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THE UNIVERSALITY OF THREE-DIMENSIONAL
SUBDIVISION RULES

BRIAN RUSHTON

Abstract. We characterize the history graph of a finite subdi-
vision rule in terms of its combinatorics. We use this to show
that each finite subdivision rule is combinatorially equivalent to
a three-dimensional finite subdivision rule. This shows that high-
dimensional recursive sequences of cell complexes (such as those
used to construct higher-dimensional analogues of the Sierpinski
cube) have the same adjacency patterns as 3-dimensional sequences,
which are easier to visualize.

1. Introduction

Finite subdivision rules are a very general construct for creating recur-
sively defined structures in all dimensions (such as the Sierpinski triangle,
carpet, and cube). They consist of a set of topological spaces and maps
used recursively to create more and more refined cell structures. In this
paper, we show that a finite subdivision rule (in any dimension) is com-
binatorially equivalent to a three-dimensional finite subdivision rule (in
the sense that there is map between the two recursive sequences of cell
structures that preserves adjacency of cells).

The main difficulty in the paper is not in finding a sequence of 3-dimension-
al cell structures with the same adjacencies, but in finding such a sequence
that is defined recursively, i.e. another finite subdivision rule.
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3. Background

Finite subdivision rules are a construction in geometric group theory orig-
inally described by Cannon, Floyd, and Parry in relation to Cannon’s
Conjecture [4]. In their work, finite subdivision rules are a collection of
2-complexes and maps that can be used to repeatedly refine a tiling of the
plane, sphere, or disk. For instance: 2-dimensional barycentric subdivi-
sion, which replaces every triangle in a two-dimensional simplicial complex
with six smaller triangles, can be represented as a finite subdivision rule
in the sense of Cannon et. al. These 2-dimensional finite subdivision rules
are strongly connected to rational maps on the sphere [1, 3].

More importantly, Cannon and Swenson have shown that every three-
dimensional hyperbolic manifold group can be associated to a two-dimen-
sional finite subdivision rule that subdivides the two-sphere, and that
this finite subdivision rule on the sphere contains enough information to
reconstruct the group itself [2, 5]. A finite subdivision rule together with
a 2-complex that it subdivides is called a subdivision pair.

This was later generalized to show that many groups can be associated
to a finite subdivision pair of dimension higher than 2, and that:

(1) the subdivision pair associated to a group is sufficient for recon-
structing the quasi-isometry class of the group through a graph
called the history graph [9, 10], and

(2) there is a dictionary between combinatorial properties of the sub-
division pair and quasi-isometry properties of the group [12].

In these last three cited papers, the primary features of interest in these
subdivision pairs of higher dimension are their combinatorics. In this
paper, we define a combinatorial subdivision graph, which is a com-
binatorial analogue to a subdivision pair. We prove the following:

Theorem 2. Let (R,X) be a subdivision pair. Then the history graph
Γ(R,X) is a combinatorial subdivision graph.
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Theorem 3. Let Ξ be a combinatorial subdivision graph. Then there is a
3-dimensional subdivision pair (R,X) such that the history graph Γ(R,X)
is graph isomorphic to Ξ.

These two theorems show that we can replace a subdivision pair of any di-
mension with a 3-dimensional subdivision pair without changing its com-
binatorial properties. It also shows that if a group is quasi-isometric to
a combinatorial subdivision graph, then it can be associated to a subdi-
vision pair, allowing us to use the dictionary between combinatorics and
quasi-isometry properties to study the group.

4. Definitions

4.1. Finite subdivision rules.

Definition. A (colored) finite subdivision rule R of dimension n
consists of:

(1) A finite n-dimensional CW complex SR, called the subdivision
complex. We assume that for every closed cell s̃ of SR there is a
CW structure s on a closed disk of the same dimension such that
the subcells of s are contained in ∂s and the characteristic map
ψs : s → SR which maps onto s̃ restricts to a homeomorphism
onto each open cell (this makes the complex essentially a union
of polytopes, but allows for degenerate cases like bigons),

(2) a finite n-dimensional complex R(SR) that is a subdivision of SR,
(3) a subdivision map φR : R(SR) → SR,which is a cellular map

that restricts to a homeomorphism on each open cell, and
(4) A coloring of the cells of SR, which is a partition of the set of

cells of SR into an ideal set I and a limit set N , such that φR
maps I into itself and the union of the cells in I is open in SR.

Each cell s in the definition above (with its appropriate characteristic
map) is called a tile type of SR.

Given a finite subdivision rule R of dimension n, an R-complex consists
of:

(1) a CW complex X, and
(2) a continuous cellular map f : X → SR called the structure map

of X whose restriction to each open cell is a homeomorphism.
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Definition. Cells of R-complexes are referred to as tiles. Given a tile A
of an R complex and a tile type B of SR, we say that A has tile type B
if A maps onto B under the structure map f . If B is ideal, we say that
A has an ideal tile type, and the same holds for limit tile types.

Given an R-complex X with map f : X → SR and subdivision R(SR)
we define the subdivision of X under R as the complex R(X) which is
obtained from X by pulling back the cell structure of R(SR) under the
map f .

This gives an induced structure map f : R(X) → R(SR) that restricts
to a homeomorphism on each open cell. This means that R(X) is an
R-complex with structure map φR ◦ f : R(X)→ SR.

The n-th subdivision of X under R (written Rn(X)) is given by setting
R0(X) = X (with structure map f : X → SR) and Rn(X) = R(Rn−1(X))
(with structure map φnR ◦ f : Rn(X)→ SR) if n ≥ 1.

A finite subdivision rule R with a given R-complex X is called a subdi-
vision pair (R,X).

The dimension of a subdivision pair (R,X) is the dimension of X. The
dimension of X may be less than the dimension of R; for instance, a point
is an R-complex for every finite subdivision rule R.

The history graph is one of the most useful constructions involving finite
subdivision rules. It is a metric space whose quasi-isometry properties are
directly determined by the combinatorial properties of a given subdivision
pair (R,X) .

Definition. Let R be a finite subdivision rule, and letX be an R-complex
of dimension m.

A face is an m-dimensional tile of X or one of its subdivisions. A limit
face is a face with a limit tile type, and an ideal face is a face with an
ideal tile type.

A facet is an (m − 1)-dimensional tile of X or its subdivisions. Limit
facets and ideal facets are defined as for faces.

Let Λn denote the set of all limit faces in the nth level of subdivision
Rn(X). We call Λn the nth limit set of X.
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Let Un equal the subspace consisting of the union of all tiles in Λn. Note
that Un is a closed subset of X, due to item 4 in the definition of subdivi-
sion rules and the fact that the subdivision map is continuous. We define
Λ = Λ(R,X) to be

Λ =

∞⋂
n=1

Un

The complement of Λ is called the ideal set of X and is denoted Ω =
Ω(R,X).

Given (R,X) as above, we define Γn as the graph containing:

(1) a vertex for each face in Λn, and
(2) an edge for each pair of faces of Λn which share a facet.

The history graph Γ = Γ(R,X) consists of:

(1) a single vertex O called the origin,
(2) the disjoint union of the Γn, whose edges are called horizontal,

and
(3) a collection of vertical edges defined as follows: if a vertex v in

Γn corresponds to a limit face T , we add an edge connecting v to
each of the limit faces contained in R(T ). We also connect the
origin O to every vertex of Γ0.

4.2. Combinatorial subdivision graphs. In this section, we provide a
characterization of history graphs of subdivision rules.

Definition. A (finitely) labeled graph is a graph together with a map
from the edges of the graph to a finite set of edge labels, and a map from
the vertices of the graph to a finite set of vertex labels. For purposes
of this article, we include unions of open edges as labeled graphs.

For background on labeled graphs, see [8].

Definition. A labeled graph morphism is a graph morphism between
labeled graphs that preserves labels.

Definition. The open star of a vertex is the union of a vertex with all
the open edges that have that vertex as an endpoint.
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Definition. A finitely-labeled graph Ξ is a combinatorial subdivision
graph if it contains disjoint subgraphs Ξn such that the following are
satisfied:

(1) Ξ0 is a single vertex.
(2) Every vertex is contained in some Ξn.
(3) Every vertex v of Ξn for n > 0 is connected to a unique vertex of

Ξn−1 called the predecessor of v. We define the predecessor of
the unique vertex in Ξ0 to be itself.

(4) If two vertices of Ξn are connected by an edge for some n > 0,
then their predecessors are connected by an edge.

(5) The open stars of any two vertices with the same label are labeled-
graph isomorphic.

(6) Conditions 3 and 4 allow us to define a graph morphism π : Ξ→ Ξ
which sends each vertex to its predecessor. We call the map π the
predecessor map. Then we require the preimages under π of
two edges with the same label to be labeled-graph isomorphic.
A representative graph in such an isomorphism class is called an
edge subdivision. Similarly, we require the preimage of two
open stars of vertices with the same label to be labeled-graph
isomorphic, and a representative graph in this isomorphism class
is called a vertex subdivision.

Lemma 1. Each edge subdivision is a disjoint union of edges.

Proof. A labeled graph morphism is a homeomorphism when restricted
to an open edge, so each edge subdivision is a union of edges. Because no
vertices are included, the edges are necessarily disjoint. �

5. Main Theorems

Theorem 2. Let (R,X) be a finite subdivision pair. Then the history
graph Γ(R,X) is a combinatorial subdivision graph.

Proof. Let Γ be the history graph of a subdivision pair of dimension
n. Items 1-3 in the definition of a combinatorial subdivision graph are
automatically satisfied.

Note that faces of Rn(Sn) are subsets of faces of Rn−1(Sn). Thus, if
faces A,B of Rn(Sn) share a facet, then the faces A′, B′ of Rn−1(Sn)
that contain A and B also share at least one facet. Thus, condition 4 is
satisfied.
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Vertex labels in Γ correspond to n-dimensional limit tile types, and edge
labels correspond to (n − 1)-dimensional limit tile types which are con-
tained between two n-dimensional tiles in X. The tile type of an n-
dimensional cell determines the tile type of its boundary, so the edge
labels surrounding a given vertex label in Γ are unique, satisfying item 4.

Finally, item 5 is satisfied by the nature of a subdivision rule: a subdivision
rule acts locally, and always replaces a tile with a given type the exact
same way. �

Theorem 3. Let Ξ be a combinatorial subdivision graph. Then there is a
3-dimensional subdivision pair (R,X) such that the history graph Γ(R,X)
is graph isomorphic to Ξ.

Proof. It is easy, using general position arguments, to embed a graph in
R3 and thicken it into a cell complex. By doing this for each subgraph
Γn of a combinatorial subdivision graph Γ, we can get a sequence of cell
complexes which are similar to those created by a subdivision rule. The
difficulty, though, is ensuring that the sequence of cell complexes is defined
recursively.

Therefore, we need to construct the subdivision complex SR, the related
complex R(SR), and the subdivision map φR explicitly, as well as the
R-complex X.

For each vertex label v, let B(v) be a closed ball in R3. We place a cell
structure on B(v) such that:

(1) there is one 3-cell in B(v), and
(2) the boundary sphere of B(v) contains disjoint disks, one for each

edge in the open star of a vertex with the label v. We give each
disk the standard cell structure with one vertex, one edge, and
one 2-cell. We consider the remainder of the sphere ‘ideal’.

Let Y be the quotient of the disjoint union of the B(v) given by identifying
boundary disks corresponding to edges with the same label. Thus, Y has
one disk for each edge label, via an orientation-preserving map. For each
disk D(e), let D′(e) be a new cell structure on D(e) that contains sub-
disks, one for each edge in the edge subdivision corresponding to D(e).
By Lemma 1, these sub-disks are disjoint.
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The vertex subdivision corresponding to a vertex label is a union of open
vertex stars. Given a label v, we construct a complex N(v) taking the
disjoint union of copies of the B(w), one for each vertex w in the vertex
subdivision of v, and identifying boundary disks that correspond to the
same edge in the vertex subdivision, via an orientation-preserving map.
Because each copy of a B(w) deformation retracts onto compactification
of the closed star of the corresponding vertex (here, the compactification
merely adds endpoints onto the boundary edges), the whole complex N(v)
deformation retracts onto the compactification of the vertex subdivision.
The unidentified boundary disks of N(v) are called the exterior disks
of N(v). Each exterior disk of N(v) corresponds to a boundary edge of
the vertex subdivision, which in turn corresponds to an edge in the edge
subdivision of one of the edges of the original vertex star. Thus, each
exterior disk corresponds to a subdisk in some D′(e).

We now embed each N(v) into B(v) ⊆ Y so that:

(1) the intersection of N(v) with the boundary of B(v) ⊆ Y is the
union of the exterior disks of N(v),

(2) each exterior disk of N(v) matches up with the appropriate sub-
disk of the appropriate D′(e). This is possible because the sub-
disks are disjoint, and

(3) the closed complement B(v) \N(v) is divided into 3-cells that are
almost polyhedral (which we can do by triangulating and using
barycentric subdivision twice, if necessary). We label this com-
plement as ideal.

This gives us a new cell structure on each B(v), which we can call B′(v),
and thus a new cell structure on Y , which we can call Y ′; the two com-
plexes Y and Y ′ have the same underlying topological space. We now let
I(v) be a cell complex isomorphic to B(v)\N(v). Note that the boundary
of I(v) can be partitioned into its intersection with the boundary of B(v)
(the outer portion of ∂I(v)) and its intersection with the boundary of
N(v) (the inner portion of ∂I(v)). Attach I(v) to Y by using the identity
map on the outer portion and, on the inner boundary, mapping each part
of ∂N(v) to the ∂B(v) it is a copy of.

Call this new complex SR. If we replace the part corresponding to Y with
the Y ′ structure, we get a new complex which we call R(SR).

There is a natural map from R(SR) to SR, which is obtained by:
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(1) mapping each boundary sub-disk of the N(v)’s corresponding
to an edge label e to the disk D(e) ⊆ SR via an orientation-
preserving map,

(2) mapping each I(v) to itself via the identity,
(3) sending each closed 3-cell in N(v) to the B(v) it is a copy of, and
(4) sending each complex B(v) \N(v) to the I(v) that is a copy of it.

We call this map φR, and, together with SR and R(SR), this forms a finite
subdivision rule R of dimension 3.

To create the cell complex X, recall that Ξ1 is full subgraph supported
on the set of all vertices at distance 1 from the origin in Ξ. Let X consist
of a copy of B(v) for each open vertex star in Ξ1 with label v, where we
identify boundary disks of two B(v)’s that correspond to the same edge
of Ξ1.

Then the dual graph of X is graph isomorphic to Ξ1.

Let the structure map f : X → SR be given by mapping each copy of a
B(v) to the corresponding B(v) in SR. Recall that the subdivision R(X)
is obtained by ‘pulling back’ the cell structure of R(SR) via f . In this
case, it replaces each copy of a B(v) with B(v)′. The limit cells of B(v)′

are the interior cells of N(v) and its boundary disk; thus, the dual graph
of R(X) is obtained by replacing each open vertex star of the dual graph
of X with its vertex subdivision, and each edge with its edge subdivision.
Thus, the dual graph of R(X) must be isomorphic to Ξ2. By continuing
this process, we see that Rn(x) is dual to Ξn+1, and that the vertical edges
of Γ(R,X) connect a vertex to its predecessor under the subdivision.

This concludes the proof. �

Note that 3 is the smallest dimension possible in the theorem, as some
history graphs are not planar (such as the history graph of the subdivision
rules in [10]).
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