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HIGHER ORDER ELLIPTIC FUNCTIONS WITH
CONNECTED JULIA SETS

JOSHUA J. CLEMONS AND LORELEI KOSS

Abstract. Connectivity properties of elliptic functions are com-
pletely understood for only four families of order two elliptic func-
tions. In this paper, we find families of elliptic functions of arbi-
trarily high order on square and triangular lattices for which the
Julia set is connected.

There are four families of elliptic functions for which the connectivity
of the Julia set is completely understood. Let ℘Λ denote the Weierstrass
elliptic function on the lattice Λ. The Julia set of ℘Λ is always connected
if Λ is a triangular [8] or square [3, 5] lattice. The Julia set of 1/℘Λ

is either connected or Cantor if Λ is a triangular lattice [10] or a square
lattice [13]. Connectivity properties of the Julia set of certain higher order
elliptic functions on real rectangular lattices appear in [9, 11], but these
results do not cover all of the functions in those families.

Both ℘Λ and 1/℘Λ have order two. The proofs of the connectivity re-
sults rely on using properties of the special triangular and square lattice
shapes to investigate the locations of the critical values. Symmetry prop-
erties of ℘Λ on a triangular or square lattices force any Fatou component
to contain at most one critical value. These families contain functions
for which the Fatou set is nonempty as well as functions for which the
Julia set is the entire sphere. On the other hand, the functions 1/℘Λ on a
triangular or square lattice always have a super attracting Fatou compo-
nent at the origin. Again, symmetry properties of the function imply that
either this Fatou component contains all of the critical values, resulting
in a Cantor Julia set, or every Fatou component contains at most one
critical value, resulting in a connected Julia set.
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In this paper, we investigate a number of different families of elliptic
functions of arbitrarily high order whose Julia sets are always connected.
Our approach is to find families for which we can strictly control the lo-
cations and behavior of the critical values. We focus on triangular and
square lattices because those lattices give rise to additional symmetry
properties in comparison to general lattice shapes. Section 1 gives back-
ground information on elliptic functions, and Section 2 explains general
results on the dynamics of elliptic functions. In Section 3, we find two
different families of elliptic functions on triangular lattices which always
have connected Julia sets. Finally, in Section 4 we prove that the Julia
set is connected for three families of elliptic functions on square lattices.

1. Background on elliptic functions

We begin with some preliminaries about elliptic functions, the Weier-
strass ℘-function and period lattices.

We start by picking a lattice Λ = [λ1, λ2] = {mλ1 + nλ2 : m,n ∈
Z, λ1, λ2 ∈ C \ {0}, λ2/λ1 /∈ R}. If Λ is a lattice, and k ̸= 0 is any
complex number, then kΛ is also a lattice defined by taking kλ for each
λ ∈ Λ; kΛ is said to be similar to Λ. Similarity is an equivalence relation
between lattices, and an equivalence class of lattices is called a shape. In
this paper, we focus on two special lattice shapes: triangular and square
lattices. Triangular lattices Λ have the property that εΛ = Λ, where
ε = e2πi/3. The period parallelograms of a triangular lattice are formed
by two equilateral triangles. Square lattices Λ have the property that
iΛ = Λ. The period parallelograms of a square lattice form squares.

We define the Weierstrass elliptic function on z ∈ C

℘Λ(z) =
1

z2
+

∑
w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
.

The Weierstrass elliptic function is an even, meromorphic function that
is periodic with respect to the lattice Λ. It has order two and has double
poles at lattice points.

The Weierstrass elliptic function can also be defined by the differential
equation

(1.1) (℘′
Λ(z))

2 = 4(℘Λ(z))
3 − g2℘Λ(z)− g3,

where g2(Λ) = 60
∑

w∈Λ\{0} w
−4, and g3(Λ) = 140

∑
w∈Λ\{0} w

−6. Each
pair of complex numbers (g2, g3) with g32 − 27g23 ̸= 0 determines a unique
equivalence class of lattices and vice versa, where equivalence means that
they generate the same subgroup [4].
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It will be useful to have an expression for ℘′′
Λ, the second derivative of

the Weierstrass elliptic function for a given lattice Λ:

(1.2) ℘′′
Λ(z) = 6(℘Λ(z))

2 − g2(Λ)

2
.

In this paper, we focus on general elliptic functions, which can be
characterized by the following theorem.

Theorem 1.1. [4] Every elliptic function fΛ with period lattice Λ can
be written as fΛ(z) = R(℘Λ(z)) + ℘′

Λ(z)Q(℘Λ(z)), where R and Q are
rational functions with complex coefficients.

The Weierstrass elliptic function and its derivative satisfy the following
homogeneity properties.

Proposition 1.2. [4] For any lattice Λ and for any m ∈ C\{0},
℘mΛ(mz) = m−2℘Λ(z),

℘′
mΛ(mz) = m−3℘′

Λ(z).

1.1. Critical Points and Values. Critical points and values play an
important role in complex dynamics, so it is useful for us to be able to
locate these points for ℘Λ and ℘′

Λ. From [4], we have that the critical
points of ℘Λ lie exactly on the half lattice points of Λ = [λ1, λ2]; that is,
the critical points are

(1.3) z =
λj

2
+ Λ,

for j = 1, 2, 3, where we define λ3 = λ1 + λ2. We use the notation

(1.4) e1 = ℘Λ

(
λ1

2

)
, e2 = ℘Λ

(
λ2

2

)
, e3 = ℘Λ

(
λ3

2

)
to denote the critical values of ℘Λ.

For the special lattice shapes of concern in this paper, the invariants
and critical values of ℘Λ take an especially nice form.

Proposition 1.3. [4, 6]
(1) Let Λ be a triangular lattice. Then

(a) g2(Λ) = 0.
(b) e1, e2, e3 all have the same modulus and are cube roots of

g3/4, so e1 = e4πi/3e3, and e2 = e2πi/3e3.
(c) ℘Λ(z) = 0 if and only if

z = ±1

3
λ4 + Λ;

where λ4 = λ1 − e2πi/3λ1; that is, the roots of ℘Λ are located
at the centers of the equilateral triangles forming the period
parallelograms.
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(2) Let Λ be a square lattice. Then
(a) g3(Λ) = 0.
(b) e1 =

√
g2/2, e2 = −e1, and e3 = 0.

(c) If Λ = [λ, λi] where λ ∈ R, then ℘Λ(λ/2) = e1 is the mini-
mum of ℘Λ on R.

(d) ℘Λ(z) = 0 if and only if z =
λ3

2
+ Λ.

To find the critical points of ℘′
Λ, we begin with ℘′′

Λ(z) = 6(℘Λ(z))
2 −

g2(Λ)/2 from Equation 1.2. Solving ℘′′
Λ(z) = 0 gives us that ℘′

Λ has
critical points in the four congruence classes where

(1.5) (℘Λ(z))
2 =

g2
12

.

The critical values of ℘′
Λ are found by solving 4(℘Λ(z))

3 − g2℘Λ(z) −
((℘′

Λ(z))
2+g3) = 0 for ℘′

Λ(z) after substituting ±
√
g2/12 for ℘Λ(z). Thus

4

(√
g2
12

)3

− g2

√
g2
12

± ((℘′
Λ(z))

2 + g3) = 0,

which implies that

−1

3
g

3
2
2 = ±

√
3((℘′

Λ(z))
2 + g3).

Squaring both sides and rearranging terms shows that

g2
3 − 27((℘′

Λ(z))
2 + g3)

2 = 0,

and by solving for ℘′
Λ(z), we see that the critical values of ℘′

Λ(z) are

(1.6) ±
(
−g3 ±

(g2
3

) 3
2

) 1
2

.

We collect some information about the form of critical points and crit-
ical values for ℘′

Λ on special lattice shapes in the following proposition.

Proposition 1.4. [4]
(1) Let Λ be a triangular lattice. Then ℘′

Λ has exactly two equivalence
classes of critical points lying at

z = ±1

3
λ4 + Λ

(where λ4 = λ1 − e2πi/3λ1; that is, the critical points are located
at the centers of the equilateral triangles forming the period par-
allelograms), and two distinct critical values at v1 =

√
−g3 and

v2 = −v1.
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(2) Let Λ be a square lattice. Then the four critical values of ℘′
Λ are

v1 =

√(g2
3

) 3
2

, v2 = −v1, v3 = iv1, v4 = −iv1.

1.2. Background on the Dynamics of Meromorphic Functions.
We give a brief overview of the dynamics of meromorphic functions; more
details can be found in [1, 2, 14]. Let f : C → C∞ be a meromorphic
function. In this paper, we use the notation fn or (f(z))n to denote
exponentiation, and f◦n to denote iteration. The Fatou set F (f) is the
set of points z ∈ C∞ such that {f◦n : n ∈ N} is defined and normal in
some neighborhood of z. The Julia set is the complement of the Fatou
set on the sphere, J(f) = C∞\F (f). A point z0 is periodic of period
p if there exists a p ≥ 1 such that f◦p(z0) = z0. We also call the set
{z0, f(z0), . . . , f◦p−1(z0)} a p-cycle. The multiplier of a point z0 of period
p is the derivative (f◦p)′(z0). A periodic point z0 is classified as attracting,
repelling, or neutral if |(f◦p)′(z0)| is less than, greater than, or equal to 1
respectively. If |(f◦p)′(z0)| = 0 then z0 is called a superattracting periodic
point.

Suppose U is a connected component of the Fatou set. We say that U
is preperiodic if there exists n > m ≥ 0 such that f◦n(U) = f◦m(U), and
the minimum of n − m = p for all such n,m is the period of the cycle.
Elliptic functions have a finite number of critical values, and thus it turns
out that the classification of periodic components of the Fatou set is no
more complicated than that of rational maps of the sphere. Periodic com-
ponents of the Fatou set of elliptic functions may be attracting domains,
parabolic domains, Siegel disks, or Herman rings. In particular, elliptic
functions have no wandering domains or Baker domains [1, 6, 14].

Let C = {U0, U1, . . . , Up−1} be a periodic cycle of components of F (f).
If C is a cycle of immediate attractive basins or parabolic domains, then
Uj ∩ Crit(f) ̸= ∅ for some 0 ≤ j ≤ p − 1. If C is a cycle of Siegel

Disks or Herman rings, then ∂Uj ⊂
∪
n≥0

f◦n(Crit(f)) for all 0 ≤ j ≤

p − 1. In particular, any periodic component of an elliptic function has
an associated critical point.

2. General Results on Fatou and Julia Sets

If fΛ is an elliptic function, then the periodicity of fΛ results in periodic
Fatou and Julia sets.

Theorem 2.1. [6] For any lattice Λ and any elliptic function fΛ, F (fΛ) =
F (fΛ) + Λ and J(fΛ) = J(fΛ) + Λ.



62 JOSHUA J. CLEMONS AND LORELEI KOSS

Even elliptic functions exhibit additional symmetry on their Fatou and
Julia sets.

Theorem 2.2. [6] For any lattice Λ and any even elliptic function fΛ,
F (fΛ) = −F (fΛ) and J(fΛ) = −J(fΛ).

In [7], Hawkins and the second author showed that, on any lattice
Λ, ℘Λ has no cycles of Herman rings. This result was extended to 1/℘Λ

where Λ is a triangular lattice in [10], and to other even, order two elliptic
functions in the same conformal class of ℘Λ, where Λ is any lattice, in [13].

Many of the elliptic functions in this paper are rational functions of ℘Λ

which are even. The proof given in [7] to prove that ℘Λ has no Herman
rings can be immediately extended to prove Theorem 2.3. The key idea
is that even elliptic functions give rise to Julia sets with even symmetry
by Theorem 2.2, and this is an obstruction to having a Fatou component
that is conjugate to an irrational rotation on an annulus.

Theorem 2.3. For any lattice Λ, if fΛ is an even elliptic function with
poles at Λ then fΛ has no cycle of Herman rings.

We move to an investigation of the dynamics of elliptic functions of
the form fΛ(z) = (℘′

Λ(z))
n, where n > 0. These functions will play an

important role later in the paper. We begin with an examination of the
symmetries that arise in the Julia and Fatou sets.

Theorem 2.4. For any lattice Λ, let fΛ(z) = (℘′
Λ(z))

n, where n > 0.
Then

(1) F (fΛ) = −1F (fΛ) and J(fΛ) = −1J(fΛ).
(2) If Λ is square, then F (fΛ) = iF (fΛ) and J(fΛ) = iJ(fΛ).
(3) If Λ is triangular, then εF (fΛ) = F (fΛ) and εJ(fΛ) = J(fΛ)

where ε is a cube root of unity.

Proof. Part (1) follows since ℘′
Λ is odd; if U is a set for which {f◦k

Λ (U)}
forms a normal family, then {f◦k

Λ (−U) = ±f◦k
Λ (U)} forms a normal family.

For part (2), we know that square lattices satisfy iΛ = Λ. Using Propo-
sition 1.2, we have (℘′

Λ)(−iz) = (℘′
iΛ)(−iz) = −i(℘′

Λ)(z). Thus {f◦k
Λ (U)}

forms a normal family if and only if {f◦k
Λ (iU)} does. For part (3), if ε is a

cube root of one, then so is ε2 = 1/ε; thus ε2Λ = Λ. Then from Proposi-
tion 1.2, ℘′

Λ(ε
2z) = ℘′

ε2Λ(ε
2z) = ℘′

Λ(z), and thus f◦k
Λ (ε2z) = f◦k

Λ (z). �

Next, we prove that the elliptic functions fΛ(z) = (℘′
Λ(z))

n, where Λ
is a triangular lattice and n > 0, do not have Herman rings.

Theorem 2.5. For any triangular lattice Λ, fΛ(z) = (℘′
Λ(z))

n for n > 0
has no cycle of Herman rings.
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Proof. We begin with the case n = 1. Suppose that ℘′
Λ has a cycle

of Herman rings {U0, U1, . . . , Up−1} of period p ≥ 1. Then for any
i = 0, 1, . . . p − 1, (℘′

Λ)
◦p : Ui → Ui is conjugate to an irrational rota-

tion of the annulus and thus has degree one. The preimages under this
conjugacy of the circles |η| = r, 1 < r < R foliate the disks with (℘′

Λ)
◦p

forward invariant leaves on which (℘′
Λ)

◦p is injective. Let γ be a (℘′
Λ)

◦p

invariant leaf of Ui, and let Bγ denote the bounded component of the
complement of γ. Since Ui is multiply connected, we know that Bγ con-
tains a prepole. Thus, there is a smallest nonnegative number n such
that (℘′

Λ)
◦n(γ) contains a lattice point µ in B(℘′

Λ)◦n(γ). Let Uj denote the
Herman ring (℘′

Λ)
◦n(Ui).

Since Uj is homeomorphic to an annulus with the lattice point µ in
B(℘′

Λ)◦n(γ), Theorem 2.4 implies that e2πi/3Uj + (µ − e2πi/3µ) is a Fatou
component such that µ is in e2πi/3B(℘′

Λ)◦n(γ) + (µ − e2πi/3µ). Since the
topology is identical in every fundamental region, we assume by trans-
lating the entire setup by (µ − e2πi/3µ), that µ = 0. Therefore both
Uj and e2πi/3Uj are annuli containing simple closed loops γ and e2πi/3γ
respectively, and each has 0 in its bounded component. But since Uj

is an annulus, then by symmetry of the Fatou set it follows that Uj is
symmetric with respect to rotation by 2π/3 and Uj = e2πi/3Uj .

Then translating back to the original µ, we have that if z ∈ Uj , then
e2πi/3z+(µ−e2πi/3µ) ∈ Uj . But since ℘′

Λ(z) = ℘′
Λ(e

2πi/3z+(µ−e2πi/3µ)),
(℘′

Λ)
◦p cannot be degree one on Uj , which is a contradiction.

The proof for n > 1 follows in a similar fashion. �

The following proposition was proved initially for rational maps [12]
and was extended to the Weierstrass elliptic function [8]. The basis of the
proof is that a ramified covering of a simply connected region that has
only one ramification point must be simply connected.

Proposition 2.6. Suppose fΛ is an elliptic function on a lattice Λ that
has no Herman rings. If every Fatou component contains 0 or 1 critical
values, then J(fΛ) is connected.

3. Families of functions on triangular lattices

In this section, we examine a number of different families of elliptic
functions on triangular lattices for which the Julia set is connected. Our
approach is to find functions for which we can show that every Fatou
component contains 0 or 1 critical values.

The functions described in Theorem 3.1 have at most one or two critical
values that are not poles. In the case where there are two critical values
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lying in the Fatou set, we use symmetry properties to prove that the two
critical values cannot lie in the same component.

Theorem 3.1. Let Λ be a triangular lattice. Then the Julia set of
(1) fΛ(z) = [4(℘Λ(z))

3 − g3(Λ)]
n
2 for even n > 0

(2) fΛ(z) = ℘′
Λ(z)[(4(℘Λ(z))

3 − g3(Λ)]
n−1
2 for odd n > 0

is connected.

Proof. If the Julia set is not the entire sphere, then there exists a cycle of
Fatou components. Since Λ is triangular, we have that g2 = 0 by Propo-
sition 1.3 (1a). We can then use Equation 1.1 to rewrite the functions
in parts (1) and (2) as fΛ(z) = (℘′

Λ(z))
n. By Theorem 2.5, fΛ has no

Herman rings.
The derivative is f ′

Λ(z) = n(℘′
Λ(z))

n−1℘′′
Λ(z). Using Equation 1.3 and

1.4(1), we see that the critical points consist of the equivalence classes
of the half lattice points λj/2 + Λ for j = 1, 2, 3 and the centers of the
equilateral triangles forming the period parallelograms ±λ4/3+Λ, where
λ4 = λ1 − e2πi/3λ1. The half lattice points λj/2 + Λ for j = 1, 2, 3 are
all prepoles of fΛ and thus lie in the Julia set. Thus the only free critical
points of fΛ(z) are the centers of the equilateral triangles forming the
period parallelograms.

If n is even then, then

fΛ

(
λ4

3

)
=

(
℘′
Λ

(
λ4

3

))n

=

(
−℘′

Λ

(
λ4

3

))n

=

(
℘′
Λ

(
−λ4

3

))n

= fΛ

(
−λ4

3

)
,

so there is only one free critical value. By Proposition 2.6, J(fΛ) is con-
nected.

If n is odd, let v1 = fΛ(λ4/3) denote one of the critical values. Then

v2 = fΛ

(
−λ4

3

)
=

(
℘′
Λ

(
−λ4

3

))n

=

(
−℘′

Λ

(
λ4

3

))n

= −
(
℘′
Λ

(
λ4

3

))n

= −fΛ

(
λ4

3

)
= −v1,

and thus v2 = −v1.
We claim that v1 and v2 must lie in distinct Fatou components. We

proceed with a proof by contradiction. Suppose v1 and v2 lie in the
same component of the Fatou set U . Since the critical points lying at
the half-lattice points are prepoles and have a finite forward orbit, there
can be no Siegel disks. Thus the only periodic Fatou cycles are (super)
attracting or parabolic. Let {U1, U2, . . . , Uk} denote a forward invari-
ant cycle of components corresponding to such a cycle {p1, p2, . . . , pk}.
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Some component Uj must contain one, and hence both, critical values.
Then limm→∞ f◦mk

Λ (v1) = pj . Since n is an odd positive integer and ℘′
Λ

is an odd function, limm→∞ f◦mk
Λ (v2) = − limm→∞ f◦mk

Λ (v1) = −pj . But
then pj = −pj = 0, which is a pole, a contradiction. Thus no component
of the Fatou set contains both critical values, and Proposition 2.6 implies
that J(fΛ) is connected. �

Next, we investigate a family of functions for which the points z,
e2πi/3z, and e4πi/3z have orbits that are related. We begin with a lemma
that describes the relationships between the orbits of these points.

Lemma 3.2. Let Λ be a triangular lattice, ε = e2πi/3, and define

fΛ(z) =
n∑

k=0

(
n
k

)
4n−k(−g3(Λ))

k(℘Λ(z))
3n−3k−1

3n− 3k − 1

for n > 0. Then, for any p > 0,

f◦p
Λ (εz) =

{
ε2f◦p

Λ (z) p is odd
εf◦p

Λ (z) p is even

and
f◦p
Λ (ε2z) =

{
εf◦p

Λ (z) p is odd
ε2f◦p

Λ (z) p is even

Proof. We begin by proving the first statement using induction on p.
Since εΛ = Λ, applying Proposition 1.2, we have

fΛ(εz) =

n∑
k=0

(
n
k

)
4n−k(−g3(Λ))

k(℘Λ(εz))
3n−3k−1

3n− 3k − 1

= ε2
n∑

k=0

(
n
k

)
4n−k(−g3(Λ))

k(℘Λ(z))
3n−3k−1

3n− 3k − 1

= ε2fΛ(z)

and f◦2
Λ (εz) = fΛ(ε

2fΛ(z)) = ε4f◦2
Λ (z) = εf◦2

Λ (z). Assume the statement
is true for q = 1, . . . , p. If p+ 1 is even, we have

f◦p+1
Λ (εz) = fΛ(f

◦p
Λ (εz)) = fΛ(ε

2f◦p
Λ (z)) = ε4f◦p+1

Λ (z) = εf◦p+1
Λ (z).

If p+ 1 is odd, we have

f◦p+1
Λ (εz) = fΛ(f

◦p
Λ (εz)) = fΛ(εf

◦p
Λ (z)) = ε2f◦p+1

Λ (z).

The second statement follows from a similar proof. �
Lemma 3.2 implies that the Julia and Fatou sets exhibit a rotational

symmetry.

Theorem 3.3. If Λ is a triangular lattice and ε = e2πi/3, then εF (fΛ) =
F (fΛ) and εJ(fΛ) = J(fΛ).
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The following proposition explains the locations of the critical points
and poles of the function fΛ

Proposition 3.4. Let Λ be a triangular lattice and

fΛ(z) =
n∑

k=0

(
n
k

)
4n−k(−g3(Λ))

k(℘Λ(z))
3n−3k−1

3n− 3k − 1
.

Then fΛ is even and has critical points at half lattice points λj/2 +Λ for
j = 1, 2, 3 and at the centers of the equilateral triangles forming the period
parallelograms ±λ4/3 + Λ. Further, the poles of fΛ are at ±λ4/3 + Λ.

Proof. Since Λ is triangular, g2 = 0 by Proposition 1.3 (1a). We begin by
noting that

(3.1) fΛ = P (℘Λ)±
gn3
℘Λ

,

where P is a polynomial with no constant term, so fΛ is even. By Theorem
2.3, fΛ(z) has no Herman rings.

To find the critical points of fΛ(z), we use the Binomial Theorem to
calculate

f ′
Λ(z) =

n∑
k=0

(
n

k

)
4n−k(−g3(Λ))

k(℘Λ(z))
3n−3k−2℘′

Λ(z)

=

∑n
k=0

(
n
k

)
(4(℘Λ(z))

3)n−k(−g3(Λ))
k℘′

Λ(z)

(℘Λ(z))2

=
(4(℘Λ(z))

3 − g3(Λ))
n℘′

Λ(z)

(℘Λ(z))2

=
(℘′

Λ(z))
2n+1

(℘Λ(z))2
,

where the last line follows from Equation 1.1 and g2 = 0.
Using Equation 1.3 and Proposition 1.3 (1c), ℘′

Λ(z) = 0 at any half
lattice point λj/2 + Λ for j = 1, 2, 3 and the centers of the equilateral
triangles forming the period parallelograms ±λ4/3 + Λ. By Proposition
1.3 (1c), ℘Λ is nonzero at any half lattice point, and so every half lattice
point of Λ is a critical point of fΛ. Both ℘Λ and ℘′

Λ are zero at ±λ4/3+Λ,
but

lim
z→±λ3/3

(℘′
Λ(z))

2n+1

(℘Λ(z))2
= 0,

so ±λ4/3 + Λ are critical points of fΛ. Thus the critical points of fΛ are

Crit(fΛ) =

{
λ1

2
,
λ2

2
,
λ3

2
,±λ4

3

}
+ Λ.
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By Proposition 1.3 (1c) and Equation 3.1, we see that ±λ4/3 + Λ are
poles of fΛ and thus lie in the Julia set. �

In addition to the rotational symmetry of the Julia and Fatou sets de-
scribed in Theorem 3.3, we also see symmetry with respect to the centers
of the equilateral triangles determined by the lattice Λ.

Corollary 3.5. If µ is a center of an equilateral triangle determined by
the lattice Λ, then the Julia and Fatou sets of fΛ are symmetric with
respect to rotation around µ by 2π/3.

Proof. Let Λ = [λ1, ελ1], where ε = e2πi/3, and let s = 1
3 (λ1 − ελ1) be

a pole. Let z = s + b. Then the rotation of z around s by 2π/3 is
y = s + εb = ε(z − λ1). Using Theorems 2.1 and 3.3, z ∈ F (gΩ) if and
only if ε(z − λ1) = y ∈ F (gΩ). Using Theorem2.1, Proposition 3.4, and
Theorem 2.2, this symmetry passes to all poles µ = ±s+ Λ. �

We use Lemma 3.2 to prove that functions in this family have connected
Julia sets. The symmetries in the orbits of any three points of the form
z, e2πi/3z, and e4πi/3z eliminates the possibility that two critical values
can lie in the same Fatou component.

Theorem 3.6. Let Λ be a triangular lattice. Then the Julia set of

fΛ(z) =
n∑

k=0

(
n
k

)
4n−k(−g3(Λ))

k(℘Λ(z))
3n−3k−1

3n− 3k − 1

for n > 0 is connected.

Proof. By Proposition 3.4, ±λ4/3 + Λ are poles of fΛ. First, we show
that fΛ has no Herman rings, using an argument similar to that of the
proof of Theorem 2.5. Again, we let {U0, U1, . . . , Up−1} denote a cycle
of Herman rings of period p ≥ 1, γ be a (fΛ)

◦p invariant leaf of Ui, and
Bγ denote the bounded component of the complement of γ. Since Ui is
multiply connected, we know that Bγ contains a prepole. In this case,
there is a smallest nonnegative number n such that (fΛ)

◦n(γ) contains a
pole µ = 1

3 (λ1 − ελ1) + Λ in B(fΛ)◦n(γ). Let Uj denote the Herman ring
(fΛ)

◦n(Ui). Using Theorem 2.1, Theorem 2.2, Lemma 3.2, Proposition
3.4, and Corollary 3.5, if z ∈ Uj , then e2πi/3z + (µ − e2πi/3µ) ∈ Uj . But
since fΛ(z) = fΛ(e

2πi/3z+(µ− e2πi/3µ)), (fΛ)◦p cannot be degree one on
Uj , which is a contradiction.

Using Proposition 3.4, there are three remaining equivalence classes
of critical points λi/2 + Λ for i = 1, 2, 3. We claim that these critical
points have related critical values vi = f(λi/2). Since Λ is triangular,
ε(λi/2) + Λ = λ(i+1 mod 3)/2 + Λ where ε = e2πi/3. By Lemma 3.2 and
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Proposition 1.3 (1b), the three critical values of fΛ on a triangular lattice
satisfy the relationship v2 = εv1 = fΛ(λ1/2) and v3 = εv2.

We claim that no Fatou component can contain more than one critical
value. Let {U1, U2, . . . , Us} denote a forward invariant cycle of attracting
or parabolic Fatou components corresponding to a cycle {p1, p2, . . . , ps}.
First, suppose two non-zero critical values, say vi and εvi, lie in the same
component Uj . Then limk→∞ f◦ks

Λ (vi) = pj and limk→∞ f◦ks
Λ (εvi) = pj .

But by Lemma 3.2,

f◦ks
Λ (εvi) =

{
ε2f◦ks

Λ (vi) kn is odd
εf◦ks

Λ (vi) kn is even.

Therefore if εvi lies in Uj , then pj = εpj or pj = ε2pj , so pj = 0. But 0 is
a pole, contradicting our assumption.

Therefore, no Fatou component can contain more than one critical
value, so the Julia set is connected by Proposition 2.6. �

4. Families of functions on square lattices

In this section, we find families of elliptic functions on square lattices
with connected Julia sets. Our approach is similar to that of Section 3
in that we prove that no Fatou component can contain more than one
critical value.

We begin with families of functions of the form fΛ(z) = [℘Λ(z)]
n for

n > 0 on square lattices. When n is even we show that at most one critical
value lies in the Fatou set. For the case when n is odd, we extend the
proof used in [3] on ℘Λ to the functions fΛ(z) = [℘Λ(z)]

n and show that
there are at most two non-pole critical values which must lie in separate
Fatou components.

Theorem 4.1. Let Λ be a square lattice. Then the Julia set of fΛ(z) =
[℘Λ(z)]

n for n > 0 is connected.

Proof. If the Julia set is not the entire sphere, then there exists a cycle
of Fatou components. By Theorem 2.3, fΛ has no Herman rings because
fΛ is even and has poles at lattice points. The critical points are found
by solving 0 = f ′

Λ(z) = n(℘Λ(z))
n−1℘′

Λ(z). So the critical points are the
roots of ℘Λ and ℘′

Λ, which are the half lattice points by Equation 1.3 and
Proposition 1.3(2d).

By Proposition 1.3(2b), fΛ(λ3/2) = 0; this critical value is a pole for
all n > 0 and thus lies in the Julia set. The other two critical values are

fΛ

(
λ1

2

)
=

(
℘Λ

(
λ1

2

))n

= en1
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and

fΛ

(
λ2

2

)
=

(
℘Λ

(
λ2

2

))n

= en2 = (−e1)
n.

By Proposition 1.3(2b), for even n we have en2 = (−e1)
n = en1 . Thus there

is only one critical value in the Fatou set, so Proposition 2.6 implies that
J(fΛ) is connected.

For odd n, we claim that both critical values cannot lie in the same
component of the Fatou set. We prove this by contradiction, assuming
that a Fatou component U contains both en1 and en2 . Clearly, U must be in
the immediate basin of an attracting or parabolic cycle {p0, p1, . . . , pl−1}.
By definition, U is path connected, so let C be a curve connecting en1 and
en2 = (−e1)

n in U .
Since C is a compact subset of the immediate basin, {f◦lk

Λ } converges
uniformly on C to the constant function p0 in the Euclidean metric. Thus
for every ϵ > 0 there is an N ∈ N such that supz∈C |f◦lk

Λ (z)− p0| < ϵ for
k > N .

Next, we construct four sets L1, L2, S1, and S2 that we will use to
provide the contradiction. Fixing the generator λ ∈ C \ {0} of the lattice
Λ = [λ, λi], define L1 = {tλ−2n : t ∈ R+} and L2 = −L1. Further, define
S1 = {tλ : t ∈ R \Z} and S2 = iS1. We note that any curve A connecting
z1 ∈ L1 and z2 ∈ L2 must intersect every line that passes through the
origin.

Fix Γ to be the lattice Γ = [1, i]. The critical value of the real critical
point 1/2 of ℘Γ on this lattice is ℘Γ(1/2) = γ2 ≈ (2.62206 . . .)2 (see [4]).
Proposition 1.3 (2c) implies that γ2 > 0 is the minimum of ℘Γ on R.

If z ∈ S1, then write z = tλ for some t ∈ R \ Z. Then Proposition 1.2
implies

fΛ(tλ) = (℘Λ(tλ))
n = (λ−2℘Γ(t))

n = λ−2n(℘Γ(t))
n = λ−2nfΓ(t).

But fΓ(t) = (℘Γ(t))
n ≥ (γ2)n, and thus fΛ(tλ) ∈ L1. Thus fΛ(S1) ⊂ L1.

If z ∈ S2, then write z = itλ for some t ∈ R \ Z. We have iΓ = Γ, so
Proposition 1.2 implies

fΛ(itλ) = (℘Λ(itλ))
n = ((iλ)−2℘Γ(t))

n = −λ−2n(℘Γ(t))
n = −λ−2nfΓ(t).

Again, since fΓ(t) > 0, we have fΛ(S2) ⊂ L2.
We claim that for each m ∈ N, fΛ(C) contains a point on each of L1,

L2, S1, and S2 and is connected. We use induction to show this.
When m = 0, we note that C contains the points en1 on L1 and en2 on

L2. Then S1 and S2 are lines passing through the origin. Since C is in
the Fatou set, it contains no poles, and so C ∩ S1 ̸= ∅ and C ∩ S2 ̸= ∅.
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For the induction hypothesis, assume f◦m
Λ (C) contains a point on each

of L1, L2, S1, and S2. Since all iterates are defined on the Fatou set,
f◦m+1
Λ (C) is connected. Since f◦m

Λ (C) contains points on S1 and S2, and
fΛ(S1) ⊂ L1 and fΛ(S2) ⊂ L2, f◦m+1

Λ (C) contains points on L1 and L2.
Since S1 and S2 are lines passing through the origin, f◦m+1

Λ (C) contains
points on S1 and S2.

If p0 /∈ L2, choose ak ∈ f◦lk
Λ (C) ∩ L2 for each k ∈ N (if p0 ∈ L2, then

choose ak ∈ L1). We have that

sup
z∈C

|f◦lk
Λ (z)− p0| > |ak − p0| > max{ inf

z∈L1

d(z, p0), inf
z∈L2

d(z, p0)} > 0,

for all k ∈ C, where d is the Euclidean metric on C. This contradicts the
uniform convergence of {f◦lk

Λ }k∈N on C to the constant function p0.
Thus every Fatou component contains at most one critical value, and

Proposition 2.6 implies that J(fΛ) is connected. �
To prove the following theorem, we show that the functions have only

one critical value that could belong to the Fatou set, and thus the Julia
set is connected.
Theorem 4.2. Let Λ be a square lattice. Then the Julia set of

fΛ(z) = [4(℘Λ(z))
3 − g2(Λ)℘Λ(z)]

2n

for n > 0 is connected.
Proof. If the Julia set is not the entire sphere, then there exists a cycle of
Fatou components. Since Λ is square, we have that g3 = 0 by Proposition
1.3 (2a). We can then use Equation 1.1 to rewrite the functions as

fΛ(z) = (4(℘Λ(z))
3 − g2(Λ)℘Λ(z))

2n = (℘′
Λ(z))

4n

for n > 0. Then fΛ is even and has poles at lattices points, and thus has
no Herman rings by Theorem 2.3.

The derivative is f ′
Λ(z) = 4n(℘′

Λ(z))
4n−1℘′′

Λ(z). So the critical points
of fΛ are either zeros of ℘′

Λ or ℘′′
Λ. The zeros of ℘′

Λ are the half lattice
points λj/2 for j = 1, 2, 3 by Equation 1.3, so the half lattice points are
critical points of fΛ. As these half lattice points are all zeros of ℘′

Λ, they
are prepoles of fΛ and thus lie in the Julia set. The zeros of ℘′′

Λ are the
critical points c of ℘′

Λ, and we know by Proposition 1.4(2) that any critical
point c of ℘′

Λ lands on one the four critical values v1, v2, v3, v4 where

v1 =

√(g2
3

) 3
2

, v2 = −v1, v3 = iv1, v4 = −iv1.

However, fΛ(c) = (℘′
Λ(c))

4n = (vj)
4n = (v1)

4n for j = 2, 3, 4, so fΛ has
only one critical value arising from any such a critical point c. Since there
can be at most one critical value in the Fatou set, Proposition 2.6 implies
that J(fΛ) is connected. �
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For the next family of functions under investigation, we again show
that fΛ can have at most one critical value lying in the Fatou set.

Theorem 4.3. Let Λ be a square lattice. The Julia set of

fΛ(z) =
m∑

k=0

(
m
k

)
4m−k(−g2(Λ))

k(℘Λ(z))
3m−2k+n+1

3m− 2k + n+ 1

for m,n > 0, where m and n have opposite parity, is connected.

Proof. Since m and n have opposite parity, we have that every term in
fΛ(z) is a positive, even power of ℘Λ. Thus fΛ(z) is even and has poles
at lattice points. Therefore, fΛ(z) has no Herman rings by Theorem 2.3.

We claim that the critical points of fΛ(z) are the half lattice points
λj/2 for j = 1, 2, 3. We have

f ′
Λ(z) =

(
m∑

k=0

(
m

k

)
4m−k(−g2(Λ))

k(℘Λ(z))
3m−2k

)
(℘Λ)

n℘′
Λ

=

(
m∑

k=0

(
m

k

)
(4(℘Λ)

3)m−k(−g2(Λ)℘Λ)
k

)
(℘Λ)

n℘′
Λ

= (4(℘Λ)
3 − g2(Λ)℘Λ)

m(℘Λ)
n℘′

Λ,

by the Binomial Theorem. Using Equation 1.1 and Proposition 1.3 (2a),
we can write f ′

Λ(z) = (℘Λ)
n(℘′

Λ)
2m+1. Since Λ is square, the critical

points are the half lattice points by Equation 1.3 and Proposition 1.3(2b).
Since every term in fΛ(z) is a positive, even power of ℘Λ, fΛ(λ3/2) = 0

by Proposition 1.3 (2b), so λ3/2 is a prepole and lies in the Julia set. Using
Proposition 1.3 (2b), fΛ(λ1/2) = fΛ(λ2/2), so there is only one critical
value of fΛ(z) that could possibly lie in the Fatou set. By Proposition
2.6, the Julia set is connected. �
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