ends the proof. O
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