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OPEN INDUCED MAPPINGS, AN EXAMPLE

ALEJANDRO ILLANES

Abstract. For a Hausdorff space X, let Sc(X) denote the hyper-
space of all nontrivial convergent sequences in X, endowed with
the Vietoris topology. Given a mapping between Hausdorff spaces
f : X → Y , the induced mapping Sc(f) : Sc(X) → Sc(Y ) is de-
fined by Sc(f)(A) = f(A) (the image of A under f). In this paper
we show an example of a strong light open mapping between Haus-
dorff Fréchet-Urysohn spaces f : X → Y such that Sc(f) is not
open. This answers a question by David Maya, Patricia Pellicer-
Covarrubias, and Roberto Pichardo-Mendoza.

1. Introduction

The symbol N denotes the set of positive integers. A mapping is a
continuous function.

All spaces in this paper are Hausdorff spaces. Given a space X, let
CL(X) = {A ⊂ X : A is closed and nonempty}.

Given n ∈ N and open subsets U1, . . . , Un in X, let
⟨U1, . . . , Un⟩ = {A ∈ CL(X) : A ⊂ U1 ∪ . . . ∪ Un and A ∩ Ui ̸= ∅ for each

i ∈ {1, . . . , n}}.
We consider CL(X) with the Vietoris topology which has as a basis

the family of all sets of the form ⟨U1, . . . , Un⟩.
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A nontrivial convergent sequence in X is a countably infinite subset S
of X for which there is x ∈ S such that for each open subset of X with
x ∈ U , we have S \ U is finite. In this case we say that S converges to x
and we write limS = x.

We consider the hyperspace of nontrivial convergent sequences in X
defined by

Sc(X) = {S ∈ CL(X) : S is a nontrivial convergent sequence in X}.

Recall that X is a Fréchet-Urysohn space if for each A ⊂ X and each
p ∈ clX(A), there exists a sequence {pn}∞n=1 in A such that limn→∞ pn =
p. The space X is sequential if for each A ⊂ X with clX(A) ̸= A,
there exists a sequence {pn}∞n=1 in A and a point p ∈ X \ A such that
limn→∞ pn = p.

A mapping between Hausdorff spaces f : X → Y is a strong light
mapping if for each y ∈ Y , f−1(y) is a discrete subspace of X.

Given a strong light mapping f : X → Y one can consider the induced
function Sc(f) : Sc(X) → Sc(Y ) given by Sc(f)(S) = f(S) (the image of
X under f). It is easy to show that Sc(f) is continuous (see sections 2
and 3 in [5]).

The hyperspace of nontrivial sequences has been recently studied in
[2], [5], [6], and [7]. In [5], the authors introduced the study of induced
mappings Sc(f).

Given a family M of mappings, the authors of [5] consider the possible
implications between the conditions:

(a) f ∈ M, and
(b) Sc(f) ∈ M.
They studied implications for the following families of mappings: open,

almost-open, quotient, monotone, surjective, finite-to-1, homeomorphism,
closed, strong light, light, sequence-covering and 1-sequence covering.

In particular, they found [5, Theorem 4.20] equivalent conditions on
the mapping f in order that the mapping Sc(f) is open. As a conse-
quence they showed [5, Corollary 4.21] that if X is sequential, the set of
points in X that are limit of a sequence is dense in X, and the mapping
Sc(f) : Sc(X) → Sc(Y ) is open, then f is open. They gave conditions [5,
Theorem 4.23 and Corollary 4.24] under which the openness of f implies
the openness of Sc(f). They also asked the following [5, Question 5.9]:
Is there a strong light and open mapping f such that Sc(f) is not open?
(where X is a sequential Hausdorff space such that it contains at least
one convergent sequence).

The aim of this paper is to answer this question by showing two Fréchet-
Urysohn Hausdorff spaces X and Y and a strong light open mapping
f : X → Y such that Sc(f) is not open.
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For the openness of induced mappings in other hyperspaces, the reader
could be interested in the papers [1], [3], and [7].

2. An Auxiliary Space

Lemma 2.1. There exists a family F of subsets of N such that
(1)

∪
F = N,

(2) N is not a finite union of elements of F ,
(3) each infinite subset of N contains an element of F ,
(4) each element of F is infinite.

Proof. Let Q be set of rational numbers in the real line. Since Q×Q is
countable, taking all the sets of one of the forms ([z, z+1)×Q)∩ (Q×Q)
and (Q× [z, z+1))∩ (Q×Q) (for integer numbers z) it is possible to find
an infinite family F0 of subsets of N, satisfying (1), (2), and (4) and the
property:

(5) each element of N belongs to two distinct elements of F0.
Define

Z = {G : G is a family of subsets of N satisfying (4), F0 ⊂ G and no
element A of G is contained in a finite union of elements of G \ {A}}.

We consider Z with the order given by the inclusion.
A simple application of Zorn’s Lemma implies that Z contains a max-

imal element M.
Define

F = {A ⊂ N : A is infinite and A is contained in an element of M}.

Since F0 ⊂ M ⊂ F , F satisfies (1). By definition, F satisfies (4).
If F does not satisfy (2), by the definition of F , there exist n ∈ N and

M1, . . . ,Mn ∈ M such that N = M1 ∪ . . . ∪ Mn, since F0 ⊂ M, M is
infinite, so there exists M ∈ M\ {M1, . . . ,Mn} and M ⊂ M1 ∪ . . .∪Mn.
This is a contradiction since M ∈ Z. Hence, F satisfies (2).

In order to prove that F satisfies (3), take an infinite subset A of N. In
the case that A ∈ M ⊂ F , we are done. Suppose then that A /∈ M. By
the maximality of M, the family M0 = M∪ {A} does not belong to Z,
so there are m ∈ N and pairwise distinct elements L1, . . . , Lm+1 ∈ M0

such that Lm+1 ⊂ L1 ∪ . . . ∪ Lm.
Since M ∈ Z, there is i ∈ {1, . . . ,m+ 1} such that A = Li.
In the case that i = m + 1, we have that A ⊂ L1 ∪ . . . ∪ Lm and

{L1, . . . , Lm} ⊂ M. Since A is infinite, there exists j ∈ {1, . . . ,m} such
that A ∩ Lj is infinite. By definition, A ∩ Lj ∈ F and we are done.
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Now, we consider the case that i ≤ m. Without loss of generality, we
suppose that i = 1. Notice that the set B = Lm+1 \ (L2 ∪ . . . ∪ Lm) is
contained in A. If B is finite, since F0 ⊂ M, by (5), B can be covered
by a finite number C1, . . . , Ck of elements of M \ {Lm+1} and Lm+1 ⊂
C1 ∪ . . . ∪ Ck ∪ L2 ∪ . . . ∪ Lm, which contradicts the fact that M ∈ Z.
Thus, B is infinite. Therefore, B ∈ F and B ⊂ A, and we are done.

This ends the proof that F has the required properties. �

Consider N with the discrete topology and let N∞ = N ∪ {p∞} be the
one-point compactification of N (p∞ /∈ N).

Let F be a family satisfying properties (1)–(4) in Lemma 2.1.
For each F ∈ F , let TF = F × {F} ⊂ N×F .
Let πN : N×F → N be the projection.
Define Z0 =

∪
{TF ⊂ N×F : F ∈ F}. Take a point p0 /∈ Z0.

Set Z = Z0 ∪ {p0}.
Let G = {B ⊂ Z0 : B ∩ TF is finite for each F ∈ F}, B0 = {Z \ B :

B ∈ G}, and B = B0 ∪ {{p} : p ∈ Z0} ∪ {∅}. Notice that p0 ∈ U for each
U ∈ B0 and B0 and B are closed under finite intersections.

We endow Z with the topology τ that has B as a basis.
Given p ∈ Z0, {p} ∈ G, Z \ {p} is open and {p} ∈ B ⊂ τ . This implies

that Z is a Hausdorff space.

Claim 2.2. Z is Fréchet-Urysohn.

Proof. Let A ⊂ Z and p ∈ clX(A) \ A. Since for each point q ∈ Z0, {q}
is open in Z, we have p /∈ Z0. So, p = p0.

If A ∩ TF is finite for each F ∈ F , then A ∈ G, Z \ A ∈ B0 ⊂ τ , and
A is closed, which is absurd. Thus, there exists F ∈ F such that the set
B = A∩TF is infinite. Since TF = F×{F}, B is of the form B = C×{F},
where C is infinite and C ⊂ N. Then there exists a sequence n1 < n2 < . . .
in N such that C = {n1, n2, . . .}. Notice that {(nk, F ) : k ∈ N} ⊂ A.

We claim that limk→∞(nk, F ) = p0. Let U ∈ B be such that p0 ∈ U .
Then U = Z \ D for some D ∈ G. So D ∩ TF is finite. In particular,
D ∩ {(nk, F ) : k ∈ N} is finite. So there exists K ∈ N such that (nk, F ) /∈
D for each k ≥ K. Hence, (nk, F ) ∈ U for each k ≥ K. Therefore, Z is
Fréchet-Urysohn. �

With a similar argument as in the last paragraph it can be proved that
if F ∈ F , then limTF = p0.

Let g : Z → N∞ be the function defined as

g(p) =

{
πN(p), if p ∈ Z0,
p∞, if p = p0.
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Claim 2.3. g is continuous.

Proof. Since for each p ∈ Z0, {p} is open, we have that g is continuous at
p. To see that g is continuous at p0, take n ∈ N and let Rn = {0, . . . , n−1}
and Wn = {n, n+ 1, . . .} ∪ {p∞}. Given F ∈ F , g−1(Rn) ∩ (N× {F}) is
finite. This implies that g−1(Rn) ∩ TF is finite. Thus, g−1(Rn) is closed
and Z \ g−1(Rn) = g−1(Wn) is open in Z. Therefore, g is continuous. �

Claim 2.4. g is strong light.

Proof. Given n ∈ N, g−1(n) is a subset of Z0. Since τ induces the discrete
topology on Z0, we have that g−1(n) is discrete. On the other hand,
g−1(p∞) = {p0} which is also discrete. Hence, g is strong light. �

Claim 2.5. g is open.

Proof. Let U be an open subset of Z and let q = g(p) ∈ g(U).
If p ∈ Z0, since g(p) ∈ N, {g(p)} is open in N∞ and q is an interior

point of g(U).
If p = p0, then q = p∞. In order to see that q is an interior point of

g(U), we need to show that there exists N ∈ N such that {N,N+1, . . .} ⊂
g(U). Suppose to the contrary that there is no such an N . Then there
exists an infinite subset A of N such that A ∩ g(U) = ∅. Since F satisfies
(3) in Lemma 2.1, there exists F ∈ F such that F ⊂ A. As we mentioned
before, limTF = p0. So, there exists (n, F ) ∈ TF , with n ∈ F , such
that (n, F ) ∈ U . Thus, n = g((n, F )) ∈ F ∩ g(U) ⊂ A ∩ g(U). This
contradiction proves that q is an interior point of g(U). Therefore, g is
open. �

Claim 2.6. Let {pn}∞n=1 be a sequence in Z0 such that limn→∞ pn = p0.
Then N \ {g(pn) : n ∈ N} is infinite.

Proof. Suppose to the contrary that the set N \ {g(pn) : n ∈ N} is finite.
Let A = {pn ∈ Z0 : n ∈ N}.

Let FA = {F ∈ F : A ∩ TF ̸= ∅}. Notice that A ⊂
∪
{TF : F ∈ FA}

and {g(pn) : n ∈ N} = g(A) ⊂
∪
{F : F ∈ FA}.

In the case that FA is infinite, since the elements of the family {TF :
F ∈ F} are pairwise disjoint, there exists a subsequence {pnk

}∞k=1 of
{pn}∞n=1 and there exists a sequence {Fk}∞k=1 in F such that for each
k ∈ N, pnk

∈ TFk
and the sets F1, F2, . . . are pairwise distinct. Consider

the set B = {pnk
: k ∈ N}. Notice that B ∩ TF is finite for each F ∈ F .

Thus, B ∈ G and Z \B is an open subset of Z containing p0. Then there
exists (infinitely many) k ∈ N such that pnk

∈ Z \ B. This contradicts
the fact that pnk

∈ B and proves that FA is finite.
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Set FA = {F1, . . . , Fm}. Then {g(pn) : n ∈ N} ⊂ F1 ∪ . . . ∪ Fm.
Since N \ {g(pn) : n ∈ N} is finite and

∪
F = N, there exist r ∈ N and

G1, . . . , Gr ∈ F such that N \ {g(pn) : n ∈ N} ⊂ G1 ∪ . . . ∪ Gr. Thus,
N = F1∪ . . .∪Fm∪G1∪ . . .∪Gr. This contradicts the fact that F satisfies
(2) in Lemma 2.1 and ends the proof. �

3. The Example

Now, we construct the spaces X and Y and the mapping f .
Consider the space Z ⊂ (N×F)∪ {p0} defined in the previous section

and W = Z × N, where N is endowed with the discrete topology.
For each n,m ∈ N, let S(m) = {m,m+ 1, . . .}, Z(n) = Z ∩ ({n} ×F),

Z+(n) = [Z ∩ (S(n) × F)] ∪ {p0}, W (n,m) = Z(n) × S(m) ⊂ W , and
W+(n) = Z+(n)× S(n).

Notice that Z(n) and Z+(n) are open in Z and W (n,m) and W+(n) are
open in W . Notice also that Z(n1) ∩ Z+(n2) = ∅ if n1 < n2 and Z(n1) ∩
Z+(n2) = Z(n1) if n1 ≥ n2. Moreover, W (n1,m)∩W+(n2) = ∅ if n1 < n2

and W (n1,m)∩W+(n2) = Z(n1)×S(max{m,n2}) = W (n1,max{m,n2})
if n1 ≥ n2.

Consider the space N(∞)
∞ = N∞ × {p∞}.

Define
X = W ∪ N(∞)

∞ .
We will define a topology for X by giving a local basis at each point

of X.
For a point p in W , the local basis is the family of open subsets of the

product W containing p.
For a point p = (n, p∞) ∈ N× {p∞}, the local basis is the family

{W (n,m) ∪ {p} : m ∈ N}.
And for the point (p∞, p∞), the local basis is the family
{T (n) : n ∈ N}, where

T (n) = W+(n) ∪ ([S(n) ∪ {p∞}]× {p∞}).
Let BX be the family containing the empty set and all the basic sets

described above. It is easy to show that BX is closed under finite inter-
sections. Thus, BX is a basis for a topology τX on X. Clearly, X is a
Hausdorff space.

Claim 3.1. X is Fréchet-Urysohn.

Proof. Let A ⊂ X and p ∈ clX(A) \A. We need to consider three cases.
If p = (z, n) ∈ Z0 × N, since {z} is open in Z, {p} = {(z, n)} is open

in W , so {p} is also open in X. Thus, this case is impossible.
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If p = (p0, n) ∈ {p0} × N, since Z × {n} is open in W , it is also open
in X. Then p is in the closure (in X) of A ∩ (Z × {n}). Since Z × {n}
as subspace of X is homeomorphic to Z × {n} as subspace of Z × N, we
have that Z × {n} is homeomorphic to Z. By Claim 2.2, there exists a
sequence in A ∩ (Z × {n}) converging to p.

If p ∈ N(∞)
∞ , by definition, X has a countable local basis at p. This

implies that there exists a sequence of points in A converging to p. This
completes the proof. �

Define the space Y as

Y = N∞ × N∞.

We consider Y with the product topology.
Consider the mapping g : Z → N∞ defined in the previous section.
Define f : X → Y by

f(p) =

{
(g(z), n), if p = (z, n) ∈ W ,

p, if p ∈ N(∞)
∞ .

Claim 3.2. f is continuous.

Proof. To prove that f is continuous we take appropriate basic open sub-
sets U of Y .

If U = (S(n)∪{p∞})× (S(n)∪{p∞}), for some n ∈ N, then f−1(U) =
T (n), which is open in X.

If U = (S(n) ∪ {p∞}) × {m}, for some n,m ∈ N, then f−1(U) =
Z+(n)×{m} = ([Z∩(S(n)×F)]∪{p0})×{m} = g−1(S(n)∪{p∞})×{m}.
By Claim 2.3, f−1(U) is open in W and then f−1(U) is open in X.

If U = {n} × (S(m) ∪ {p∞}), for some n,m ∈ N, then f−1(U) =
W (n,m) ∪ {(n, p∞)}, which is open in X.

Finally, if U = {(n,m)} for some n,m ∈ N, then f−1(U) = Z(n)×{m}.
Since Z(n) = Z ∩ ({n} × F) ⊂ Z0, and every subset of Z0 is open in Z,
f−1(U) is open in W and then it is open in X. �

Claim 3.3. f is strong light.

Proof. Take p = (u, v) ∈ Y .
If u, v ∈ N, then f−1(p) = Z(u)× {v} = g−1(u)× {v}. By Claim 2.4,

g−1(u) is discrete in Z, so f−1(p) is discrete in W , and then it is discrete
in X.

If u = p∞ and v ∈ N, then f−1(p) = {(p0, v)}, which is discrete.
If v = p∞, then f−1(p) = {(u, p∞)}, which is discrete. �
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Claim 3.4. f is open.

Proof. Let U be an open subset of X and let q = f(p) ∈ f(U).
If q ∈ N× N, then {q} is open in Y and q is an interior point of f(U).
If q = (p∞, n) for some n ∈ N, then p = (p0, n). Let V = U ∩(Z×{n}).

Then V is an open subset of X containing p. Since V is open in Z ×{n},
there exists an open subset V0 of Z such that p ∈ V0 × {n} ⊂ V . By
Claim 2.5, g(V0) is open in N∞ and then g(V0)×{n} is open in Y . Since
q ∈ f(V0 × {n}) = g(V0)× {n} ⊂ f(U), we conclude that q is an interior
point of f(U).

If q = (n, p∞) for some n ∈ N, then p = (n, p∞). Thus, there exists
m ∈ N such that W (n,m)∪{p} ⊂ U . Then q ∈ ({n}× (S(m)∪{p∞})) =
f(W (n,m) ∪ {p}) ⊂ f(U). Since {n} × (S(m) ∪ {p∞}) is open in Y , we
conclude that q is an interior point of f(U).

If q = (p∞, p∞), then p = (p∞, p∞). So, there exists n ∈ N such that
p ∈ W+(n) ∪ ([S(n) ∪ {p∞}] × {p∞}) ⊂ U . Then q ∈ (S(n) ∪ {p∞}) ×
(S(n)∪{p∞}) = f(W+(n)∪ ([S(n)∪{p∞}]×{p∞})) ⊂ f(U). Therefore,
q is an interior point of f(U). �

Claim 3.5. Sc(f) is not open.

Proof. Suppose to the contrary that Sc(f) is open. Then Sc(f)(Sc(X)) is
open in Sc(Y ). Let S = {(n, p∞) : n ∈ N} ∪ {(p∞, p∞)} be the sequence
in X which converges to the point (p∞, p∞). Notice that Sc(f)(S) is the
sequence T = {(n, p∞) : n ∈ N} ∪ {(p∞, p∞)} in Y which converges to
(p∞, p∞). For each m ∈ N, let Tm be the sequence {(n,m) : n ∈ N} ∪
{(p∞,m)} in Y which converges to (p∞,m). Since the sequence {Tm}∞m=1

in Sc(Y ) converges to T , there exists m ∈ N such that Tm ∈ Sc(f)(Sc(X)).
Then there exists a sequence Sm in Sc(X) such that Sc(f)(Sm) = Tm.

Since Tm is a sequence in N∞×{m} and f−1(N∞×{m}) = Z×{m}, we
have that Sm is a sequence in Z×{m}. Since f(Sm) = Tm, for each n ∈ N,
there exists a point (sn,m) ∈ Sm such that f((sn,m)) = (n,m). This
implies that sn ∈ Z0 and f((sn,m)) = (g(sn),m). Since f(Sm) = Tm

and f−1((p∞,m)) = (p0,m), we have (p0,m) ∈ Sm. Since the only non-
isolated point in Z×{m} is (p0,m), we have that limSm = (p0,m). Since
{(sn,m) : n ∈ N} is an infinite subset of Sm, this set can be ordered in a
subsequence {(zk,m)}∞k=1 of Sm converging to the point (p0,m).

Then the sequence {zk}∞k=1 is a sequence in Z0 such that limk→∞ zk =
p0 and with the property that {g(zk) : k ∈ N} × {m} = {f((zk,m)) : k ∈
N} = N × {m}. Thus, {g(zk) : k ∈ N} = N. This contradicts Claim 2.6
and ends the proof. �
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