http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

When the Property of Having a π -Tree Is Preserved by Products

by

MIKHAIL PATRAKEEV

Electronically published on May 31, 2018 $\,$

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

WHEN THE PROPERTY OF HAVING A π -TREE IS PRESERVED BY PRODUCTS

MIKHAIL PATRAKEEV

ABSTRACT. We find sufficient conditions under which the product of spaces that have a π -tree also has a π -tree. These conditions give new examples of spaces with a π -tree: every at most countable power of the Sorgenfrey line and every at most countable power of the irrational Sorgenfrey line has a π -tree. Also we show that if a space has a π -tree, then its product with the Baire space, with the Sorgenfrey line, and with the countable power of the Sorgenfrey line also has a π -tree.

1. INTRODUCTION

We study topological spaces that have a π -tree, see Terminology 2.5 in §2. The notion of a π -tree was introduced in [10] and is equivalent [10, Remark 11] to the notion of a Lusin π -base, which was introduced in [8]. The Sorgenfrey line \mathcal{R}_s and the Baire space \mathcal{N} (that is, $\omega \omega$ with the product topology) are examples of spaces with a π -tree [8]. Every space that has a π -tree shares many good properties with the Baire space. One reason for this is expressed in Lemma 2.6 and Lemma 3.2; another two are the following: If a space X has a π -tree, then X can be mapped onto \mathcal{N} by a continuous one-to-one map [8] and also X can be mapped onto \mathcal{N} by a continuous open map [8] (hence, X can be mapped by a continuous open map onto an arbitrary Polish space, see [1] or [6, Exercise 7.14]). Every space that has a π -tree also has a countable π -base, see Lemma 2.7.

²⁰¹⁰ Mathematics Subject Classification. Primary 54E99; Secondary 54H05.

Key words and phrases. Baire space, foliage hybrid operation, foliage tree, Lusin pi-base, Lusin scheme, open sieve, pi-tree, product of topological spaces, Sorgenfrey line, Souslin scheme.

The author was supported by the Competitiveness Program of Ural Federal University (Act 211 of Government of the Russian Federation, No.02.A03.21.0006).

^{©2018} Topology Proceedings.

M. PATRAKEEV

In this paper we study the following question: When does the product of spaces that have a π -tree also have a π -tree? We find several kinds of conditions (see Theorem 4.1, Theorem 5.1, and Corollary 4.2) under which an at most countable product of spaces that have a π -tree also has a π -tree. We consider only at most countable products because an uncountable product of spaces that have a π -tree has an uncountable pseudocharacter; therefore, it has no π -tree (see [5, 5.3.b)] and lemmas 2.6, 2.7, and 3.2).

The above results give new examples of spaces that have a π -tree, see Section 7. For instance, Corollary 7.2 asserts that if $1 \leq |A| \leq \omega$ and for each $\alpha \in A$,

either
$$X_{\alpha} = \mathcal{N}$$
 or $X_{\alpha} \subseteq \mathcal{R}_{s}$ with $\mathcal{R}_{s} \smallsetminus X_{\alpha}$ at most countable,

then the product $\prod_{\alpha \in A} X_{\alpha}$ has a π -tree. In particular, the powers \mathcal{R}_{s}^{n} and \mathcal{I}_{s}^{n} (\mathcal{I}_{s} denotes the irrational Sorgenfrey line $\mathcal{R}_{s} \setminus \mathbb{Q}$) have a π -tree for all natural $n \ge 1$, and the powers \mathcal{R}_{s}^{ω} and \mathcal{I}_{s}^{ω} also have a π -tree. (Note that no finite power of the irrational Sorgenfrey line is homeomorphic to finite power of the Sorgenfrey line [2].) Other examples of spaces with a π -tree can be obtained by using Corollary 7.4, which says that if a space X has a π -tree, then the products $X \times \mathcal{N}$, $X \times \mathcal{R}_{s}$, and $X \times \mathcal{R}_{s}^{\omega}$ also have a π -tree.

2. NOTATION AND TERMINOLOGY

We use standard set-theoretic notation from [4] and [7]. In particular, each ordinal is equal to the set of smaller ordinals, $\omega =$ the set of natural numbers = the set of finite ordinals = the first limit ordinal = the first infinite cardinal, and $n = \{0, \ldots, n-1\}$ for all $n \in \omega$. A space is a topological space; we use terminology from [3] when we work with spaces. Also we use the following notation.

Terminology 2.1. The symbol := means "equals by definition"; the symbol : \leftrightarrow is used to show that an expression on the left side is an abbreviation for expression on the right side;

$$\begin{split} & x \in y : \longleftrightarrow \quad x \subseteq y \text{ and } x \neq y; \\ & & A \equiv \bigsqcup_{\lambda \in \Lambda} B_{\lambda} : \longleftrightarrow \\ & & A = \bigcup_{\lambda \in \Lambda} B_{\lambda} \text{ and } \forall \lambda, \lambda' \in \Lambda \left[\lambda \neq \lambda' \rightarrow B_{\lambda} \cap B_{\lambda'} = \varnothing\right]; \\ & & & \left[A\right]^{\kappa} \coloneqq \left\{B \subseteq A : |B| = \kappa\right\}, \quad [A]^{<\kappa} \coloneqq \left\{B \subseteq A : |B| < \kappa\right\} \\ & & (\text{here } \kappa \text{ is a cardinal}); \\ & & & \gamma \text{ has the FIP } : \longleftrightarrow \quad \forall \delta \in [\gamma]^{<\omega} \backslash \{\varnothing\} \left[\cap \delta \neq \varnothing \right] \\ & (\text{FIP means the Finite Intersection Property}); \\ & & & \text{cofin } A \coloneqq \left\{A \smallsetminus F : F \in [A]^{<\omega}\right\}; \end{aligned}$$

- \mathbb{N} nbhds $(p, X) \coloneqq$ the set of (not necessarily open) neighbourhoods of point p in space X;
- $f \upharpoonright A :=$ the restriction of function f to A;

When we work with (transfinite) sequences, we use the following notation.

Terminology 2.2. Suppose $n \in \omega$ and s, t are sequences; that is, s and t are functions whose domain is an ordinal.

- \mathbb{S} length $s \coloneqq$ the domain of s;
- $\$ note that $s \subset t$ iff length s < length t and $s = t \upharpoonright \text{length } s$;
- $\langle r_0, \ldots, r_{n-1} \rangle$:= the sequence r such that length r = n and $r(i) = r_i$ for all $i \in n$;
- \otimes $\langle \rangle :=$ the sequence of length 0;
- A :=the set of functions from B to A; in particular, ${}^{0}A = \{\langle \rangle\};$
- $\operatorname{S} ^{<\alpha}A := \bigcup_{\beta \in \alpha} {}^{\beta}A$ (here α is an ordinal).

Also we work with partial orders and then we use the following terminology:

Terminology 2.3. Suppose $\mathcal{P} = (Q, \triangleleft)$ is a strict partial order; that is, \triangleleft is irreflexive and transitive on Q. Let $x, y \in Q$ and $A \subseteq Q$.

Solution nodes \mathcal{P} = nodes(Q, ⊲) := Q;

- $\label{eq:constraint} \circledast x \leqslant_{\mathcal{P}} y \quad :\longleftrightarrow \quad x <_{\mathcal{P}} y \ \text{ or } \ x = y;$
- $\label{eq:constraint} \circledast \ x \! \mid_{\mathcal{P}} \coloneqq \{ v \in \operatorname{\mathsf{nodes}} \mathcal{P} : v <_{\mathcal{P}} x \}, \quad x \! \mid_{\mathcal{P}} \coloneqq \{ v \in \operatorname{\mathsf{nodes}} \mathcal{P} : v >_{\mathcal{P}} x \};$
- $\ \ \, \& \ \ \, x \bullet_{\mathcal{P}} \coloneqq \{ v \in \mathsf{nodes} \, \mathcal{P} : v \leqslant_{\mathcal{P}} x \}, \quad x \bullet_{\mathcal{P}} \coloneqq \{ v \in \mathsf{nodes} \, \mathcal{P} : v \geqslant_{\mathcal{P}} x \};$
- $A \downarrow_{\mathcal{P}} := \bigcup \{ v \downarrow_{\mathcal{P}} : v \in A \}, \quad A \downarrow_{\mathcal{P}} := \bigcup \{ v \downarrow_{\mathcal{P}} : v \in A \};$
- \mathbb{S} sons_{\mathcal{P}} $(x) \coloneqq \{s \in \operatorname{nodes} \mathcal{P} : x <_{\mathcal{P}} s \text{ and } x|_{\mathcal{P}} \cap s|_{\mathcal{P}} = \emptyset\};$
- A is a *chain* in $\mathcal{P} : \longleftrightarrow \forall v, w \in A [v \leq_{\mathcal{P}} w \text{ or } v >_{\mathcal{P}} w];$
- \mathbb{P} has bounded chains : \longleftrightarrow for each nonempty chain C in \mathcal{P} , there is $v \in \operatorname{nodes} \mathcal{P}$ such that $C \subseteq v_{\mathcal{P}}^{\bullet}$;
- \mathbb{S} max $\mathcal{P} := \{m \in \operatorname{nodes} \mathcal{P} : m \mid_{\mathcal{P}} = \emptyset\};\$
- \mathbb{S} min $\mathcal{P} := \{m \in \operatorname{nodes} \mathcal{P} : m \rangle_{\mathcal{P}} = \emptyset\};$

(here \mathcal{P} is a partial order that has such node).

When a partial order is a (set-theoretic) tree, we use the following terminology:

Terminology 2.4. Suppose \mathcal{T} is a tree; that is, \mathcal{T} is a strict partial order such that for each $x \in \mathsf{nodes} \mathcal{T}$, the set $x|_{\mathcal{T}}^{\circ}$ is well-ordered by $<_{\mathcal{T}}$. Let $x \in \mathsf{nodes} \mathcal{T}$, let α be an ordinal, and let κ be a cardinal.

So height_T(x) ≔ the ordinal isomorphic to $(x \upharpoonright_{T}, <_{T})$;

- \mathbb{S} level_{\mathcal{T}}(α) := { $v \in \operatorname{nodes} \mathcal{T}$: height_{\mathcal{T}}(v) = α };
- \mathbb{S} height $\mathcal{T} \coloneqq$ the minimal ordinal β such that $\mathsf{level}_{\mathcal{T}}(\beta) = \emptyset$;
- \mathbb{B} is a branch in $\mathcal{T} :\longleftrightarrow B$ is a \subseteq -maximal chain in \mathcal{T} ;
- \mathfrak{T} is κ -branching $: \longleftrightarrow \forall v \in \operatorname{nodes} \mathcal{T} \setminus \max \mathcal{T} [|\operatorname{sons}_{\mathcal{T}}(v)| = \kappa].$

Finally, we work with foliage trees, which where introduced in [10]. Recall that a *foliage tree* is a pair $\mathbf{F} = (\mathcal{T}, l)$ such that \mathcal{T} is a tree and l is a function with domain $l = \operatorname{nodes} \mathcal{T}$. For each $x \in \operatorname{nodes} \mathcal{T}$, the l(x) is called the *leaf* of \mathbf{F} at node X and is denoted by \mathbf{F}_x ; the tree \mathcal{T} is called the *skeleton* of \mathbf{F} and is denoted by skeleton \mathbf{F} . We adopt the following convention: If \mathbf{F} is a foliage tree and \bullet is a notation that can be applied to a tree, then $\bullet(\mathbf{F})$ is an abbreviation for $\bullet(\operatorname{skeleton} \mathbf{F})$; for example, $x <_{\mathbf{F}} y$ stands for $x <_{\operatorname{skeleton} \mathbf{F}} y$. Also we use the following terminology:

Terminology 2.5. Suppose **F** is a foliage tree, $v \in \mathsf{nodes} \mathbf{F}$, $A \subseteq \mathsf{nodes} \mathbf{F}$, X is a space, α is an ordinal, and κ is a cardinal.

- \mathbb{S} flesh $\mathbf{F} := \bigcup \{ \mathbf{F}_x : x \in \mathsf{nodes} \, \mathbf{F} \};$
- \mathbb{S} flesh_{**F**}(A) := \bigcup {**F**_x : $x \in A$ };
- \mathbb{S} shoot_{**F**}(v) := { flesh_{**F**}(C) : C is a cofinite subset of sons_{**F**}(v) };
- \mathbb{S} scope_{**F**} $(a) \coloneqq \{x \in \mathsf{nodes} \, \mathbf{F} : \mathbf{F}_x \ni a\};$
- \mathbb{S} **F** has nonempty leaves : $\longleftrightarrow \forall x \in \mathsf{nodes} \mathbf{F} [\mathbf{F}_x \neq \emptyset];$
- $figure \mathbf{F}$ is nonincreasing $:\longleftrightarrow \forall x, y \in \mathsf{nodes} \mathbf{F} [y \ge_{\mathbf{F}} x \to \mathbf{F}_y \subseteq \mathbf{F}_x];$
- So **F** has strict branches : ↔ nodes **F** ≠ Ø and for each branch B in **F**, the $\bigcap_{x \in B} \mathbf{F}_x$ is a singleton;
- \mathbb{S} **F** is *locally strict* : $\longleftrightarrow \forall x \in \mathsf{nodes } \mathbf{F} \setminus \mathsf{max } \mathbf{F} [\mathbf{F}_x \equiv \bigsqcup_{s \in \mathsf{sons}_{\mathbf{F}}(x)} \mathbf{F}_s];$
- \mathbb{S} **F** is open in $X :\longleftrightarrow \forall z \in \mathsf{nodes F} [\mathbf{F}_z \text{ is an open subset of } X];$
- \mathbb{S} **F** is a foliage α, κ -tree : \longleftrightarrow

skeleton **F** is isomorphic to the tree $({}^{<\alpha}\kappa, \subset)$;

- So **F** is a *Baire foliage tree* on X :↔ **F** is an open in X locally strict foliage ω, ω -tree with strict branches such that $\mathbf{F}_{0_{\mathbf{F}}} = X$;
- \mathbb{S} **F** grows into $X : \longleftrightarrow$

 $\forall p \in X \ \forall U \in \mathsf{nbhds}(p, X) \ \exists z \in \mathsf{scope}_{\mathbf{F}}(p) \ \big[\mathsf{shoot}_{\mathbf{F}}(z) \gg \{U\} \big];$ $\circledast \ \mathbf{F} \text{ is a } \pi\text{-tree on } X :\longleftrightarrow$

- \mathbf{F} is a Baire foliage tree on X and \mathbf{F} grows into X;
- S := the standard foliage tree of $^{\omega}\omega$:= the foliage tree such that ≻ skeleton S := ($^{<\omega}\omega, \subset$) and
 - ► $\mathbf{S}_x := \{ p \in {}^{\omega}\omega : x \subseteq p \}$ for every $x \in {}^{<\omega}\omega;$
- \mathcal{N} := the Baire space :=
 - the space $({}^{\omega}\omega, \tau_{\mathcal{N}})$, where $\tau_{\mathcal{N}}$ is the Tychonoff product topology with ω carrying the discrete topology.

Lemma 2.6 ([10, Lemma 13]).

- (a) $\{\mathbf{S}_x : x \in {}^{<\omega}\omega\}$ is a base for \mathcal{N} .
- (b) **S** is a π -tree on \mathcal{N} .

(c) **S** is a Baire foliage tree on a space $({}^{\omega}\omega, \tau)$ iff $\tau \supseteq \tau_{\mathcal{N}}$.

Lemma 2.7. If **F** is a π -tree on a space X, then

- \succ {**F**_v : v \in nodes **F**} is a countable π -base for X,
- \succ each \mathbf{F}_v is closed-and-open in X, and
- $\succ \cap \{\mathbf{F}_v : \mathbf{F}_v \ni p\} = \{p\} \quad for \ all \ p \in X.$

3. New Notions: Isomorphism and Spectrum

The notion of isomorphism between foliage trees allows to simplify proofs (see the proof of Theorem 4.1) in the following way: When we have a π -tree **F** on a space X, we may (by using (c) of Lemma 3.2 and (c) of Lemma 2.6) assume "without loss of generality" that **F** = **S** and $X = ({}^{\omega}\omega, \tau)$ with $\tau \supseteq \tau_{N}$.

Definition 3.1. An isomorphism between foliage trees **F** and **G** is a pair (φ, ψ) such that

- $\succ \varphi$ is an order isomorphism from skeleton **F** onto skeleton **G**,
- $\succ \psi$ is a bijection from flesh **F** onto flesh **G**, and
- $\succ \psi[\mathbf{F}_x] = \mathbf{G}_{\varphi(x)}$ for all $x \in \operatorname{nodes} \mathbf{F}$.

Lemma 3.2. Suppose that \mathbf{F} is a foliage tree and X is a space.

- (a) **F** is a locally strict foliage ω, ω -tree with strict branches iff **F** is isomorphic to **S**.
- (b) F is a Baire foliage tree on X iff there exist an isomorphism (φ, ψ) between F and S and a topology τ on ^ωω such that
 - $\succ \psi$ is a homeomorphism from X onto $({}^{\omega}\omega, \tau)$ and
 - > **S** is a Baire foliage tree on $({}^{\omega}\omega, \tau)$.
- (c) **F** is a π -tree on X iff
 - there exist an isomorphism (φ, ψ) between **F** and **S** and a topology τ on ${}^{\omega}\omega$ such that
 - $\succ \psi$ is a homeomorphism from X onto $({}^{\omega}\omega, \tau)$ and
 - > **S** is a π -tree on $(^{\omega}\omega, \tau)$.

Proof. (a) Suppose that **F** is a locally strict foliage ω, ω -tree with strict branches. Let φ be an order isomorphism from skeleton **F** onto the tree $({}^{<\omega}\omega, c) =$ skeleton **S**. For each $p \in {}^{\omega}\omega$, the set $\{x \in {}^{<\omega}\omega : x \subseteq p\}$ is a branch in **S**, so since **F** has strict branches it follows that there is a point $\chi(p)$ in flesh **F** such that

$$\{\chi(p)\} = \bigcap \{\mathbf{F}_{\omega^{-1}(x)} : x \in {}^{<\omega}\omega \text{ and } x \subseteq p\}.$$

Then it is not hard to prove that the function $\chi: {}^{\omega}\omega \to \mathsf{flesh} \mathbf{F}$ is a bijection and (φ, χ^{-1}) is an isomorphism between \mathbf{F} and \mathbf{S} . The \leftarrow direction follows from (b) of Lemma 2.6.

(b) Suppose that **F** is a Baire foliage tree on X. Let (φ, ψ) be an isomorphism between **F** and **S**, which exists by (a). Then ψ is a bijection from X onto ${}^{\omega}\omega$. Put

 $\tau \coloneqq \{\psi[U] : U \text{ is an open subset of } X\};$

clearly, τ is a topology on $\omega \omega$ and ψ is a homeomorphism from X onto $({}^{\omega}\omega,\tau)$. It follows that **S** is a Baire foliage tree on $({}^{\omega}\omega,\tau)$ because **F** is a Baire foliage tree on X. The \leftarrow direction is similar. Part (c) can be proved by the same argument. \square

Corollary 3.3. Suppose that \mathbf{F} is a Baire foliage tree on a space X and $p \in X$.

- (a) **F** is nonincreasing, flesh $\mathbf{F} = \mathbf{F}_{0_{\mathbf{F}}}$, and height $\mathbf{F} = \omega$;
- (b) \mathbf{F}_v is closed-and-open in X and $|\mathbf{F}_v| = 2^{\omega}$ for all $v \in \mathsf{nodes}\,\mathbf{F}$;
- (c) $scope_{\mathbf{F}}(p)$ is a branch in \mathbf{F} ;
- (d) $\forall n \in \omega \exists ! v \in \mathsf{scope}_{\mathbf{F}}(p) \mid \mathsf{height}_{\mathbf{F}}(v) = n \mid$.

Proof. This corollary is a consequence of (b) of Lemma 3.2 and (c) of Lemma 2.6. \square

Now we introduce terminology that we need to formulate Theorems 4.1 and 5.1.

Definition 3.4. Suppose \mathbf{F} is a foliage tree and X is a space.

 \mathbb{S} span_{**F**} $(p, U) \coloneqq \{ \mathsf{height}_{\mathbf{F}}(v) : v \in \mathsf{scope}_{\mathbf{F}}(p) \text{ and } \mathsf{shoot}_{\mathbf{F}}(v) \gg \{U\} \};$ \mathbb{S} spectrum_{**F**} $(X) \coloneqq \{ \operatorname{span}_{\mathbf{F}}(p, U) : p \in X \text{ and } U \in \operatorname{nbhds}(p, X) \}.$

Example 3.5. span_{**S**} $(p, \mathbf{S}_{p \uparrow n}) = \omega \setminus n$ for all $p \in {}^{\omega}\omega$ and $n \in \omega$.

Lemma 3.6. Suppose that \mathbf{F} is a foliage tree and X is a space.

(a) **F** grows into X iff $\emptyset \notin \text{spectrum}_{\mathbf{F}}(X)$.

- (b) If **F** is a π -tree on X and $p \in X$, then
 - (b1) the family $\{\operatorname{span}_{\mathbf{F}}(p,U): U \in \operatorname{nbhds}(p,X)\}$ has the FIP,
 - (b2) $\bigcap \{ \operatorname{span}_{\mathbf{F}}(p, U) : U \in \operatorname{nbhds}(p, X) \} = \emptyset, and$
 - (b3) $\operatorname{span}_{\mathbf{F}}(p, U) \in [\omega]^{\omega}$ for all $U \in \operatorname{nbhds}(p, X)$.

Proof. Part (a) is trivial.

(b1) We must show that if $\varepsilon \in [\mathsf{nbhds}(p, X)]^{<\omega} \setminus \{\emptyset\}$, then $\bigcap_{U \in \varepsilon} \mathsf{span}_{\mathbf{F}}(p, U) \neq \emptyset$.

For each $U \in \varepsilon$, we have $\operatorname{span}_{\mathbf{F}}(p, U) \supseteq \operatorname{span}_{\mathbf{F}}(p, \cap \varepsilon)$ because $U \supseteq \cap \varepsilon \neq$ Ø. Therefore

$$\bigcap_{U \in \varepsilon} \operatorname{span}_{\mathbf{F}}(p, U) \supseteq \operatorname{span}_{\mathbf{F}}(p, \bigcap \varepsilon)$$

and it follows from (a) that $\operatorname{span}_{\mathbf{F}}(p, \cap \varepsilon) \neq \emptyset$ since $\cap \varepsilon \in \operatorname{nbhds}(p, X)$.

(b2) By (c) of Lemma 3.2, there exist an isomorphism (φ, ψ) between **F** and **S** and a topology τ on ${}^{\omega}\omega$ such that ψ is a homeomorphism from X onto $({}^{\omega}\omega, \tau)$ and **S** is a π -tree on $({}^{\omega}\omega, \tau)$. Put $q := \psi(p)$. For each $U \subseteq X$, we have $\operatorname{span}_{\mathbf{F}}(p, U) = \operatorname{span}_{\mathbf{S}}(q, \psi[U])$ and

$$U \in \mathsf{nbhds}(p, X) \iff \psi[U] \in \mathsf{nbhds}(q, (^{\omega}\omega, \tau)).$$

Then it is enough to show that

the set
$$M_q := \bigcap \left\{ \operatorname{span}_{\mathbf{S}}(q, V) : V \in \operatorname{nbhds}\left(q, ({}^{\omega}\omega, \tau)\right) \right\}$$
 is empty.

It follows from Lemma 2.6 that $\mathbf{S}_{q \upharpoonright n} \in \mathsf{nbhds}(q, ({}^{\omega}\omega, \tau))$ for all $n \in \omega$, so using Example 3.5 we have

$$M_q \subseteq \bigcap \left\{ \operatorname{span}_{\mathbf{S}}(q, \mathbf{S}_{q \upharpoonright n}) : n \in \omega \right\} = \bigcap \{ \omega \smallsetminus n : n \in \omega \} = \emptyset.$$

(b3) It follows from (b1)–(b2) that the set $\operatorname{span}_{\mathbf{F}}(p, U)$ is infinite for all $U \in \operatorname{nbhds}(p, X)$, and $\operatorname{span}_{\mathbf{F}}(p, U) \subseteq \omega$ because height $\mathbf{F} = \omega$ by (a) of Corollary 3.3.

4. The First Theorem

Theorem 4.1. Suppose that $\mathbf{H}(\lambda)$ is a π -tree on a space X_{λ} for every $\lambda \in \Lambda$, where $2 \leq |\Lambda| \leq \omega$. Suppose also that for each finite nonempty $I \subseteq \Lambda$,

> if $R_i \in \text{spectrum}_{\mathbf{H}(i)}(X_i)$ for all $i \in I$, > then $\bigcap_{i \in I} R_i$ is infinite.

Then the product $\prod_{\lambda \in \Lambda} X_{\lambda}$ has a π -tree.

Corollary 4.2. Suppose that $\mathbf{H}(\lambda)$ is a π -tree on a space X_{λ} and $\operatorname{cofin} \omega \gg \operatorname{spectrum}_{\mathbf{H}(\lambda)}(X_{\lambda})$ for all $\lambda \in \Lambda$, where $1 \leq |\Lambda| \leq \omega$. Suppose also that a space Y has a π -tree. Then the product $Y \times \prod_{\lambda \in \Lambda} X_{\lambda}$ also has a π -tree.

Proof. Let **G** be a π -tree on Y and $I \subseteq \Lambda$ be finite and nonempty. Now, if $R \in \operatorname{spectrum}_{\mathbf{G}}(Y)$ and $R_i \in \operatorname{spectrum}_{\mathbf{H}(i)}(X_i)$ for every $i \in I$, then $R \in [\omega]^{\omega}$ by (b3) of Lemma 3.6 and it follows from (a) of Lemma 3.6 that $\bigcap_{i \in I} R_i \supseteq \omega \smallsetminus n$ for some $n \in \omega$. Therefore $R \cap \bigcap_{i \in I} R_i$ is infinite. \Box

Proof of Theorem 4.1. We may assume that $2 \leq \Lambda \in \omega \cup \{\omega\}$. By (c) of Lemma 3.2, for each $n \in \Lambda$, there exist an isomorphism (φ_n, ψ_n) between $\mathbf{H}(n)$ and \mathbf{S} and a topology τ_n on $\omega \omega$ such that ψ_n is a homeomorphism from X_n onto $(\omega \omega, \tau_n)$ and \mathbf{S} is a π -tree on $(\omega \omega, \tau_n)$. It follows that

spectrum_{**H**(n)}(X_n) = spectrum_{**S**}((${}^{\omega}\omega, \tau_n$)) for all $n \in \Lambda$.

Now, for every $k \in \Lambda$, we have the following:

(4.1) if
$$R_i \in \operatorname{spectrum}_{\mathbf{S}}(({}^{\omega}\omega, \tau_i))$$
 for every $i \in k+1$,

then $\bigcap_{i \in k+1} R_i$ is infinite.

And we must prove that the space $\prod_{n \in \Lambda} ({}^{\omega}\omega, \tau_n)$ has a π -tree.

In this proof we use several specific notations. First, $E \cdot F \coloneqq \{e \cup f :$ $e \in E, f \in F$ }. We use this operation in situations when $E \subseteq {}^{A}C$ and $F \subseteq {}^{B}C$ with $A \cap B = \emptyset$, so that

$$E \cdot F = \{ p \in {}^{A \cup B}C : p \upharpoonright A \in E \text{ and } p \upharpoonright B \in F \};$$

in particular, when $B = \emptyset$, we have $E \cdot {}^{\emptyset}C = E$ because ${}^{\emptyset}C = \{\emptyset\}$. Recall that

$$\prod_{i \in I} D_i := \left\{ \langle p_i \rangle_{i \in I} \in {}^I (\bigcup_{i \in I} D_i) : p_i \in D_i \text{ for all } i \in I \right\}.$$

When $v \in {}^{<\omega}\omega$ and $m \in \omega$, we put

(4.2)
$$\widetilde{\mathbf{S}}_{v}^{m} := \bigcup \{ \mathbf{S}_{v^{(l)}} : l \in \omega \smallsetminus m \}.$$

Note that $\{\widetilde{\mathbf{S}}_{v}^{m}: m \in \omega\} \gg \text{shoot}_{\mathbf{S}}(v)$ for all $v \in {}^{<\omega}\omega$. We build a π -tree on the space $\prod_{n \in \Lambda} ({}^{\omega}\omega, \tau_n) = ({}^{\Lambda}({}^{\omega}\omega), \tau)$, where τ is the Tychonoff product topology, by using Lemma 4.3. This lemma states that there exists an indexed family

$$\langle a(n,v,i) : n \in \omega, v \in {}^{2n}\omega, i \in \Lambda \cap (n+1) \rangle$$

Ξ

such that

(a1)
$$\forall n \in \omega \ \forall v \in {}^{2n}\omega \ \forall i \in \Lambda \cap (n+1) \left[a(n,v,i) \in {}^{n}\omega \right];$$

(a2) $\forall n \in \omega \ \forall v \in {}^{2n}\omega \ \forall m \in \omega$
 $\left(\left(\prod_{i \in \Lambda \cap (n+1)} \widetilde{\mathbf{S}}_{a(n,v,i)}^{m} \right) \smallsetminus \left(\prod_{i \in \Lambda \cap (n+1)} \widetilde{\mathbf{S}}_{a(n,v,i)}^{m+1} \right) \right) \cdot \Lambda \cap \{n+1\} ({}^{\omega}\omega)$
 $\bigsqcup_{l \in \omega} \prod_{i \in \Lambda \cap (n+2)} \widetilde{\mathbf{S}}_{a(n+1,v \cap (m,l),i)} \cdot$

Let $\mathbf{G}(\Lambda)$ be a foliage tree with skeleton $\mathbf{G}(\Lambda) \coloneqq ({}^{<\omega}\omega, \varsigma)$ and with leaves defined as follows:

$$\begin{array}{ll} \text{(b1)} & \forall n \in \omega \ \forall v \in ^{2n} \omega \\ & \mathbf{G}(\Lambda)_v \coloneqq \left(\prod_{i \in \Lambda \cap (n+1)} \mathbf{S}_{a(n,v,i)}\right) \cdot ^{\Lambda \smallsetminus (n+1)} (^{\omega} \omega); \\ \text{(b2)} & \forall n \in \omega \ \forall v \in ^{2n} \omega \ \forall m \in \omega \\ & \mathbf{G}(\Lambda)_{v \upharpoonright \langle m \rangle} \coloneqq \left(\left(\prod_{i \in \Lambda \cap (n+1)} \widetilde{\mathbf{S}}_{a(n,v,i)}^m \right) \setminus \left(\prod_{i \in \Lambda \cap (n+1)} \widetilde{\mathbf{S}}_{a(n,v,i)}^{m+1}\right) \right) \cdot ^{\Lambda \smallsetminus (n+1)} (^{\omega} \omega) \end{array}$$

Notice that the construction of $\mathbf{G}(\Lambda)$ doesn't depend on topologies τ_n , $n \in \Lambda$; it depends only on the cardinality of Λ .

To complete the proof, we show that $\mathbf{G}(\Lambda)$ is indeed a π -tree on $(\Lambda(^{\omega}\omega),\tau):$

- $\mathbf{G}(\Lambda)$ is a foliage ω, ω -tree.
- $\mathbf{G}(\Lambda)_{0_{\mathbf{G}(\Lambda)}} = \Lambda(\widetilde{\omega}\omega).$

We have $0_{\mathbf{G}(\Lambda)} = \langle \rangle$, clause (b1) with n = 0 says that

$$\mathbf{G}(\Lambda)_{\langle\rangle} = {}^{\{0\}} \mathbf{S}_{a(0,\langle\rangle,0)} \cdot {}^{\Lambda \smallsetminus 1} ({}^{\omega} \omega),$$

so using (4.8) (see the proof of Lemma 4.3) we have

$$\mathbf{G}(\Lambda)_{\mathbf{0}_{\mathbf{G}(\Lambda)}} = {}^{\{0\}}\mathbf{S}_{\langle\rangle} \cdot {}^{\Lambda \setminus 1}({}^{\omega}\omega) = {}^{\{0\}}({}^{\omega}\omega) \cdot {}^{\Lambda \setminus \{0\}}({}^{\omega}\omega) = {}^{\Lambda}({}^{\omega}\omega).$$

• $\mathbf{G}(\Lambda)$ is open in $(\Lambda(\omega\omega), \tau)$.

By (b) of Corollary 3.3, every set \mathbf{S}_v is closed-and-open in each of spaces $({}^{\omega}\omega, \tau_n)$, and the formula

$$\widetilde{\mathbf{S}}_{v}^{m} = \mathbf{S}_{v} \setminus \bigcup \{ \mathbf{S}_{v (l)} : l \in m \}$$

(which follows from (4.2)) implies that every set $\widetilde{\mathbf{S}}_{v}^{m}$ is closed-and-open in each of $({}^{\omega}\omega, \tau_{n})$ too. Therefore every leaf of $\mathbf{G}(\Lambda)$ is open in $({}^{\Lambda}({}^{\omega}\omega), \tau)$.

• $G(\Lambda)$ is locally strict.

Let $t \in \operatorname{\mathsf{nodes}} \mathbf{G}(\Lambda)$. First, suppose that $t \in {}^{2n}\omega$ for some $n \in \omega$. Since $\mathbf{S}_u = \widetilde{\mathbf{S}}_u^0$ for all $u \in {}^{<\omega}\omega$, then by (b1) we have

$$\mathbf{G}(\Lambda)_t = \Big(\prod_{i \in \Lambda \cap (n+1)} \widetilde{\mathbf{S}}^0_{a(n,t,i)} \Big) \cdot {}^{\Lambda \smallsetminus (n+1)} ({}^{\omega} \omega).$$

Note that for each $u \in {}^{<\omega}\omega$, the $\langle \widetilde{\mathbf{S}}_u^m \rangle_{m \in \omega}$ is a strictly decreasing sequence of sets and $\bigcap_{m \in \omega} \widetilde{\mathbf{S}}_u^m = \emptyset$. Then it follows from (b2) that

$$\mathbf{G}(\Lambda)_t \equiv \bigsqcup_{m \in \omega} \mathbf{G}(\Lambda)_{t (m)}.$$

Now suppose that $t \in {}^{2n+1}\omega$ for some $n \in \omega$, so that t = u(m) for some $u \in {}^{2n}\omega$, $m \in \omega$. Then by (b2) we have

$$\mathbf{G}(\Lambda)_{t} = \mathbf{G}(\Lambda)_{u^{\wedge}(m)} = \left(\left(\prod_{i \in \Lambda \cap (n+1)} \widetilde{\mathbf{S}}_{a(n,u,i)}^{m} \right) \setminus \left(\prod_{i \in \Lambda \cap (n+1)} \widetilde{\mathbf{S}}_{a(n,u,i)}^{m+1} \right) \right) \cdot \Lambda \cap \{n+1\}} (\omega_{\omega}) \cdot \Lambda \setminus (n+2)} (\omega_{\omega}),$$

so (a2) implies

$$\mathbf{G}(\Lambda)_t \equiv \bigsqcup_{l \in \omega} \Big(\Big(\prod_{i \in \Lambda \cap (n+2)} \mathbf{S}_{a(n+1,u(m,l),i)} \Big) \cdot \Lambda(n+2)} (\omega) \Big),$$

and then using (b1) with $v = u(m, l) \in {}^{2(n+1)}\omega$ we have

$$\mathbf{G}(\Lambda)_t \equiv \bigsqcup_{l \in \omega} \mathbf{G}(\Lambda)_{u (m,l)}, \quad \text{that is,} \quad \mathbf{G}(\Lambda)_t \equiv \bigsqcup_{l \in \omega} \mathbf{G}(\Lambda)_{t (l)}.$$

• $G(\Lambda)$ has strict branches.

Suppose that *B* is a branch in skeleton $\mathbf{G}(\Lambda)$, which means that $B = \{z \mid n : n \in \omega\}$ for some $z \in {}^{\omega}\omega$. Since $\mathbf{G}(\Lambda)$ is a locally strict foliage ω, ω -tree, then $\mathbf{G}(\Lambda)$ is nonincreasing, so

(4.3)
$$\bigcap_{b \in B} \mathbf{G}(\Lambda)_b = \bigcap_{n \in \omega} \mathbf{G}(\Lambda)_{z \nmid 2n}$$

because the chain $\{z \upharpoonright 2n : n \in \omega\}$ is cofinal in (B, \subset) . By (b1) we have

(4.4)
$$\mathbf{G}(\Lambda)_{z \upharpoonright 2n} = \left(\prod_{i \in \Lambda \cap (n+1)} \mathbf{S}_{a(n,z \upharpoonright 2n,i)}\right) \cdot {}^{\Lambda \smallsetminus (n+1)} ({}^{\omega}\omega) \text{ for all } n \in \omega.$$

Since $\mathbf{G}(\Lambda)$ is nonincreasing, it follows from (4.4) and (a1) that

$$\mathbf{S}_{a(n,z \upharpoonright 2n,i)} \supset \mathbf{S}_{a(n+1,z \upharpoonright 2(n+1),i)}$$
 for all $n \in \omega$ and $i \in \Lambda \cap (n+1)$

— that is, for all $i \in \Lambda$ and $n \in \omega \setminus i$. This implies

$$a(n,z \upharpoonright 2n,i) \subset a(n+1,z \upharpoonright 2(n+1),i)$$
 for all $i \in \Lambda$ and $n \in \omega \setminus i$,

and then, for every $i \in \Lambda$, there is $y_i \in {}^{\omega}\omega$ such that $a(n, z \upharpoonright 2n, i) \subset y_i$ for all $n \in \omega \setminus i$. Then

(4.5)
$$\bigcap_{n \in \omega \setminus i} \mathbf{S}_{a(n,z \upharpoonright 2n,i)} = \{y_i\} \quad \text{for all } i \in \Lambda.$$

Put $y \coloneqq \langle y_i \rangle_{i \in \Lambda} \in {}^{\Lambda}({}^{\omega}\omega)$. Now (4.4) and (4.5) imply $\bigcap_{n \in \omega} \mathbf{G}(\Lambda)_{z \upharpoonright 2n} = \{y\}$, so the $\bigcap_{b \in B} \mathbf{G}(\Lambda)_b$ is a singleton by (4.3).

• $\mathbf{G}(\Lambda)$ grows into $(\Lambda(\omega\omega), \tau)$.

Suppose that

$$p = \langle p_i \rangle_{i \in \Lambda} \in {}^{\Lambda}({}^{\omega}\omega) \text{ and } U \in \mathsf{nbhds}\left(p, \left({}^{\Lambda}({}^{\omega}\omega), \tau\right)\right).$$

We may assume that

(4.6)
$$U = \left(\prod_{i \in k+1} U_i\right) \cdot \Lambda(k+1)(\omega\omega)$$

for some $k \in \Lambda$ and some $U_i \in \mathsf{nbhds}(p_i, ({}^{\omega}\omega, \tau_i))$ for every $i \in k+1$. Put $R_i \coloneqq \mathsf{span}_{\mathbf{S}}(p_i, U_i)$ for every $i \in k+1$. Then $\bigcap_{i \in k+1} R_i$ is infinite by (4.1), so there is some $\bar{n} \in \bigcap_{i \in k+1} R_i$ such that $\bar{n} \ge k$. By definition of $\mathsf{span}_{\mathbf{S}}(p_i, U_i)$, for each $i \in k+1$, there is $v_i \in \mathsf{scope}_{\mathbf{S}}(p_i)$ such that

height_{**S**}
$$(v_i) = \overline{n}$$
 and shoot_{**S**} $(v_i) \gg \{U_i\}$.

This means that for each $i \in k + 1$, we have $p_i \in \mathbf{S}_{v_i}$, $v_i \in \bar{n}\omega$ (hence $v_i = p_i | \bar{n}$), and $\widetilde{\mathbf{S}}_{v_i}^{m_i} = \widetilde{\mathbf{S}}_{p_i | \bar{n}}^{m_i} \subseteq U_i$ for some $m_i \in \omega$. Let \bar{m} be the maximal element of $\{m_i : i \in k + 1\}$. Then $\widetilde{\mathbf{S}}_{p_i | \bar{n}}^{\bar{m}} \subseteq U_i$ for all $i \in k + 1$, and hence

$$\prod_{i \in k+1} \widetilde{\mathbf{S}}_{p_i \upharpoonright \bar{n}}^{\bar{m}} \subseteq \prod_{i \in k+1} U_i.$$

Note that
$$k + 1 = \Lambda \cap (k + 1)$$
 because $k \in \Lambda$, so using (4.6) we get

(4.7)
$$\left(\prod_{i\in\Lambda\cap(k+1)}\tilde{\mathbf{S}}^m_{p_i\uparrow\bar{n}}\right)\cdot^{\Lambda\smallsetminus(k+1)}(^{\omega}\omega)\subseteq U$$

We already know that $\mathbf{G}(\Lambda)$ is a Baire foliage tree on $(\Lambda(\omega\omega), \tau)$, so using (d) of Corollary 3.3 we can take node $\bar{v} \in \mathsf{scope}_{\mathbf{G}(\Lambda)}(p)$ such that $\bar{v} \in {}^{2\bar{n}}\omega$. Then, using (b1) with $n = \bar{n}$ and $v = \bar{v}$, we have

$$p = \langle p_i \rangle_{i \in \Lambda} \in \mathbf{G}(\Lambda)_{\bar{v}} = \left(\prod_{i \in \Lambda \cap (\bar{n}+1)} \mathbf{S}_{a(\bar{n},\bar{v},i)}\right) \cdot {}^{\Lambda \setminus (\bar{n}+1)} ({}^{\omega}\omega),$$

so $p_i \in \mathbf{S}_{a(\bar{n},\bar{v},i)}$ for all $i \in \Lambda \cap (\bar{n}+1)$, and hence using (a1) we get $a(\bar{n},\bar{v},i) = p_i | \bar{n}$ for all $i \in \Lambda \cap (\bar{n}+1)$. Using (b2) and inequality $\bar{n} \ge k$ we can write

$$\mathbf{G}(\Lambda)_{\overline{v}^{\wedge}(m)} \subseteq \left(\prod_{i \in \Lambda \cap (\overline{n}+1)} \widetilde{\mathbf{S}}_{p_{i} \restriction \overline{n}}^{m}\right) \cdot {}^{\Lambda \setminus (\overline{n}+1)} ({}^{\omega}\omega) \subseteq \left(\prod_{i \in \Lambda \cap (k+1)} \widetilde{\mathbf{S}}_{p_{i} \restriction \overline{n}}^{m}\right) \cdot {}^{\Lambda \setminus (k+1)} ({}^{\omega}\omega) \quad \text{for all } m \in \omega.$$

Therefore using (4.7) we get $\mathbf{G}(\Lambda)_{\bar{v}(m)} \subseteq U$ for all $m \in \omega \setminus \bar{m}$. This means that we have found $\bar{v} \in \mathsf{scope}_{\mathbf{G}(\Lambda)}(p)$ such that $\mathsf{shoot}_{\mathbf{G}(\Lambda)}(\bar{v}) \gg \{U\}$. \Box

Lemma 4.3. For each $\Lambda \in (\omega \cup \{\omega\}) \setminus 2$, there is a family $\langle a(n, v, i) : n \in \omega, v \in {}^{2n}\omega, i \in \Lambda \cap (n+1) \rangle$ such that

 $\begin{array}{ll} (a1) & \forall n \in \omega \ \forall v \in^{2n} \omega \ \forall i \in \Lambda \cap (n+1) \ \left[a(n,v,i) \in^{n} \omega \right]; \\ (a2) & \forall n \in \omega \ \forall v \in^{2n} \omega \ \forall m \in \omega \\ & \left(\left(\prod_{i \in \Lambda \cap (n+1)} \widetilde{\mathbf{S}}^{m}_{a(n,v,i)} \right) \smallsetminus \left(\prod_{i \in \Lambda \cap (n+1)} \widetilde{\mathbf{S}}^{m+1}_{a(n,v,i)} \right) \right) \cdot \ ^{\Lambda \cap \{n+1\}} (^{\omega} \omega) \ \equiv \\ & \bigsqcup_{l \in \omega} \ \prod_{i \in \Lambda \cap (n+2)} \mathbf{S}_{a(n+1,v \cap \langle m, l \rangle, i)} \cdot \end{array}$

Proof. We construct this indexed family by recursion on $n \in \omega$ as follows: When n = 0, we have ${}^{2n}\omega = {}^{n}\omega = {}^{0}\omega = \{\langle \rangle\}$ and $\Lambda \cap (n + 1) = \{0\}$ because $\Lambda \ge 2$, so (a1) with n = 0 just says

$$(4.8) a(0,\langle\rangle,0) = \langle\rangle.$$

When n = 1, we must choose $a(1, v, i) \in {}^{1}\omega$ (for all $v \in {}^{2}\omega$ and $i \in \Lambda \cap 2$) in such a way that (a2) with n = 0 is satisfied. Since $\Lambda \ge 2$, then $\Lambda \cap 1 = \{0\}$ and $\Lambda \cap 2 = \{0, 1\}$, so (a2) with n = 0 says that

$$\left({}^{\{0\}}\widetilde{\mathbf{S}}_{a(0,\langle\rangle,0)}^{m} \setminus {}^{\{0\}}\widetilde{\mathbf{S}}_{a(0,\langle\rangle,0)}^{m+1}\right) \cdot {}^{\{1\}}(^{\omega}\omega) \equiv \bigsqcup_{l \in \omega} \prod_{i \in \{0,1\}} \mathbf{S}_{a(1,\langle\rangle (m,l),i)} \text{ for all } m \in \omega.$$

Using (4.2) and (4.8), this can be simplified to

$${}^{\{0\}}\mathbf{S}_{\langle m \rangle} \cdot {}^{\{1\}}({}^{\omega}\omega) \equiv \bigsqcup_{l \in \omega} \prod_{i \in \{0,1\}} \mathbf{S}_{a(1,\langle m,l \rangle,i)} \quad \text{for all } \forall m \in \omega.$$

Then we can take $a(1, \langle m, l \rangle, 0) \coloneqq \langle m \rangle$ and $a(1, \langle m, l \rangle, 1) \coloneqq \langle l \rangle$ for every $m, l \in \omega$.

When $n \ge 2$, the choice of a(n, v, i) can be carried out similar to the case n = 1 if we note that

$$\label{eq:constraint} {}^{\omega}\omega \ \equiv \bigsqcup_{a \in {}^{h}\omega} \mathbf{S}_{a} \qquad \text{for all} \ h \in \omega,$$

and that for every $k \ge 2$, every $a = \langle a_i \rangle_{i \in k} \in {}^k({}^{2n}\omega)$, and every $m \in \omega$,

$$\left(\prod_{i \in k} \widetilde{\mathbf{S}}_{a_{i}}^{m}\right) \smallsetminus \left(\prod_{i \in k} \widetilde{\mathbf{S}}_{a_{i}}^{m+1}\right) = \left(\prod_{i \in k} \bigcup_{l \in \omega \smallsetminus m} \mathbf{S}_{a_{i}}(l)\right) \smallsetminus \left(\prod_{i \in k} \bigcup_{l \in \omega \smallsetminus (m+1)} \mathbf{S}_{a_{i}}(l)\right) = \\ \bigcup \left\{\prod_{i \in k} \mathbf{S}_{a_{i}}(l_{i}) : l = \langle l_{i} \rangle_{i \in k} \in^{k} (\omega \smallsetminus m) \right\} \land \bigcup \left\{\prod_{i \in k} \mathbf{S}_{a_{i}}(l_{i}) : l = \langle l_{i} \rangle_{i \in k} \in^{k} (\omega \smallsetminus (m+1))\right\} = \\ \bigsqcup \left\{\prod_{i \in k} \mathbf{S}_{a_{i}}(l_{i}) : l = \langle l_{i} \rangle_{i \in k} \in^{k} (\omega \smallsetminus m) \smallsetminus^{k} (\omega \smallsetminus (m+1))\right\}$$

and the set ${}^{k}(\omega \wedge m) \wedge {}^{k}(\omega \wedge (m+1))$ is infinite.

5. The Second Theorem

Theorem 5.1.

(a) Suppose that $\mathbf{F}(\alpha)$ is a π -tree on a space X_{α} for every $\alpha \in A$, where $1 \leq |A| \leq \omega$. Suppose also that for each $\alpha \in A$, there is $\gamma_{\alpha} \subseteq \mathsf{power.set}(\omega)$ such that

 $\succ |\gamma_{\alpha}| \leq \omega,$

 $\succ \gamma_{\alpha}$ has the FIP, and

 $\succ \gamma_{\alpha} \gg \operatorname{spectrum}_{\mathbf{F}(\alpha)}(X_{\alpha}).$

Then the product $\prod_{\alpha \in A} X_{\alpha}$ has a π -tree.

(b) Suppose, in addition to (a), that **G** is a π -tree on a space Y and spectrum_{**G**}(Y) has the FIP. Then the product $Y \times \prod_{\alpha \in A} X_{\alpha}$ also has a π -tree.

Lemma 5.2. Suppose that $2 \leq \Lambda \in \omega \cup \{\omega\}$ and for each $n \in \Lambda$, $\emptyset \neq \delta_n \subseteq \mathsf{power.set}(\omega) \setminus \{\emptyset\}$ and $\bigcap \delta_n = \emptyset$. Suppose also that δ_0 has the FIP and for each $n \in \Lambda \setminus \{0\}$, there is $\gamma_n \subseteq \mathsf{power.set}(\omega)$ such that

 $\succ |\gamma_n| \leq \omega,$

- $\succ \gamma_n$ has the FIP, and
- $\succ \gamma_n \gg \delta_n.$

Then there exists a sequence $\langle \alpha_n \rangle_{n \in \Lambda}$ of strictly increasing functions $\alpha_n : \omega \to \omega$ such that

(♠) if $k \in \Lambda$ and $A_i \in \{\alpha_i[D] : D \in \delta_i\}$ for all $i \leq k$, then $\bigcap_{i \leq k} A_i$ is infinite.

Lemma 5.3. Suppose that \mathbf{F} is a π -tree on a space X and $\alpha: \omega \to \omega$ is a strictly increasing function. Then there exists a π -tree \mathbf{H} on X such that

 $(\mathbf{\Psi}) \ \alpha[\operatorname{span}_{\mathbf{F}}(p,U)] \subseteq \operatorname{span}_{\mathbf{H}}(p,U) \text{ for all } p \in X \text{ and } U \in \operatorname{nbhds}(p,X).$

Proof of Theorem 5.1. Note that part (a) follows from part (b). Indeed, let $\beta \in A$, $\mathbf{G} \coloneqq \mathbf{F}(\beta)$, and $Y \coloneqq X_{\beta}$. Since γ_{β} has the FIP, $\gamma_{\beta} \gg \mathsf{spectrum}_{\mathbf{G}}(Y)$, and (by (a) of Lemma 3.6) $\emptyset \notin \mathsf{spectrum}_{\mathbf{G}}(Y)$, then $\mathsf{spectrum}_{\mathbf{G}}(Y)$ also has the FIP. The case when |A| = 1 is trivial, so we may assume that $A \setminus \{\beta\} \neq \emptyset$, and then the space

$$\prod_{\alpha \in A} X_{\alpha} = Y \times \prod_{\alpha \in A \smallsetminus \{\beta\}} X_{\alpha}$$

has a π -tree by (b).

To prove (b) it is convenient to assume that $A = \Lambda \setminus \{0\}$ and $2 \leq \Lambda \in \omega \cup \{\omega\}$. Put $X_0 \coloneqq Y$ and $\mathbf{F}(0) \coloneqq \mathbf{G}$; then we must prove that the space $\prod_{n \in \Lambda} X_n$ has a π -tree. Let $\delta_n \coloneqq \mathsf{spectrum}_{\mathbf{F}(n)}(X_n)$ for every $n \in \Lambda$. Then using Lemma 3.6 we see that $\delta_n \subseteq \mathsf{power.set}(\omega) \setminus \{\emptyset\}$ and $\bigcap \delta_n = \emptyset$ for all $n \in \Lambda$, so we can apply Lemma 5.2. Then we get a sequence $\langle \alpha_n \rangle_{n \in \Lambda}$ of strictly increasing functions $\alpha_n \colon \omega \to \omega$ such that condition (\clubsuit) holds. Next, applying Lemma 5.3 to \mathbf{F}_n , X_n , and α_n for every $n \in \Lambda$, we obtain a sequence $\langle \mathbf{H}(n) \rangle_{n \in \Lambda}$ such that for every $n \in \Lambda$, $\mathbf{H}(n)$ is a π -tree on X_n and

(5.1)
$$\alpha_n [\operatorname{span}_{\mathbf{F}(n)}(p, U)] \subseteq \operatorname{span}_{\mathbf{H}(n)}(p, U)$$
 for all $p \in X_n$ and $U \in \operatorname{nbhds}(p, X_n)$.

Now we can use Theorem 4.1 to show that the product $\prod_{n \in \Lambda} X_n$ has a π -tree. Suppose that $I \subseteq \Lambda$ is finite and nonempty; then $I \subseteq k + 1$ for some $k \in \Lambda$. Let $R_i \in \operatorname{spectrum}_{\mathbf{H}(i)}(X_i)$ for every $i \in k+1$; we must show that the set $\bigcap_{i \in I} R_i$ is infinite. For each $i \in k+1$, $R_i = \operatorname{span}_{\mathbf{H}(i)}(p_i, U_i)$ for some $p_i \in X_i$ and $U_i \in \operatorname{nbhds}(p_i, X_i)$. Put $A_i := \alpha_i [\operatorname{span}_{\mathbf{F}(i)}(p_i, U_i)]$ for every $i \in k+1$; then by (5.1) we have $A_i \subseteq R_i$. Now,

 $A_i \in \left\{ \alpha_i[R] : R \in \mathsf{spectrum}_{\mathbf{F}(i)}(X_i) \right\} = \left\{ \alpha_i[D] : D \in \delta_i \right\} \text{ for all } i \in k+1,$

so (by (\bigstar) of Lemma 5.2) the $\bigcap_{i \in k+1} A_i$ is infinite, hence the $\bigcap_{i \in k+1} R_i$ is infinite, and then the $\bigcap_{i \in I} R_i$ is infinite too.

Proof of Lemma 5.2. It is not hard to show that each γ_n is not empty, so we may assume that $\gamma_n = \{G_i(n) : i \in \omega\}$ for every $n \in \Lambda \setminus \{0\}$. Since δ_0 has the FIP and $\bigcap \delta_0 = \emptyset$, then

(5.2)
$$\cap \varepsilon$$
 is infinite for all $\varepsilon \in [\delta_0]^{<\omega} \setminus \{\emptyset\}$.

Also $\bigcap \gamma_n = \emptyset$ for all $n \in \Lambda \setminus \{0\}$ (because $\gamma_n \gg \delta_n$, $\emptyset \notin \delta_n \neq \emptyset$, and $\bigcap \delta_n = \emptyset$), so by the same reasons we get

(5.3)
$$\bigcap_{j \leq i} G_j(n)$$
 is infinite for all $n \in \Lambda \setminus \{0\}$ and $i \in \omega$.

Now, using (5.3), for every $n \in \Lambda \setminus \{0\}$ and $i \in \omega$, we can choose $f_i(n) \in \bigcap_{j \leq i} G_j(n)$ in such a way that

(5.4)
$$f_{i+1}(n) > f_i(n)$$
 for all $n \in \Lambda \setminus \{0\}$ and $\forall i \in \omega$.

Put $F(n) \coloneqq \{f_i(n) : i \in \omega\}$ for every $n \in \Lambda \setminus \{0\}$; then $\{F(n) \setminus m : m \in \omega\} \gg \gamma_n$ for all $n \in \Lambda \setminus \{0\}$, and hence

(5.5)
$$\{F(n) \setminus m : m \in \omega\} \gg \delta_n \quad \text{for all } n \in \Lambda \setminus \{0\}.$$

Let $F(0) \in \delta_0$; then F(0) is infinite by (5.2), so we may assume that $F(0) = \{f_i(0) : i \in \omega\}$ and $f_{i+1}(0) > f_i(0)$ for all $i \in \omega$. Put $h_{-1} := -1$ and $f_{-1}(n) := -1$ for every $n \in \Lambda$. By recursion on $i \in \omega$, we can build a strictly increasing sequence $\langle h_i \rangle_{i \in \omega}$ of natural numbers in such a way that

(5.6)
$$h_i > h_{i-1} + f_{i-j}(j) - f_{i-j-1}(j)$$
 for all $i \in \omega$ and $j \in \Lambda \cap (i+1)$.

Let $\langle \beta_n \rangle_{n \in \Lambda}$ be a sequence of functions with

domain
$$\beta_n := F(n) \cup \{-1\} = \{f_l(n) : l \in \omega \cup \{-1\}\}$$

and such that

(5.7)
$$\beta_n(f_l(n)) = h_{n+l}$$
 for all $n \in \Lambda$ and $l \in \omega \cup \{-1\}$.
Note that (5.7) implies

(5.8)
$$\beta_n \left[F(n) \right] = \{ h_j : j \in \omega \smallsetminus n \} \quad \text{for all } n \in \Lambda.$$

Now, for all
$$n \in \Lambda$$
 and $l \in \omega$, (5.6) with $i = n + l$, $j = n$ says that

$$h_{n+l} - h_{n+l-1} > f_{n+l-n}(n) - f_{n+l-n-1}(n) = f_l(n) - f_{l-1}(n),$$

so by (5.7) we have

$$\beta_n(f_l(n)) - \beta_n(f_{l-1}(n)) > f_l(n) - f_{l-1}(n) \quad \text{for all } n \in \Lambda \text{ and } l \in \omega.$$

This means that for each $n \in \Lambda$, we can choose a strictly increasing function $\alpha_n : \omega \to \omega$ such that $\alpha_n \upharpoonright F(n) = \beta_n \upharpoonright F(n)$.

Now we prove that condition (\bigstar) is satisfied. Suppose that $k \in \Lambda$ and for every $i \in k+1$, $A_i = \alpha_i [D(i)]$ for some $D(i) \in \delta_i$. Using (5.5), for each $i \in (k+1) \setminus \{0\}$, we can choose some $m_i \in \omega$ such that $D(i) \supseteq F(i) \setminus m_i$. Therefore, by (5.8), for each $i \in (k+1) \setminus \{0\}$, we can find some $l_i \in \omega$ such that $A_i \supseteq \{h_j : j \in \omega \setminus l_i\}$. It follows that

$$\bigcap_{i \in (k+1) \setminus \{0\}} A_i \supseteq \{h_j : j \in \omega \setminus l\} \quad \text{for some } l \in \omega.$$

Now, $D(0) \cap F(0)$ is infinite by (5.2), $\alpha_0 [F(0)] = \{h_j : j \in \omega\}$ by (5.8), and α_0 is injective, therefore $A_0 \cap \{h_j : j \in \omega\}$ is infinite. This means that $\bigcap_{i \in k+1} A_i$ is infinite too.

Proof of Lemma 5.3. In this proof we apply the foliage hybrid operation, see details in Section 8. Put $\alpha(-1) \coloneqq -1$. Suppose that $v \in \mathsf{nodes } \mathbf{F}$. Set

 $k(v) := \alpha (\operatorname{height}_{\mathbf{F}}(v)) - \alpha (\operatorname{height}_{\mathbf{F}}(v) - 1);$

then $k(v) \in \omega \setminus \{0\}$. Let $\mathcal{T}(v)$ be a tree isomorphic to the tree $({}^{\langle k(v)+1}\omega, \subset)$ and such that $0_{\mathcal{T}(v)} = v$ and $\max \mathcal{T}(v) = \operatorname{sons}_{\mathbf{F}}(v)$. Let $\mathbf{G}(v)$ be a foliage tree with skeleton $\mathbf{G}(v) \coloneqq \mathcal{T}(v)$ and with leaves defined by recursion on $i \in k(v) + 1$ as follows:

- (base) If i = 0 and $t \in \mathsf{level}_{\mathcal{T}(v)}(k(v) i)$ (that is, if $t \in \mathsf{max}\mathcal{T}(v)$), then $\mathbf{G}(v)_t \coloneqq \mathbf{F}_t$.
- (step) If $1 \leq i \leq k(v)$ and $t \in \text{level}_{\mathcal{T}(v)}(k(v) i)$, then $\mathbf{G}(v)_t := \bigcup \{ \mathbf{G}(v)_s : s \in \text{sons}_{\mathcal{T}(v)}(t) \}$.

It is not hard to show the following (we use here the terminology of Definition 8.2):

- (c1) $0_{\mathbf{G}(v)} = v$ and $\max \mathbf{G}(v) = \operatorname{sons}_{\mathbf{F}}(v) = \operatorname{level}_{\mathbf{G}(v)}(k(v));$
- (c2) $\mathbf{G}(v)_v = \mathbf{F}_v;$
- (c3) $\mathbf{G}(v)$ is a foliage graft for \mathbf{F} ;
- (c4) $\operatorname{cut}(\mathbf{F}, \mathbf{G}(v)) = \emptyset;$
- (c5) $\mathbf{G}(v)$ is ω -branching, locally strict, open in X, and has bounded chains;
- (c6) height G(v) = k(v) + 1;
- (c7) shoot_{**G**(v)}(t) \gg shoot_{**F**}(v) for all $t \in$ nodes **G**(v) $\setminus \max \mathbf{G}(v)$;
- (c8) explant $(\mathbf{F}, \mathbf{G}(v)) = \emptyset$.

Now let $\varphi := \{ \mathbf{G}(v) : v \in \mathsf{nodes } \mathbf{F} \}$. We may assume that

implant
$$\mathbf{G}(v) \cap \operatorname{implant} \mathbf{G}(u) = \emptyset$$
 for all $v \neq u \in \operatorname{nodes} \mathbf{F}$

so φ is a consistent family of foliage grafts for **F**. Let **H** := fol.hybr(**F**, φ); note that loss(**F**, φ) = \emptyset by (c4). By induction on height_{**F**}(v), we can prove that

(5.9) height_{**H**}(v) = α (height_{**F**}(v) - 1) + 1 for all $v \in \operatorname{nodes} \mathbf{F}$.

Indeed, if $\mathsf{height}_{\mathbf{F}}(v) = 0$, then $v = 0_{\mathbf{F}}$, so $v = 0_{\mathbf{H}}$, and hence

 $\mathsf{height}_{\mathbf{H}}(v) = 0 = \alpha \big(\mathsf{height}_{\mathbf{F}}(v) - 1 \big) + 1.$

If $\mathsf{height}_{\mathbf{F}}(v) \ge 1$, then let t be the node in **F** such that $v \in \mathsf{sons}_{\mathbf{F}}(t)$, and then inductively we can write

$$\begin{split} \mathsf{height}_{\mathbf{H}}(v) &= \mathsf{height}_{\mathbf{H}}(t) + \mathsf{height}_{\mathbf{G}(t)}(v) = \mathsf{height}_{\mathbf{H}}(t) + \left(\mathsf{height}_{\mathbf{G}}(t) - 1\right) = \\ \mathsf{height}_{\mathbf{H}}(t) + \left(k(t) + 1\right) - 1 &= \alpha \left(\mathsf{height}_{\mathbf{F}}(t) - 1\right) + 1 + k(t) = \\ \alpha \left(\mathsf{height}_{\mathbf{F}}(t) - 1\right) + 1 + \alpha \left(\mathsf{height}_{\mathbf{F}}(t)\right) - \alpha \left(\mathsf{height}_{\mathbf{F}}(t) - 1\right) = \\ \alpha \left(\mathsf{height}_{\mathbf{F}}(t)\right) + 1 = \alpha \left(\mathsf{height}_{\mathbf{F}}(v) - 1\right) + 1. \end{split}$$

Now, (c4)–(c6) with Lemma 8.4 say that **H** is a Baire foliage tree on X and (c7)–(c8) imply that each $\mathbf{G}(v)$ preserves shoots of **F** (see Definition 8.5), so **H** grows into X by Lemmas 8.6 and 8.7. Therefore **H** is a π -tree on X.

Let us show that $(\mathbf{\Psi})$ holds. Suppose that $p \in X$, $U \in \mathsf{nbhds}(p, X)$, and $r \in \mathsf{span}_{\mathbf{F}}(p, U)$. Then $r = \mathsf{height}_{\mathbf{F}}(v)$ for some node $v \in \mathsf{scope}_{\mathbf{F}}(p)$ such that $\mathsf{shoot}_{\mathbf{F}}(v) \gg \{U\}$. Let s be the node in $\mathsf{sons}_{\mathbf{F}}(v)$ such that $p \in \mathbf{F}_s$ and let t be the node in $\mathbf{G}(v)$ such that $s \in \mathsf{sons}_{\mathbf{G}(v)}(t)$. Then $t \in \mathsf{scope}_{\mathbf{H}}(p)$ and using (c7) and (a) of Proposition 8.3 we obtain

(5.10)
$$\operatorname{shoot}_{\mathbf{H}}(t) = \operatorname{shoot}_{\mathbf{G}(v)}(t) \gg \operatorname{shoot}_{\mathbf{F}}(v),$$

so $\text{shoot}_{\mathbf{H}}(t) \gg \{U\}$, and hence $\text{height}_{\mathbf{H}}(t) \in \text{span}_{\mathbf{H}}(p, U)$. Therefore to complete the proof it is enough to show that $\alpha(r) = \text{height}_{\mathbf{H}}(t)$. Indeed, using (c6) and (5.9) we have

$$\begin{split} \mathsf{height}_{\mathbf{H}}(t) &= \mathsf{height}_{\mathbf{H}}(v) + \mathsf{height}_{\mathbf{G}(v)}(t) = \mathsf{height}_{\mathbf{H}}(v) + \mathsf{height}_{\mathbf{G}(v)}(s) - 1 = \\ \mathsf{height}_{\mathbf{H}}(v) + \left(\mathsf{height}_{\mathbf{G}}(v) - 1\right) - 1 &= \mathsf{height}_{\mathbf{H}}(v) + \left(k(v) + 1\right) - 2 &= \\ \alpha \left(\mathsf{height}_{\mathbf{F}}(v) - 1\right) + 1 + \alpha \left(\mathsf{height}_{\mathbf{F}}(v)\right) - \alpha \left(\mathsf{height}_{\mathbf{F}}(v) - 1\right) - 1 &= \\ \alpha \left(\mathsf{height}_{\mathbf{F}}(v)\right) = \alpha(r). \end{split}$$

6. Nice π -Tree for a Co-Countable Subspace

In this section we prove Corollary 6.2, which states that if a space X has a "very nice" π -tree (that is, a π -tree \mathbf{F} such that $\operatorname{cofin} \omega \gg \operatorname{spectrum}_{\mathbf{F}}(X)$) and if $A \subseteq X$ is at most countable, then the subspace $X \smallsetminus A$ has a "nice" π -tree — that is, a π -tree that satisfies the conditions of Theorem 5.1. This result allows to apply Theorem 5.1 to co-countable subspaces of the Sorgenfrey line, see (c) of Lemma 7.1 and Corollary 7.2 in Section 7.

Proposition 6.1. Suppose that \mathbf{F} is a Baire foliage tree on a space X and $A \subseteq X$ is at most countable. Then there exists a Baire foliage tree \mathbf{H} on the subspace $X \setminus A$ such that for every $p \in X \setminus A$, there is a strictly increasing function $f_p: \omega \to \omega$ with a property

 $(\bigstar) \{ 2n+1 : n \in \omega \text{ and } f_p(n) \in \operatorname{span}_{\mathbf{F}}(p, U) \} \subseteq \operatorname{span}_{\mathbf{H}}(p, U \setminus A)$ for all $U \in \operatorname{nbhds}(p, X).$

Corollary 6.2. Suppose that \mathbf{F} is a π -tree on a space X such that $\operatorname{cofin} \omega \gg \operatorname{spectrum}_{\mathbf{F}}(X)$ and $A \subseteq X$ is at most countable. Then there exists a π -tree \mathbf{H} on the subspace $X \smallsetminus A$ such that

(\blacklozenge) cofin $\{2n + 1 : n \in \omega\} \gg \text{spectrum}_{\mathbf{H}}(X \setminus A).$

Remark 6.3. In statements of Proposition 6.1 and Corollary 6.2 the sequence $\langle 2n+1 \rangle_{n \in \omega}$ can be replaced by an arbitrary sequence $\langle k_n \rangle_{n \in \omega}$ of natural numbers such that $k_0 \ge 1$ and $k_{n+1} > k_n + 1$ for all $n \in \omega$.

$$\{2n+1: n \in \omega \setminus \overline{n}\} \subseteq \operatorname{span}_{\mathbf{H}}(p, U \setminus A) = D,$$

hence (\bigstar) is satisfied.

It follows from the above reasoning that $D \neq \emptyset$, so $\emptyset \notin \mathsf{spectrum}_{\mathbf{H}}(X \times A)$, and hence **H** grows into $X \times A$ by (a) of Lemma 3.6. This means that **H** is a π -tree on $X \times A$.

In the following lemma we use terminology of the foliage hybrid operation, see Definition 8.2 in Section 8.

Lemma 6.4. Suppose that **F** is a Baire foliage tree on a space $X, p \in X$, and $v \in \mathsf{scope}_{\mathbf{F}}(p)$. Then there exists a foliage tree **G** such that

- (d1) $0_{\mathbf{G}} = v$ and $\max \mathbf{G} = \operatorname{sons}_{\mathbf{G}}(0_{\mathbf{G}});$
- (d2) $\mathbf{G}_v = \mathbf{F}_v \setminus \{p\} \equiv \bigsqcup_{m \in \max \mathbf{G}} \mathbf{F}_m;$
- (d3) **G** is a foliage graft for **F**;
- (d4) implant $\mathbf{G} = \emptyset$;
- (d5) **G** is ω -branching, locally strict, open in X, has bounded chains, and height **G** = 2.

Proof. Put

 $B := \bigcup \{ \operatorname{sons}_{\mathbf{F}}(u) : u \in \operatorname{scope}_{\mathbf{F}}(p) \cap v |_{\mathbf{F}} \} \text{ and } \mathsf{MAX} := B \setminus \operatorname{scope}_{\mathbf{F}}(p).$ Let \mathcal{T} be a partial order such that

nodes $\mathcal{T} := \{v\} \cup \mathsf{MAX} \text{ and } <_{\mathcal{T}} := \{(v, m) : m \in \mathsf{MAX}\}.$

Then \mathcal{T} is a tree, $0_{\mathcal{T}} = v$, $\max \mathcal{T} = MAX$, and \mathcal{T} is a graft for skeleton **F**.

Now let **G** be a foliage tree with skeleton $\mathbf{G} \coloneqq \mathcal{T}$ and with leaves $\mathbf{G}_v \coloneqq \mathbf{F}_v \setminus \{p\}$ and $\mathbf{G}_m \coloneqq \mathbf{F}_m$ for all $m \in \max \mathcal{T}$. Then using (b) of Lemma 3.2 and Corollary 3.3 it is not hard to verify that clauses (d1)–(d5) are satisfied.

Proof of Proposition 6.1. We may assume that $A = \{p_i : i \in |A|\}$ and $p_i \neq p_j$ for all $i \neq j \in |A|$. First we build sequences $\langle M_i \rangle_{i \in |A|}, \langle z_i \rangle_{i \in |A|}$, and $\langle \mathbf{G}(i) \rangle_{i \in |A|}$ by recursion on $i \in |A|$:

- (e1) $M_0 \coloneqq \{0_{\mathbf{F}}\};$
- (e2) $z_i :=$ the node in **F** such that $\{z_i\} = M_i \cap \mathsf{scope}_{\mathbf{F}}(p_i);$
- (e3) $\mathbf{G}(i) :=$ the foliage tree \mathbf{G} from Lemma 6.4 with $p = p_i$ and $v = z_i$;
- (e4) $M_{i+1} \coloneqq (M_i \setminus \{z_i\}) \cup \bigcup \{\operatorname{sons}_{\mathbf{F}}(m) : m \in \max \mathbf{G}(i)\}.$

The correctness of clause (e2) follows from (f3), see below.

It is not hard to verify that for each $i \in |A|$, the following conditions are satisfied:

- (f1) M_i is an antichain in **F**
- (that is, $u \not\leq_{\mathbf{F}} v$ and $v \not\leq_{\mathbf{F}} u$ for all $u, v \in M_i$);
- (f2) $M_{i+1} \subseteq (M_i) \downarrow_{\mathbf{F}};$
- (f3) $X \setminus \{p_j : j \in i\} \equiv \bigsqcup_{m \in M_i} \mathbf{F}_m;$
- (f4) $0_{\mathbf{G}(i)} \in M_i;$
- (f5) $\operatorname{cut}(\mathbf{F}, \mathbf{G}(i)) = \{p_i\};\$
- (f6) $\{\mathbf{G}(j): j \in i+1\}$ is a consistent family of foliage grafts for **F**.

Now it follows from (f6) that $\varphi := \{\mathbf{G}(i) : i \in |A|\}$ is a consistent family of foliage grafts for \mathbf{F} , so we can define $\mathbf{H} := \mathsf{fol.hybr}(\mathbf{F}, \varphi)$. Then \mathbf{H} is a Baire foliage tree on $X \setminus A$ by Lemma 8.4, (f5), and (d5). Also \mathbf{H} satisfies the following:

- (g1) \mathbf{H} has nonempty leaves.
 - This follows from (b) of Corollary 3.3.
- (g2) nodes $\mathbf{H} \subseteq$ nodes \mathbf{F} .
 - This follows from (d4).
- (g3) $\mathbf{H}_u = \mathbf{F}_u \setminus A$ for all $u \in \operatorname{nodes} \mathbf{H}$. This also follows from (d4).
- (g4) height_H(u) $\in \{2n : n \in \omega\}$ for all $u \in M_i$ and $i \in |A|$.
 - We prove (g4) by induction on $i \in |A|$. Obviously, $\mathsf{height}_{\mathbf{H}}(u)$ is even when $u \in M_0$. Assume as inductive hypothesis that the assertion of (g4) holds for all $u \in \bigcup_{i \leq k} M_i$ and prove it for an arbitrary $u \in M_{k+1}$. If $u \in M_k$, then $\mathsf{height}_{\mathbf{H}}(u)$ is even by the inductive hypothesis. If $u \notin M_k$, then (e4) implies that $u \in$ $\mathsf{sons}_{\mathbf{F}}(m)$ for some $m \in \max \mathbf{G}(k)$. We have

$$\max \mathbf{G}(k) = \operatorname{sons}_{\mathbf{G}(k)}(0_{\mathbf{G}(k)}) \text{ and } \operatorname{sons}_{\mathbf{G}(k)}(0_{\mathbf{G}(k)}) = \operatorname{sons}_{\mathbf{H}}(0_{\mathbf{G}(k)})$$

by (d1) and by (a) of Proposition 8.3, so it follows from (f4) and from the inductive hypothesis that $\mathsf{height}_{\mathbf{H}}(m)$ is odd and then, using (f4) and the inductive hypothesis again, we have $m \notin \{0_{\mathbf{G}(j)} : j \in k+1\}$. Let us show that $m \notin \{0_{\mathbf{G}(j)} : j \in |A|\}$. If not, then

$$m \in \{0_{\mathbf{G}(j)} : j \in |A| \setminus (k+1)\}, \text{ so } m \in \bigcup \{M_j : j \in |A| \setminus (k+1)\}$$

by (f4). Then it follows from (f2) that $m \in (M_{k+1}) \downarrow_{\mathbf{F}}$ — that is, $m \geq_{\mathbf{F}} t$ for some $t \in M_{k+1}$. Since $u \in \operatorname{sons}_{\mathbf{F}}(m)$, then $u >_{\mathbf{F}} m$, therefore $u >_{\mathbf{F}} t$. This contradicts (f1) because $t, u \in M_{k+1}$. Now it follows from (d4) and (a) of Proposition 8.3 that $\operatorname{sons}_{\mathbf{F}}(m) =$ $\operatorname{sons}_{\mathbf{H}}(m)$, so $u \in \operatorname{sons}_{\mathbf{H}}(m)$. Then $\operatorname{height}_{\mathbf{H}}(u) \in \{2n : n \in \omega\}$ because $\operatorname{height}_{\mathbf{H}}(m)$ is odd.

Now suppose that $p \in X \setminus A$; we must find a strictly increasing function $f_p: \omega \to \omega$ that satisfies (\blacklozenge). First, using (d) of Corollary 3.3, for each $n \in \omega$, we define m(p, n) to be the node in $\mathsf{scope}_{\mathbf{H}}(p)$ such that $\mathsf{height}_{\mathbf{H}}(m(p, n)) = 2n + 1$. Using (g3) we have

(6.1)
$$\forall n \in \omega \mid m(p,n) \in \mathsf{scope}_{\mathbf{F}}(p) \mid.$$

Next, using (g2), we can define

 $f_p(n) \coloneqq \mathsf{height}_{\mathbf{F}}(m(p,n)) \quad \text{for every } n \in \omega;$

then $f_p: \omega \to \omega$ by (a) of Corollary 3.3. If n'' > n', then $m(p,n'') >_{\mathbf{H}} m(p,n')$ (because $\mathsf{scope}_{\mathbf{H}}(p)$ is a chain in \mathbf{H} by (c) of Corollary 3.3), so $m(p,n'') >_{\mathbf{F}} m(p,n')$ by (g2) and (b) of Lemma 8.3. This implies that f_p is strictly increasing. Now, using (f4) and (g4), for every $n \in \omega$, we have

$$\begin{split} m(p,n) \notin \left\{ 0_{\mathbf{G}(i)} : i \in |A| \right\}, & \text{so} \quad \mathsf{sons}_{\mathbf{H}} \left(m(p,n) \right) = \mathsf{sons}_{\mathbf{F}} \left(m(p,n) \right) \\ \text{by (d4) and (a) of Proposition 8.3. Then (g3) and (g1) imply} \\ (6.2) & \mathsf{shoot}_{\mathbf{H}} \left(m(p,n) \right) \gg \mathsf{shoot}_{\mathbf{F}} \left(m(p,n) \right) \quad \text{for all } n \in \omega. \end{split}$$

To complete the proof it remains to verify (\blacklozenge) ; suppose that

 $U \in \mathsf{nbhds}(p, X), \quad n \in \omega, \quad \text{and} \quad f_p(n) \in \mathsf{span}_{\mathbf{F}}(p, U).$

The last formula means that $f_p(n) = \mathsf{height}_{\mathbf{F}}(v)$ for some $v \in \mathsf{scope}_{\mathbf{F}}(p)$ such that $\mathsf{shoot}_{\mathbf{F}}(v) \gg \{U\}$. Then v = m(p, n) by (d) of Corollary 3.3, by (6.1), and by definition of $f_p(n)$. It follows that

$$\operatorname{shoot}_{\mathbf{F}}(m(p,n)) \gg \{U\}, \quad \text{so} \quad \operatorname{shoot}_{\mathbf{H}}(m(p,n)) \gg \{U\}$$

by (6.2). Then (g3) implies $\text{shoot}_{\mathbf{H}}(m(p,n)) \gg \{U \smallsetminus A\}$, therefore

$$2n + 1 = \text{height}_{\mathbf{H}}(m(p, n)) \in \text{span}_{\mathbf{H}}(p, U \smallsetminus A)$$

by definition of $\operatorname{span}_{\mathbf{H}}(p, U \smallsetminus A)$.

7. New Examples of Spaces with a π -Tree

Recall that \mathcal{N} is the Baire space, $\mathcal{R}_{\mathcal{S}}$ is the Sorgenfrey line, and $\mathcal{I}_{\mathcal{S}} \coloneqq \mathcal{R}_{\mathcal{S}} \smallsetminus \mathbb{Q}$ is the irrational Sorgenfrey line.

Lemma 7.1.

- (a) \mathcal{N} has a π -tree \mathbf{F} such that $\operatorname{cofin} \omega \gg \operatorname{spectrum}_{\mathbf{F}}(\mathcal{N})$.
- (b) $\mathcal{R}_{\mathcal{S}}$ has a π -tree **G** such that $\operatorname{cofin} \omega \gg \operatorname{spectrum}_{\mathbf{G}}(\mathcal{R}_{\mathcal{S}})$.
- (c) If $X \subseteq \mathcal{R}_{\mathcal{S}}$ and $\mathcal{R}_{\mathcal{S}} \setminus X$ is at most countable,
 - then X has a π -tree **H** such that $\operatorname{cofin}\{2n+1:n\in\omega\}\gg\operatorname{spectrum}_{\mathbf{H}}(X)$.

Proof. Part (a) follows from (b) of Lemma 2.6 and Example 3.5; part (b) can be derived from the proof of Lemma 3.6 in [8]; part (c) follows from part (b) and Corollary 6.2.

Using the above lemma and Theorem 5.1 we obtain the following statement:

Corollary 7.2. Suppose that $1 \leq |A| \leq \omega$ and for each $\alpha \in A$,

either
$$X_{\alpha} = \mathcal{N}$$
 or $X_{\alpha} \subseteq \mathcal{R}_{\mathcal{S}}$ with $|\mathcal{R}_{\mathcal{S}} \setminus X_{\alpha}| \leq \omega$.

Then the product $\prod_{\alpha \in A} X_{\alpha}$ has a π -tree.

Corollary 7.3.

- (a) $\mathcal{R}_{\mathcal{S}}^{n}$ and $\mathcal{I}_{\mathcal{S}}^{n}$ have a π -tree for all $n \in \omega \setminus \{0\}$. (b) $\mathcal{R}_{\mathcal{S}}^{\omega}$ and $\mathcal{I}_{\mathcal{S}}^{\omega}$ have a π -tree.

Note that if $X \subseteq \mathcal{N}$ with $|\mathcal{N} \setminus X| \leq \omega$, then X is homeomorphic to \mathcal{N} (this can be easily derived from the Alexandrov-Urysohn characterization of the Baire space and from the characterization of its Polish subspaces see Theorems 3.11 and 7.7 in [6]). Notice also that \mathcal{N}^n is homeomorphic to \mathcal{N} for all $n \in \omega \setminus \{0\}$ and \mathcal{N}^{ω} is also homeomorphic to \mathcal{N} .

Corollary 7.4. If a space X has a π -tree, then $X \times \mathcal{N}$, $X \times \mathcal{R}_s$, and $X \times \mathcal{R}_{s}^{\omega}$ also have a π -tree.

Proof. This statement follows from Corollary 4.2 and Lemma 7.1.

8. APPENDIX. THE FOLIAGE HYBRID OPERATION

In the proofs of Lemma 5.3 and Proposition 6.1 we employ the foliage hybrid operation, which was introduced in [10]. For completeness of exposition we list here definitions and results that we use. The definition of graft, which we give below, slightly differs from the definition of graft in [10], but these two definitions are easily seen to be equivalent. The same can be said about our definition of hybrid (\mathcal{T}, γ) , see details in [10, Remark 20]. To ease comprehension of notions from Definition 8.2, you can look at pictures that illustrate this definition in [9].

Notation 8.1.

 $\forall x \neq y \in A \ \varphi(x, y) : \longleftrightarrow \quad \forall x, y \in A \ [x \neq y \to \varphi(x, y)];$ $x \parallel_{\mathcal{P}} y : \longleftrightarrow x \notin_{\mathcal{P}} y \text{ and } x \not>_{\mathcal{P}} y.$

Definition 8.2 ([10, definitions 15, 17, 19, and 25–27 and Remark 20]). Suppose that \mathcal{T}, \mathcal{G} are trees and \mathbf{F}, \mathbf{G} are nonincreasing foliage trees.

 \mathfrak{G} is a graft for $\mathcal{T} : \longleftrightarrow$ ▶ $| \operatorname{nodes} \mathcal{G} | > 1,$ $\succ \mathcal{G}$ has the least node, \succ nodes $\mathcal{G} \cap$ nodes $\mathcal{T} = \{0_{\mathcal{G}}\} \cup \max \mathcal{G}, \text{ and }$ $\succ \quad \forall x, y \in \mathsf{nodes}\,\mathcal{G} \cap \mathsf{nodes}\,\mathcal{T}\ [x <_{\mathcal{G}} y \leftrightarrow x <_{\mathcal{T}} y].$ \mathbb{S} If \mathcal{G} is a graft for \mathcal{T} , then: \succ implant $\mathcal{G} :=$ nodes $\mathcal{G} \setminus (\{0_{\mathcal{G}}\} \cup \max \mathcal{G});$ \succ explant $(\mathcal{T},\mathcal{G}) := (0_{\mathcal{G}})|_{\mathcal{T}} \setminus (\max \mathcal{G})|_{\mathcal{T}}.$ γ is a **consistent** family of grafts for $\mathcal{T} : \longleftrightarrow$ $\succ \forall \mathcal{G} \in \gamma [\mathcal{G} \text{ is a graft for } \mathcal{T}],$ $\succ \forall \mathcal{D} \neq \mathcal{E} \in \gamma \text{ [implant } \mathcal{D} \cap \text{implant } \mathcal{E} = \emptyset \text{], and}$ $\succ \forall \mathcal{D} \neq \mathcal{E} \in \gamma \left[0_{\mathcal{D}} \parallel_{\mathcal{T}} 0_{\mathcal{E}} \text{ or } 0_{\mathcal{D}} \in (\max \mathcal{E}) \right]_{\mathcal{T}} \text{ or } 0_{\mathcal{E}} \in (\max \mathcal{D})]_{\mathcal{T}}].$ So If γ is a consistent family of grafts for \mathcal{T} , then: \succ support(\mathcal{T}, γ) := nodes $\mathcal{T} \setminus \bigcup$ explant(\mathcal{T}, \mathcal{G}); Support $(\mathcal{T}, \gamma) := \text{ fields } \mathcal{T} \cup \bigcup_{\mathcal{G} \in \gamma} \mathcal{T}$ hybrid $(\mathcal{T}, \gamma) := \text{ the pair } (H, <) \text{ (actually, a tree) such that }$ $H := \text{ support}(\mathcal{T}, \gamma) \cup \bigcup_{\mathcal{G} \in \gamma} \text{ implant } \mathcal{G} \text{ and}$ $< := \text{ the transitive closure of relation } (<_{\mathcal{T}} \cup \bigcup_{\mathcal{G} \in \gamma} <_{\mathcal{G}}) \cap (H \times H).$ \mathbb{S} G is a foliage graft for F : \longleftrightarrow \succ G is nonincreasing, \succ skeleton G is a graft for skeleton F, $\begin{array}{l} \succ \ \mathbf{G}_{0_{\mathbf{G}}} \subseteq \mathbf{F}_{0_{\mathbf{G}}}, \ \text{ and} \\ \succ \ \forall m \in \max \mathbf{G} \ [\mathbf{G}_m = \mathbf{F}_m]. \end{array}$ \mathbb{S} If **G** is a foliage graft for **F**, then $\succ \mathsf{cut}(\mathbf{F}, \mathbf{G}) \coloneqq \mathbf{F}_{0_{\mathbf{G}}} \smallsetminus \mathbf{G}_{0_{\mathbf{G}}}.$ φ is a **consistent** family of foliage grafts for $\mathbf{F} : \longleftrightarrow$ $\succ \forall \mathbf{G} \in \varphi \ [\mathbf{G} \text{ is a foliage graft for } \mathbf{F}],$ $\succ \forall \mathbf{D} \neq \mathbf{E} \in \varphi$ [skeleton $\mathbf{D} \neq$ skeleton \mathbf{E}], and > {skeleton $\mathbf{G} : \mathbf{G} \in \varphi$ } is a consistent family of grafts for skeleton \mathbf{F} . \mathbb{S} If φ is a consistent family of foliage grafts for **F**, then: $\succ \mathsf{loss}(\mathbf{F}, \varphi) \coloneqq \bigcup_{\mathbf{G} \in \varphi} \mathsf{cut}(\mathbf{F}, \mathbf{G});$ $\succ \mathsf{fol.hybr}(\mathbf{F}, \varphi) \stackrel{:=}{\coloneqq} \mathsf{the foliage hybrid of } \mathbf{F} \mathsf{ and } \varphi :=$

the foliage tree \mathbf{H} such that

skeleton $\mathbf{H} :=$ hybrid (skeleton \mathbf{F} , {skeleton $\mathbf{G} : \mathbf{G} \in \varphi$ }) and $\mathbf{H}_x := \begin{cases} \mathbf{G}_x \setminus loss(\mathbf{F}, \varphi), & \text{if } x \in implant \mathbf{G} \text{ for some } \mathbf{G} \in \varphi; \\ \mathbf{F}_x \setminus loss(\mathbf{F}, \varphi), & \text{otherwise.} \end{cases}$

Lemma 8.3 ([10, Lemma 21 and Proposition 23]). Suppose that γ is a consistent family of grafts for a tree \mathcal{T} , $\mathcal{H} = \mathsf{hybrid}(\mathcal{T}, \gamma)$, and $\mathcal{G} \in \gamma$.

- (a) nodes $\mathcal{G} \subseteq$ nodes \mathcal{H} and $\forall x, y \in$ nodes $\mathcal{G} [x \prec_{\mathcal{H}} y \leftrightarrow x \prec_{\mathcal{G}} y]$.
- (b) support(\mathcal{T}, γ) = nodes $\mathcal{H} \cap$ nodes \mathcal{T} and $\forall x, y \in$ support(\mathcal{T}, γ) [$x <_{\mathcal{H}} y \leftrightarrow x <_{\mathcal{T}} y$].
- (c) For each $x \in \text{nodes } \mathcal{H}$,

$$\mathsf{sons}_{\mathcal{H}}(x) = \begin{cases} \mathsf{sons}_{\mathcal{G}}(x), & \text{if } x \in \{0_{\mathcal{G}}\} \cup \mathsf{implant} \mathcal{G} \text{ for some } \mathcal{G} \in \gamma; \\ \mathsf{sons}_{\mathcal{T}}(x), & else(i.e., when \ x \in \mathsf{support}(\mathcal{T}, \gamma) \setminus \{0_{\mathcal{G}} : \mathcal{G} \in \gamma\}). \end{cases}$$

Lemma 8.4 ([10, Lemma 30]). Suppose that \mathbf{F} is a Baire foliage tree on a space X and φ is a consistent family of foliage grafts for \mathbf{F} such that every \mathbf{G} in φ is ω -branching, locally strict, open in X, has bounded chains, and has height $\mathbf{G} \leq \omega$. Then the foliage hybrid of \mathbf{F} and φ is a Baire foliage tree on $X \setminus loss(\mathbf{F}, \varphi)$.

Definition 8.5 ([10, Definition 31 and Definition 33]). Suppose that \mathbf{H}, \mathbf{F} are nonincreasing foliage trees and \mathbf{G} is a foliage graft for \mathbf{F} .

- Solution H shoots into F : $\forall p \in \mathsf{flesh} \mathbf{H} \forall y \in \mathsf{scope}_{\mathbf{F}}(p) \exists x \in \mathsf{scope}_{\mathbf{H}}(p) [\mathsf{shoot}_{\mathbf{H}}(x) \gg \mathsf{shoot}_{\mathbf{F}}(y)].$
- \mathbb{S} G preserves shoots of F : \longleftrightarrow
 - $\forall p \in \mathsf{flesh} \mathbf{G} \ \forall y \in \mathsf{scope}_{\mathbf{F}}(p) \cap (\{0_{\mathbf{G}}\} \cup \mathsf{explant}(\mathbf{F}, \mathbf{G}))$
 - $\exists x \in \mathsf{scope}_{\mathbf{G}}(p) \cap (\{0_{\mathbf{G}}\} \cup \mathsf{implant}\,\mathbf{G}) \ [\mathsf{shoot}_{\mathbf{G}}(x) \gg \mathsf{shoot}_{\mathbf{F}}(y)].$

Lemma 8.6 ([10, Lemma 34]). Suppose that \mathbf{F} is a nonincreasing foliage tree, φ is a consistent family of foliage grafts for \mathbf{F} , the foliage hybrid of \mathbf{F} and φ has nonempty leaves, and each $\mathbf{G} \in \varphi$ preserves shoots of \mathbf{F} . Then the foliage hybrid of \mathbf{F} and φ shoots into \mathbf{F} .

Lemma 8.7 ([10, Lemma 32]). Suppose that a foliage tree **H** shoots into a foliage tree **F** and **F** grows into a space X. Then **H** grows into the subspace $X \cap \text{flesh } \mathbf{H}$ of X.

References

- A. V. Arhangel'skiĭ, Open and close-to-open mappings: Relations among spaces (Russian), Trudy Moskov. Mat. Obšč 15 (1966), 181–223.
- [2] Eric K. van Douwen and Washek F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), no. 2, 371–377.
- [3] Klaas Pieter Hart, Jun-iti Nagata, and Jerry E. Vaughan, eds. Encyclopedia of General Topology. Amsterdam: Elsevier Science, 2003.

- [4] T. Jech, Set Theory, 2nd Edition. Springer, 1996.
- [5] István Juhász, Cardinal Functions in Topology—Ten Years Later. 2nd ed. Mathematical Centre Tracts, 123. Amsterdam: Mathematisch Centrum, 1980.
- [6] Alexander S. Kechris, *Classical Descriptive Set Theory*. Graduate Texts in Mathematics, 156. New York: Springer-Verlag, 1995.
- [7] Kenneth Kunen, Set Theory: An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, 102. Amsterdam-New York: North-Holland Publishing Co., 1980.
- [8] Mikhail Patrakeev, Metrizable images of the Sorgenfrey line, Topology Proc. 45 (2015), 253-269.
- Mikhail Patrakeev, The foliage hybrid operation: Slides from the talk "Alexandroff Readings," May 22–26, 2016, Moscow, Russia. Available at https://arxiv.org/src/1512.02458v5/anc
- [10] Mikhail Patrakeev, The complement of a σ -compact subset of a space with a π -tree also has a π -tree, Topology Appl. **221** (2017), 326–351.

Krasovskii Institute of Mathematics and Mechanics of UB RAS; 16 Sofia Kovalevskaya Street; 620990, Yekaterinburg, Russia and Ural Federal University; 19 Mira Street; 620002, Yekaterinburg, Russia

E-mail address: patrakeev@mail.ru