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WHEN THE PROPERTY OF HAVING A π-TREE
IS PRESERVED BY PRODUCTS

MIKHAIL PATRAKEEV

Abstract. We find sufficient conditions under which the product
of spaces that have a π -tree also has a π -tree. These conditions
give new examples of spaces with a π -tree: every at most countable
power of the Sorgenfrey line and every at most countable power of
the irrational Sorgenfrey line has a π -tree. Also we show that if a
space has a π -tree, then its product with the Baire space, with the
Sorgenfrey line, and with the countable power of the Sorgenfrey
line also has a π -tree.

1. Introduction

We study topological spaces that have a π-tree, see Terminology 2.5
in §2. The notion of a π-tree was introduced in [10] and is equivalent [10,
Remark 11] to the notion of a Lusin π-base, which was introduced in [8].
The Sorgenfrey line RS and the Baire space N (that is, ωω with the
product topology) are examples of spaces with a π-tree [8]. Every space
that has a π-tree shares many good properties with the Baire space. One
reason for this is expressed in Lemma 2.6 and Lemma 3.2; another two are
the following: If a space X has a π-tree, then X can be mapped onto N
by a continuous one-to-one map [8] and also X can be mapped onto N by
a continuous open map [8] (hence, X can be mapped by a continuous open
map onto an arbitrary Polish space, see [1] or [6, Exercise 7.14]). Every
space that has a π-tree also has a countable π-base, see Lemma 2.7.
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In this paper we study the following question: When does the product
of spaces that have a π-tree also have a π-tree? We find several kinds
of conditions (see Theorem 4.1, Theorem 5.1, and Corollary 4.2) under
which an at most countable product of spaces that have a π-tree also has a
π-tree. We consider only at most countable products because an uncount-
able product of spaces that have a π-tree has an uncountable pseudochar-
acter; therefore, it has no π-tree (see [5, 5.3.b)] and lemmas 2.6, 2.7, and
3.2).

The above results give new examples of spaces that have a π-tree, see
Section 7. For instance, Corollary 7.2 asserts that if 1 ⩽ ∣A∣ ⩽ ω and for
each α ∈ A,

either Xα = N or Xα ⊆ RS with RS∖Xα at most countable,

then the product ∏α∈AXα has a π-tree. In particular, the powers RSn
and ISn ( IS denotes the irrational Sorgenfrey line RS ∖Q ) have a π-
tree for all natural n ⩾ 1, and the powers RSω and ISω also have a
π-tree. (Note that no finite power of the irrational Sorgenfrey line is
homeomorphic to finite power of the Sorgenfrey line [2].) Other examples
of spaces with a π-tree can be obtained by using Corollary 7.4, which
says that if a space X has a π-tree, then the products X ×N , X ×RS ,
and X ×RSω also have a π-tree.

2. Notation and Terminology

We use standard set-theoretic notation from [4] and [7]. In particular,
each ordinal is equal to the set of smaller ordinals, ω = the set of natural
numbers = the set of finite ordinals = the first limit ordinal = the first
infinite cardinal, and n = {0, . . . , n − 1} for all n ∈ ω. A space is a
topological space; we use terminology from [3] when we work with spaces.
Also we use the following notation.

Terminology 2.1. The symbol ∶= means “equals by definition”; the
symbol ∶←→ is used to show that an expression on the left side is an
abbreviation for expression on the right side;

. x ⊂ y ∶←→ x ⊆ y and x ≠ y;

. A ≡ ⊔λ∈ΛBλ ∶←→
A = ⋃λ∈ΛBλ and ∀λ,λ′ ∈ Λ [λ ≠ λ′ → Bλ ∩Bλ′ = ∅];

. [A]κ ∶= {B ⊆ A ∶ ∣B∣ = κ}, [A]<κ ∶= {B ⊆ A ∶ ∣B∣ < κ}
(here κ is a cardinal);

. γ has the FIP ∶←→ ∀δ ∈ [γ]<ω∖{∅} [⋂ δ ≠ ∅]
(FIP means the Finite Intersection Property);

. cofinA ∶= {A ∖ F ∶ F ∈ [A]<ω};
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. nbhds(p,X) ∶= the set of (not necessarily open) neighbourhoods
of point p in space X;

. f↾A ∶= the restriction of function f to A;

. γ ≫ δ ∶←→ γ π-refines δ ∶←→ ∀D ∈δ∖{∅} ∃G ∈γ∖{∅} [G ⊆D].

When we work with (transfinite) sequences, we use the following nota-
tion.

Terminology 2.2. Suppose n ∈ ω and s, t are sequences; that is, s and
t are functions whose domain is an ordinal.

. length s ∶= the domain of s;

. note that s ⊂ t iff length s < length t and s = t↾ length s;

. ⟨r0, . . . , rn−1⟩ ∶= the sequence r such that length r = n and r(i) =
ri for all i ∈ n;

. ⟨⟩ ∶= the sequence of length 0;

. ⟨r0, . . . , rn−1⟩̂ ⟨s0, . . . , sm−1⟩ ∶= ⟨r0, . . . , rn−1, s0, . . . , sm−1⟩;

. BA ∶= the set of functions from B to A; in particular, 0A = {⟨⟩};

. <αA ∶= ⋃β∈α
βA (here α is an ordinal).

Also we work with partial orders and then we use the following termi-
nology:

Terminology 2.3. Suppose P = (Q,⊲) is a strict partial order; that is,
⊲ is irreflexive and transitive on Q. Let x, y ∈ Q and A ⊆ Q.

. nodesP = nodes(Q,⊲) ∶= Q;

. x <P y ∶←→ x ⊲ y;

. x ⩽P y ∶←→ x <P y or x = y;

. x⫯P ∶= {v ∈ nodesP ∶ v <P x}, x⫰P ∶= {v ∈ nodesP ∶ v >P x};

. xqP ∶= {v ∈ nodesP ∶ v ⩽P x}, xsP ∶= {v ∈ nodesP ∶ v ⩾P x};

. AyP ∶= ⋃{vqP ∶ v ∈ A}, A{P ∶= ⋃{vsP ∶ v ∈ A};

. sonsP(x) ∶= {s ∈ nodesP ∶ x <P s and x⫰P ∩ s⫯P = ∅};

. A is a chain in P ∶←→ ∀v,w ∈ A [v ⩽P w or v >P w];

. P has bounded chains ∶←→ for each nonempty chain C in P,
there is v ∈ nodesP such that C ⊆ vqP ;

. maxP ∶= {m ∈ nodesP ∶m⫰P = ∅};

. minP ∶= {m ∈ nodesP ∶m⫯P = ∅};

. 0P ∶= the node such that (0P)sP = nodesP
(here P is a partial order that has such node).

When a partial order is a (set-theoretic) tree, we use the following
terminology:

Terminology 2.4. Suppose T is a tree; that is, T is a strict partial
order such that for each x ∈ nodesT , the set x⫯T is well-ordered by <T .
Let x ∈ nodesT , let α be an ordinal, and let κ be a cardinal.
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. heightT (x) ∶= the ordinal isomorphic to (x⫯T ,<T );

. levelT (α) ∶= {v ∈ nodesT ∶ heightT (v) = α};

. heightT ∶= the minimal ordinal β such that levelT (β) = ∅;

. B is a branch in T ∶←→ B is a ⊆-maximal chain in T ;

. T is κ-branching ∶←→ ∀v ∈ nodesT ∖maxT [∣ sonsT (v)∣ = κ].
Finally, we work with foliage trees, which where introduced in [10].

Recall that a foliage tree is a pair F = (T , l) such that T is a tree and
l is a function with domain l = nodesT . For each x ∈ nodesT , the l(x) is
called the leaf of F at node X and is denoted by Fx; the tree T is called
the skeleton of F and is denoted by skeletonF. We adopt the following
convention: If F is a foliage tree and ● is a notation that can be applied
to a tree, then ●(F) is an abbreviation for ●(skeletonF); for example,
x <F y stands for x <skeletonF y. Also we use the following terminology:
Terminology 2.5. Suppose F is a foliage tree, v ∈ nodesF, A ⊆ nodesF,
X is a space, α is an ordinal, and κ is a cardinal.

. fleshF ∶= ⋃{Fx ∶ x ∈ nodesF};

. fleshF(A) ∶= ⋃{Fx ∶ x ∈ A};

. shootF(v) ∶= {fleshF(C) ∶ C is a cofinite subset of sonsF(v)};

. scopeF(a) ∶= {x ∈ nodesF ∶ Fx ∋ a};

. F has nonempty leaves ∶←→ ∀x ∈ nodesF [Fx ≠ ∅];

. F is nonincreasing ∶←→ ∀x, y ∈ nodesF [y ⩾F x→ Fy ⊆ Fx];

. F has strict branches ∶←→ nodesF ≠ ∅ and for each branch
B in F, the ⋂x∈B Fx is a singleton;

. F is locally strict ∶←→ ∀x ∈ nodesF∖maxF [Fx ≡ ⊔s∈sonsF(x)Fs];

. F is open in X ∶←→ ∀z ∈ nodesF [Fz is an open subset of X];

. F is a foliage α,κ-tree ∶←→
skeletonF is isomorphic to the tree (<ακ,⊂);

. F is a Baire foliage tree on X ∶←→ F is an open in X locally
strict foliage ω,ω-tree with strict branches such that F0F =X;

. F grows into X ∶←→
∀p∈X ∀U∈nbhds(p,X) ∃z∈ scopeF(p) [ shootF(z)≫ {U}];

. F is a π-tree on X ∶←→
F is a Baire foliage tree on X and F grows into X;

. S ∶= the standard foliage tree of ωω ∶= the foliage tree such that
â skeletonS ∶= (<ωω,⊂) and
â Sx ∶= {p ∈ ωω ∶ x ⊆ p} for every x ∈ <ωω;

. N ∶= the Baire space ∶=
the space (ωω, τN), where τN is the Tychonoff product topology
with ω carrying the discrete topology.

Lemma 2.6 ([10, Lemma 13]).
(a) {Sx ∶ x ∈ <ωω} is a base for N .
(b) S is a π-tree on N .
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(c) S is a Baire foliage tree on a space (ωω, τ) iff τ ⊇ τN .

Lemma 2.7. If F is a π-tree on a space X, then
â {Fv ∶ v ∈ nodesF} is a countable π-base for X,
â each Fv is closed-and-open in X, and
â ⋂{Fv ∶ Fv ∋ p} = {p} for all p ∈X.

3. New Notions: Isomorphism and Spectrum

The notion of isomorphism between foliage trees allows to simplify
proofs (see the proof of Theorem 4.1) in the following way: When we
have a π-tree F on a space X, we may (by using (c) of Lemma 3.2 and
(c) of Lemma 2.6) assume “without loss of generality” that F = S and
X = (ωω, τ) with τ ⊇ τN .

Definition 3.1. An isomorphism between foliage trees F and G is a
pair (φ,ψ) such that

â φ is an order isomorphism from skeletonF onto skeletonG,
â ψ is a bijection from fleshF onto fleshG, and
â ψ[Fx] =Gφ(x) for all x ∈ nodesF.

Lemma 3.2. Suppose that F is a foliage tree and X is a space.
(a) F is a locally strict foliage ω,ω-tree with strict branches iff

F is isomorphic to S.
(b) F is a Baire foliage tree on X iff

there exist an isomorphism (φ,ψ) between F and S and a topol-
ogy τ on ωω such that

â ψ is a homeomorphism from X onto (ωω, τ) and
â S is a Baire foliage tree on (ωω, τ).

(c) F is a π-tree on X iff
there exist an isomorphism (φ,ψ) between F and S and a topol-
ogy τ on ωω such that

â ψ is a homeomorphism from X onto (ωω, τ) and
â S is a π-tree on (ωω, τ).

Proof. (a) Suppose that F is a locally strict foliage ω,ω-tree with strict
branches. Let φ be an order isomorphism from skeletonF onto the tree
(<ωω,⊂) = skeletonS. For each p ∈ ωω, the set {x ∈ <ωω ∶ x ⊆ p} is a
branch in S, so since F has strict branches it follows that there is a
point χ(p) in fleshF such that

{χ(p)} = ⋂{Fφ−1(x) ∶ x ∈ <ωω and x ⊆ p}.
Then it is not hard to prove that the function χ∶ωω → fleshF is a bijection
and (φ,χ−1) is an isomorphism between F and S. The ← direction
follows from (b) of Lemma 2.6.
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(b) Suppose that F is a Baire foliage tree on X. Let (φ,ψ) be an iso-
morphism between F and S, which exists by (a). Then ψ is a bijection
from X onto ωω. Put

τ ∶= {ψ[U] ∶ U is an open subset of X};
clearly, τ is a topology on ωω and ψ is a homeomorphism from X onto
(ωω, τ). It follows that S is a Baire foliage tree on (ωω, τ) because F
is a Baire foliage tree on X. The ← direction is similar. Part (c) can be
proved by the same argument. �
Corollary 3.3. Suppose that F is a Baire foliage tree on a space X and
p ∈X.

(a) F is nonincreasing, fleshF = F0F , and heightF = ω;
(b) Fv is closed-and-open in X and ∣Fv ∣ = 2ω for all v ∈ nodesF;
(c) scopeF(p) is a branch in F;
(d) ∀n∈ω ∃!v∈scopeF(p) [heightF(v) = n].

Proof. This corollary is a consequence of (b) of Lemma 3.2 and (c) of
Lemma 2.6. �

Now we introduce terminology that we need to formulate Theorems 4.1
and 5.1.

Definition 3.4. Suppose F is a foliage tree and X is a space.
. spanF(p,U) ∶= {heightF(v) ∶ v ∈ scopeF(p) and shootF(v)≫{U}};
. spectrumF(X) ∶= { spanF(p,U) ∶ p ∈X and U ∈ nbhds(p,X)}.

Example 3.5. spanS(p,Sp↾n) = ω ∖ n for all p ∈ ωω and n ∈ ω.

Lemma 3.6. Suppose that F is a foliage tree and X is a space.
(a) F grows into X iff ∅ ∉ spectrumF(X).
(b) If F is a π-tree on X and p ∈X, then

(b1) the family { spanF(p,U) ∶ U ∈ nbhds(p,X)} has the FIP,
(b2) ⋂{ spanF(p,U) ∶ U ∈ nbhds(p,X)} = ∅, and
(b3) spanF(p,U) ∈ [ω]ω for all U ∈ nbhds(p,X).

Proof. Part (a) is trivial.
(b1) We must show that

if ε ∈ [nbhds(p,X)]<ω ∖ {∅}, then ⋂
U∈ε

spanF(p,U) ≠ ∅.

For each U ∈ ε, we have spanF(p,U) ⊇ spanF(p,⋂ ε) because U ⊇ ⋂ ε ≠
∅. Therefore

⋂
U∈ε

spanF(p,U) ⊇ spanF(p,⋂ ε)

and it follows from (a) that spanF(p,⋂ ε) ≠ ∅ since ⋂ ε ∈ nbhds(p,X).
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(b2) By (c) of Lemma 3.2, there exist an isomorphism (φ,ψ) between
F and S and a topology τ on ωω such that ψ is a homeomorphism
from X onto (ωω, τ) and S is a π-tree on (ωω, τ). Put q ∶= ψ(p). For
each U ⊆X, we have spanF(p,U) = spanS (q,ψ[U]) and

U ∈ nbhds(p,X) ↔ ψ[U] ∈ nbhds (q, (ωω, τ)).

Then it is enough to show that

the set Mq ∶= ⋂{ spanS(q, V ) ∶ V ∈ nbhds (q, (ωω, τ))} is empty.

It follows from Lemma 2.6 that Sq↾n ∈ nbhds (q, (ωω, τ)) for all n ∈ ω, so
using Example 3.5 we have

Mq ⊆ ⋂{ spanS(q,Sq↾n) ∶ n ∈ ω} = ⋂{ω ∖ n ∶ n ∈ ω} = ∅.

(b3) It follows from (b1)–(b2) that the set spanF(p,U) is infinite for
all U ∈ nbhds(p,X), and spanF(p,U) ⊆ ω because heightF = ω by (a)
of Corollary 3.3. �

4. The First Theorem

Theorem 4.1. Suppose that H(λ) is a π-tree on a space Xλ for every
λ ∈ Λ, where 2 ⩽ ∣Λ∣ ⩽ ω. Suppose also that for each finite nonempty
I ⊆ Λ,

â if Ri ∈ spectrumH(i)(Xi) for all i ∈ I,
â then ⋂i∈I Ri is infinite.

Then the product ∏λ∈ΛXλ has a π-tree.

Corollary 4.2. Suppose that H(λ) is a π-tree on a space Xλ and
cofinω ≫ spectrumH(λ)(Xλ) for all λ ∈ Λ, where 1 ⩽ ∣Λ∣ ⩽ ω. Suppose
also that a space Y has a π-tree. Then the product Y ×∏λ∈ΛXλ also
has a π-tree.

Proof. Let G be a π-tree on Y and I ⊆ Λ be finite and nonempty. Now,
if R ∈ spectrumG(Y ) and Ri ∈ spectrumH(i)(Xi) for every i ∈ I, then
R ∈ [ω]ω by (b3) of Lemma 3.6 and it follows from (a) of Lemma 3.6 that
⋂i∈I Ri ⊇ ω ∖ n for some n ∈ ω. Therefore R ∩⋂i∈I Ri is infinite. �

Proof of Theorem 4.1. We may assume that 2 ⩽ Λ ∈ ω ∪{ω}. By (c)
of Lemma 3.2, for each n ∈ Λ, there exist an isomorphism (φn, ψn)
between H(n) and S and a topology τn on ωω such that ψn is a
homeomorphism from Xn onto (ωω, τn) and S is a π-tree on (ωω, τn).
It follows that

spectrumH(n)(Xn) = spectrumS ((ωω, τn)) for all n ∈ Λ.
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Now, for every k ∈ Λ, we have the following:

if Ri ∈ spectrumS ((ωω, τi)) for every i ∈ k + 1,
then ⋂i∈k+1Ri is infinite.

(4.1)

And we must prove that the space ∏n∈Λ(ωω, τn) has a π-tree.
In this proof we use several specific notations. First, E ⋅ F ∶= {e ∪ f ∶

e ∈E,f ∈F }. We use this operation in situations when E ⊆ AC and
F ⊆ BC with A ∩B = ∅, so that

E ⋅ F = { p ∈ A∪BC ∶ p↾A ∈ E and p↾B ∈ F };

in particular, when B = ∅, we have E ⋅ ∅C = E because ∅C = {∅}.
Recall that

∏i∈I Di ∶= { ⟨pi⟩i∈I ∈ I(⋃i∈I Di) ∶ pi ∈Di for all i ∈ I }.

When v ∈ <ωω and m ∈ ω, we put

(4.2) S̃m
v ∶= ⋃{Sv ⟨̂l⟩ ∶ l ∈ ω ∖m}.

Note that {S̃m
v ∶m ∈ ω}≫ shootS(v) for all v ∈ <ωω.

We build a π-tree on the space ∏n∈Λ(ωω, τn) = (Λ(ωω), τ), where τ is
the Tychonoff product topology, by using Lemma 4.3. This lemma states
that there exists an indexed family

⟨ a(n, v, i) ∶ n ∈ω, v ∈ 2nω, i ∈Λ∩(n+1) ⟩
such that

(a1) ∀n∈ω ∀v ∈2nω ∀i∈Λ∩(n+1) [a(n, v, i) ∈ nω];
(a2) ∀n∈ω ∀v ∈2nω ∀m∈ω

(( ∏
i∈Λ∩(n+1)

S̃m
a(n,v,i)) ∖ ( ∏

i∈Λ∩(n+1)
S̃m+1
a(n,v,i))) ⋅

Λ∩{n+1}(ωω) ≡

⊔
l∈ω

∏
i∈Λ∩(n+2)

Sa(n+1,v ⟨̂m,l⟩,i) .

Let G(Λ) be a foliage tree with skeletonG(Λ) ∶= (<ωω,⊂) and with
leaves defined as follows:

(b1) ∀n ∈ω ∀v ∈ 2nω
G(Λ)v ∶= ( ∏

i∈Λ∩(n+1)
Sa(n,v,i)) ⋅ Λ∖(n+1)(ωω);

(b2) ∀n ∈ω ∀v ∈ 2nω ∀m ∈ω
G(Λ)v ⟨̂m⟩ ∶= (( ∏

i∈Λ∩(n+1)
S̃m
a(n,v,i))∖( ∏

i∈Λ∩(n+1)
S̃m+1
a(n,v,i)))⋅

Λ∖(n+1)(ωω).

Notice that the construction of G(Λ) doesn’t depend on topologies τn,
n ∈ Λ; it depends only on the cardinality of Λ.

To complete the proof, we show that G(Λ) is indeed a π-tree on
(Λ(ωω), τ) ∶
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* G(Λ) is a foliage ω,ω-tree.
* G(Λ)0G(Λ) = Λ(ωω).

We have 0G(Λ) = ⟨⟩, clause (b1) with n = 0 says that

G(Λ)⟨⟩ = {0}Sa(0,⟨⟩,0) ⋅ Λ∖1(ωω),

so using (4.8) (see the proof of Lemma 4.3) we have

G(Λ)0G(Λ) =
{0}S⟨⟩ ⋅ Λ∖1(ωω) = {0}(ωω) ⋅ Λ∖{0}(ωω) = Λ(ωω).

* G(Λ) is open in (Λ(ωω), τ).
By (b) of Corollary 3.3, every set Sv is closed-and-open in each of spaces
(ωω, τn), and the formula

S̃m
v = Sv ∖⋃{Sv ⟨̂l⟩ ∶ l ∈m}

(which follows from (4.2)) implies that every set S̃m
v is closed-and-open in

each of (ωω, τn) too. Therefore every leaf of G(Λ) is open in (Λ(ωω), τ).
* G(Λ) is locally strict.

Let t ∈ nodesG(Λ). First, suppose that t ∈ 2nω for some n ∈ ω. Since
Su = S̃0

u for all u ∈ <ωω, then by (b1) we have

G(Λ)t = ( ∏
i∈Λ∩(n+1)

S̃0
a(n,t,i)) ⋅

Λ∖(n+1)(ωω).

Note that for each u ∈ <ωω, the ⟨S̃m
u ⟩m∈ω is a strictly decreasing sequence

of sets and ⋂m∈ω S̃m
u = ∅. Then it follows from (b2) that

G(Λ)t ≡ ⊔
m∈ω

G(Λ)t̂ ⟨m⟩.

Now suppose that t ∈ 2n+1ω for some n ∈ ω, so that t = û ⟨m⟩ for
some u ∈ 2nω, m ∈ ω. Then by (b2) we have

G(Λ)t = G(Λ)û ⟨m⟩ =

(( ∏
i∈Λ∩(n+1)

S̃m
a(n,u,i)) ∖ ( ∏

i∈Λ∩(n+1)
S̃m+1
a(n,u,i))) ⋅

Λ∩{n+1}(ωω) ⋅ Λ∖(n+2)(ωω),

so (a2) implies

G(Λ)t ≡ ⊔
l∈ω
(( ∏

i∈Λ∩(n+2)
Sa(n+1,û ⟨m,l⟩,i)) ⋅ Λ∖(n+2)(ωω)),

and then using (b1) with v = û ⟨m, l⟩ ∈ 2(n+1)ω we have

G(Λ)t ≡ ⊔
l∈ω

G(Λ)û ⟨m,l⟩, that is, G(Λ)t ≡ ⊔
l∈ω

G(Λ)t̂ ⟨l⟩.

* G(Λ) has strict branches.
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Suppose that B is a branch in skeletonG(Λ), which means that B =
{z↾n ∶ n ∈ ω} for some z ∈ ωω. Since G(Λ) is a locally strict foliage
ω,ω-tree, then G(Λ) is nonincreasing, so

(4.3) ⋂
b∈B

G(Λ)b = ⋂
n∈ω

G(Λ)z↾2n

because the chain {z↾2n ∶ n ∈ ω} is cofinal in (B,⊂). By (b1) we have

(4.4) G(Λ)z↾2n = ( ∏
i∈Λ∩(n+1)

Sa(n,z↾2n,i)) ⋅ Λ∖(n+1)(ωω) for all n ∈ ω.

Since G(Λ) is nonincreasing, it follows from (4.4) and (a1) that

Sa(n,z↾2n,i) ⊃ Sa(n+1,z↾2(n+1),i) for all n ∈ ω and i ∈ Λ ∩ (n + 1)

— that is, for all i ∈ Λ and n ∈ ω ∖ i. This implies

a(n, z↾2n, i) ⊂ a(n+1, z↾2(n+1), i) for all i ∈ Λ and n ∈ ω ∖ i,

and then, for every i ∈ Λ, there is yi ∈ ωω such that a(n, z↾2n, i) ⊂ yi
for all n ∈ ω ∖ i. Then

(4.5) ⋂
n∈ω∖i

Sa(n,z↾2n,i) = {yi} for all i ∈ Λ.

Put y ∶= ⟨yi⟩i∈Λ ∈ Λ(ωω). Now (4.4) and (4.5) imply ⋂n∈ω G(Λ)z↾2n = {y},
so the ⋂b∈B G(Λ)b is a singleton by (4.3).

* G(Λ) grows into (Λ(ωω), τ).
Suppose that

p = ⟨pi⟩i∈Λ ∈ Λ(ωω) and U ∈ nbhds (p, (Λ(ωω), τ)).

We may assume that

(4.6) U = ( ∏
i∈k+1

Ui) ⋅ Λ∖(k+1)(ωω)

for some k ∈ Λ and some Ui ∈ nbhds (pi, (ωω, τi)) for every i ∈ k + 1.
Put Ri ∶= spanS(pi, Ui) for every i ∈ k + 1. Then ⋂i∈k+1Ri is infinite by
(4.1), so there is some n̄ ∈ ⋂i∈k+1Ri such that n̄ ⩾ k. By definition of
spanS(pi, Ui), for each i ∈ k + 1, there is vi ∈ scopeS(pi) such that

heightS(vi) = n̄ and shootS(vi)≫ {Ui}.

This means that for each i ∈ k + 1, we have pi ∈ Svi , vi ∈ n̄ω (hence
vi = pi↾n̄ ), and S̃mi

vi
= S̃mi

pi↾n̄ ⊆ Ui for some mi ∈ ω. Let m̄ be the
maximal element of {mi ∶ i ∈ k + 1}. Then S̃m̄

pi↾n̄ ⊆ Ui for all i ∈ k + 1,
and hence

∏
i∈k+1

S̃m̄
pi↾n̄ ⊆ ∏

i∈k+1
Ui.
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Note that k + 1 = Λ ∩ (k + 1) because k ∈ Λ, so using (4.6) we get

(4.7) ( ∏
i∈Λ∩(k+1)

S̃m̄
pi↾n̄) ⋅

Λ∖(k+1)(ωω) ⊆ U.

We already know that G(Λ) is a Baire foliage tree on (Λ(ωω), τ), so
using (d) of Corollary 3.3 we can take node v̄ ∈ scopeG(Λ)(p) such that
v̄ ∈ 2n̄ω. Then, using (b1) with n = n̄ and v = v̄, we have

p = ⟨pi⟩i∈Λ ∈ G(Λ)v̄ = ( ∏
i∈Λ∩(n̄+1)

Sa(n̄,v̄,i)) ⋅ Λ∖(n̄+1)(ωω),

so pi ∈ Sa(n̄,v̄,i) for all i ∈ Λ ∩ (n̄ + 1), and hence using (a1) we get
a(n̄, v̄, i) = pi↾n̄ for all i ∈ Λ ∩ (n̄ + 1). Using (b2) and inequality n̄ ⩾ k
we can write

G(Λ)v̄ ⟨̂m⟩ ⊆ ( ∏
i∈Λ∩(n̄+1)

S̃m
pi↾n̄) ⋅

Λ∖(n̄+1)(ωω) ⊆

( ∏
i∈Λ∩(k+1)

S̃m
pi↾n̄) ⋅

Λ∖(k+1)(ωω) for all m ∈ ω.

Therefore using (4.7) we get G(Λ)v̄ ⟨̂m⟩ ⊆ U for all m ∈ ω∖m̄. This means
that we have found v̄ ∈ scopeG(Λ)(p) such that shootG(Λ)(v̄)≫ {U}. �

Lemma 4.3. For each Λ ∈ (ω ∪{ω}) ∖ 2, there is a family ⟨ a(n, v, i) ∶
n ∈ω, v ∈ 2nω, i ∈Λ∩(n+1) ⟩ such that

(a1) ∀n∈ω ∀v ∈2nω ∀i∈Λ∩(n+1) [a(n, v, i) ∈ nω];
(a2) ∀n∈ω ∀v ∈2nω ∀m∈ω

(( ∏
i∈Λ∩(n+1)

S̃m
a(n,v,i)) ∖ ( ∏

i∈Λ∩(n+1)
S̃m+1
a(n,v,i))) ⋅

Λ∩{n+1}(ωω) ≡

⊔
l∈ω

∏
i∈Λ∩(n+2)

Sa(n+1,v ⟨̂m,l⟩,i) .

Proof. We construct this indexed family by recursion on n ∈ ω as follows:
When n = 0, we have 2nω = nω = 0ω = {⟨⟩} and Λ ∩ (n + 1) = {0}

because Λ ⩾ 2, so (a1) with n = 0 just says

(4.8) a(0, ⟨⟩,0) = ⟨⟩.

When n = 1, we must choose a(1, v, i) ∈ 1ω (for all v ∈ 2ω and
i ∈ Λ ∩ 2 ) in such a way that (a2) with n = 0 is satisfied. Since Λ ⩾ 2,
then Λ ∩ 1 = {0} and Λ ∩ 2 = {0,1}, so (a2) with n = 0 says that

({0}S̃m
a(0,⟨⟩,0)∖

{0}S̃m+1
a(0,⟨⟩,0)) ⋅

{1}(ωω) ≡ ⊔
l∈ω
∏

i∈{0,1}
Sa(1,⟨⟩̂ ⟨m,l⟩,i) for all m ∈ ω.

Using (4.2) and (4.8), this can be simplified to
{0}S⟨m⟩ ⋅ {1}(ωω) ≡ ⊔

l∈ω
∏

i∈{0,1}
Sa(1,⟨m,l⟩,i) for all ∀m ∈ ω.
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Then we can take a(1, ⟨m, l⟩,0) ∶= ⟨m⟩ and a(1, ⟨m, l⟩,1) ∶= ⟨l⟩ for every
m, l ∈ ω.

When n ⩾ 2, the choice of a(n, v, i) can be carried out similar to the
case n = 1 if we note that

ωω ≡ ⊔
a∈hω

Sa for all h ∈ ω,

and that for every k ⩾ 2, every a = ⟨ai⟩i∈k ∈ k(2nω), and every m ∈ ω,

(∏
i∈k

S̃m
ai
) ∖ (∏

i∈k
S̃m+1
ai
) = (∏

i∈k
⋃

l∈ω∖m
Saî ⟨l⟩) ∖ (∏

i∈k
⋃

l∈ω∖(m+1)
Saî ⟨l⟩) =

⋃{∏
i∈k

Saî ⟨li⟩ ∶ l = ⟨li⟩i∈k ∈
k(ω∖m)}∖⋃{∏

i∈k
Saî ⟨li⟩ ∶ l = ⟨li⟩i∈k ∈

k(ω∖(m+1))} ≡

⊔{∏
i∈k

Saî ⟨li⟩ ∶ l = ⟨li⟩i∈k ∈
k(ω∖m) ∖ k(ω∖(m+1))}

and the set k(ω∖m) ∖ k(ω∖(m+1)) is infinite. �

5. The Second Theorem

Theorem 5.1.
(a) Suppose that F(α) is a π-tree on a space Xα for every α ∈ A,

where 1 ⩽ ∣A∣ ⩽ ω. Suppose also that for each α ∈ A, there is γα ⊆
power.set(ω) such that

â ∣γα∣ ⩽ ω,
â γα has the FIP, and
â γα ≫ spectrumF(α)(Xα).

Then the product ∏α∈AXα has a π-tree.
(b) Suppose, in addition to (a), that G is a π-tree on a space Y and

spectrumG(Y ) has the FIP. Then the product Y ×∏α∈AXα also has a
π-tree.

Lemma 5.2. Suppose that 2 ⩽ Λ ∈ ω ∪{ω} and for each n ∈ Λ, ∅ ≠ δn ⊆
power.set(ω)∖{∅} and ⋂ δn = ∅. Suppose also that δ0 has the FIP and
for each n ∈ Λ ∖ {0}, there is γn ⊆ power.set(ω) such that

â ∣γn∣ ⩽ ω,
â γn has the FIP, and
â γn ≫ δn.

Then there exists a sequence ⟨αn⟩n∈Λ of strictly increasing functions
αn∶ω → ω such that

(¨) if k ∈ Λ and Ai ∈ {αi[D] ∶D ∈ δi} for all i ⩽ k, then ⋂i⩽kAi is
infinite.
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Lemma 5.3. Suppose that F is a π-tree on a space X and α∶ω → ω is
a strictly increasing function. Then there exists a π-tree H on X such
that

(ª) α[spanF(p,U)] ⊆ spanH(p,U) for all p ∈X and U∈nbhds(p,X).

Proof of Theorem 5.1. Note that part (a) follows from part (b).
Indeed, let β ∈ A, G ∶= F(β), and Y ∶= Xβ . Since γβ has the FIP,
γβ ≫ spectrumG(Y ), and (by (a) of Lemma 3.6) ∅ ∉ spectrumG(Y ),
then spectrumG(Y ) also has the FIP. The case when ∣A∣ = 1 is trivial,
so we may assume that A ∖ {β} ≠ ∅, and then the space

∏
α∈A

Xα = Y × ∏
α∈A∖{β}

Xα

has a π-tree by (b).
To prove (b) it is convenient to assume that A = Λ ∖ {0} and 2 ⩽

Λ ∈ ω ∪{ω}. Put X0 ∶= Y and F(0) ∶= G; then we must prove that
the space ∏n∈ΛXn has a π-tree. Let δn ∶= spectrumF(n)(Xn) for every
n ∈ Λ. Then using Lemma 3.6 we see that δn ⊆ power.set(ω)∖{∅} and
⋂ δn = ∅ for all n ∈ Λ, so we can apply Lemma 5.2. Then we get a
sequence ⟨αn⟩n∈Λ of strictly increasing functions αn∶ω → ω such that
condition (¨) holds. Next, applying Lemma 5.3 to Fn, Xn, and αn for
every n ∈ Λ, we obtain a sequence ⟨H(n)⟩

n∈Λ such that for every n ∈ Λ,
H(n) is a π-tree on Xn and

αn[ spanF(n)(p,U)] ⊆ spanH(n)(p,U)
for all p ∈Xn and U ∈ nbhds(p,Xn) .

(5.1)

Now we can use Theorem 4.1 to show that the product ∏n∈ΛXn has
a π-tree. Suppose that I ⊆ Λ is finite and nonempty; then I ⊆ k + 1 for
some k ∈ Λ. Let Ri ∈ spectrumH(i)(Xi) for every i ∈ k+1; we must show
that the set ⋂i∈I Ri is infinite. For each i ∈ k + 1, Ri = spanH(i)(pi, Ui)
for some pi ∈ Xi and Ui ∈ nbhds(pi,Xi). Put Ai ∶= αi [ spanF(i)(pi, Ui)]
for every i ∈ k + 1; then by (5.1) we have Ai ⊆ Ri. Now,

Ai ∈ {αi[R] ∶ R ∈ spectrumF(i)(Xi)} = {αi[D] ∶D ∈ δi} for all i ∈ k+1,

so (by (¨) of Lemma 5.2) the ⋂i∈k+1Ai is infinite, hence the ⋂i∈k+1Ri

is infinite, and then the ⋂i∈I Ri is infinite too. �

Proof of Lemma 5.2. It is not hard to show that each γn is not empty,
so we may assume that γn = {Gi(n) ∶ i ∈ ω} for every n ∈ Λ ∖ {0}. Since
δ0 has the FIP and ⋂ δ0 = ∅, then

(5.2) ⋂ ε is infinite for all ε ∈ [δ0]<ω ∖{∅}.
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Also ⋂γn = ∅ for all n ∈ Λ ∖ {0} (because γn ≫ δn, ∅ ∉ δn ≠ ∅, and
⋂ δn = ∅ ), so by the same reasons we get

(5.3) ⋂
j⩽i
Gj(n) is infinite for all n ∈ Λ ∖ {0} and i ∈ ω.

Now, using (5.3), for every n ∈ Λ∖ {0} and i ∈ ω, we can choose fi(n) ∈
⋂j⩽iGj(n) in such a way that

(5.4) fi+1(n) > fi(n) for all n ∈ Λ ∖ {0} and ∀i ∈ ω.
Put F (n) ∶= {fi(n) ∶ i ∈ ω} for every n ∈ Λ ∖ {0}; then {F (n)∖m ∶
m ∈ ω}≫ γn for all n ∈ Λ ∖ {0}, and hence

(5.5) {F (n) ∖m ∶m ∈ ω} ≫ δn for all n ∈ Λ ∖ {0}.
Let F (0) ∈ δ0; then F (0) is infinite by (5.2), so we may assume that
F (0) = {fi(0) ∶ i ∈ ω} and fi+1(0) > fi(0) for all i ∈ ω. Put h−1 ∶= −1
and f−1(n) ∶= −1 for every n ∈ Λ. By recursion on i ∈ ω, we can build
a strictly increasing sequence ⟨hi⟩i∈ω of natural numbers in such a way
that

(5.6) hi > hi−1 + fi−j(j)− fi−j−1(j) for all i ∈ ω and j ∈ Λ ∩ (i+1).
Let ⟨βn⟩n∈Λ be a sequence of functions with

domainβn ∶= F (n) ∪ {−1} = {fl(n) ∶ l ∈ ω ∪ {−1}}
and such that

(5.7) βn(fl(n)) = hn+l for all n ∈ Λ and l ∈ ω ∪ {−1}.
Note that (5.7) implies

(5.8) βn [F (n)] = {hj ∶ j ∈ ω ∖ n} for all n ∈ Λ.
Now, for all n ∈ Λ and l ∈ ω, (5.6) with i = n + l, j = n says that

hn+l − hn+l−1 > fn+l−n(n) − fn+l−n−1(n) = fl(n) − fl−1(n),
so by (5.7) we have

βn(fl(n)) − βn(fl−1(n)) > fl(n) − fl−1(n) for all n ∈ Λ and l ∈ ω.
This means that for each n ∈ Λ, we can choose a strictly increasing
function αn∶ω → ω such that αn↾F (n) = βn↾F (n).

Now we prove that condition (¨) is satisfied. Suppose that k ∈ Λ and
for every i ∈ k+1, Ai = αi[D(i)] for some D(i) ∈ δi. Using (5.5), for each
i ∈ (k + 1)∖{0}, we can choose some mi ∈ ω such that D(i) ⊇ F (i)∖mi.
Therefore, by (5.8), for each i ∈ (k + 1)∖{0}, we can find some li ∈ ω
such that Ai ⊇ {hj ∶ j ∈ ω ∖ li}. It follows that

⋂
i∈(k+1)∖{0}

Ai ⊇ {hj ∶ j ∈ ω ∖ l} for some l ∈ ω.
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Now, D(0) ∩ F (0) is infinite by (5.2), α0 [F (0)] = {hj ∶ j ∈ ω} by (5.8),
and α0 is injective, therefore A0 ∩ {hj ∶ j ∈ ω} is infinite. This means
that ⋂i∈k+1Ai is infinite too. �

Proof of Lemma 5.3. In this proof we apply the foliage hybrid operation,
see details in Section 8. Put α(−1) ∶= −1. Suppose that v ∈ nodesF. Set

k(v) ∶= α(heightF(v)) − α(heightF(v) − 1);

then k(v) ∈ ω ∖{0}. Let T (v) be a tree isomorphic to the tree
(<k(v)+1ω,⊂) and such that 0T (v) = v and maxT (v) = sonsF(v). Let
G(v) be a foliage tree with skeletonG(v) ∶= T (v) and with leaves de-
fined by recursion on i ∈ k(v) + 1 as follows:

(base) If i = 0 and t ∈ levelT (v) (k(v) − i) (that is, if t ∈ maxT (v) ),
then G(v)t ∶= Ft .

(step) If 1 ⩽ i ⩽ k(v) and t ∈ levelT (v) (k(v) − i),
then G(v)t ∶=⋃{G(v)s ∶ s ∈ sonsT (v)(t)} .

It is not hard to show the following (we use here the terminology of
Definition 8.2):

(c1) 0G(v) = v and maxG(v) = sonsF(v) = levelG(v) (k(v));
(c2) G(v)v = Fv;
(c3) G(v) is a foliage graft for F;
(c4) cut (F,G(v)) = ∅;
(c5) G(v) is ω-branching, locally strict, open in X, and has bounded

chains;
(c6) heightG(v) = k(v) + 1;
(c7) shootG(v)(t)≫ shootF(v) for all t ∈ nodesG(v) ∖maxG(v);
(c8) explant (F,G(v)) = ∅.

Now let φ ∶= {G(v) ∶ v ∈ nodesF}. We may assume that

implantG(v) ∩ implantG(u) = ∅ for all v ≠ u ∈ nodesF,

so φ is a consistent family of foliage grafts for F. Let H ∶= fol.hybr(F, φ);
note that loss(F, φ) = ∅ by (c4). By induction on heightF(v), we can
prove that

(5.9) heightH(v) = α(heightF(v) − 1) + 1 for all v ∈ nodesF.

Indeed, if heightF(v) = 0, then v = 0F, so v = 0H, and hence

heightH(v) = 0 = α(heightF(v) − 1) + 1.
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If heightF(v) ⩾ 1, then let t be the node in F such that v ∈ sonsF(t),
and then inductively we can write

heightH(v) = heightH(t)+heightG(t)(v) = heightH(t)+(heightG(t)−1) =

heightH(t) + (k(t) + 1) − 1 = α(heightF(t) − 1) + 1 + k(t) =

α(heightF(t) − 1) + 1 + α(heightF(t)) − α(heightF(t) − 1) =

α(heightF(t)) + 1 = α(heightF(v) − 1) + 1.
Now, (c4)–(c6) with Lemma 8.4 say that H is a Baire foliage tree on X
and (c7)–(c8) imply that each G(v) preserves shoots of F (see Defini-
tion 8.5), so H grows into X by Lemmas 8.6 and 8.7. Therefore H is
a π-tree on X.

Let us show that (ª) holds. Suppose that p ∈ X, U ∈ nbhds(p,X),
and r ∈ spanF(p,U). Then r = heightF(v) for some node v ∈ scopeF(p)
such that shootF(v) ≫ {U}. Let s be the node in sonsF(v) such that
p ∈ Fs and let t be the node in G(v) such that s ∈ sonsG(v)(t). Then
t ∈ scopeH(p) and using (c7) and (a) of Proposition 8.3 we obtain

(5.10) shootH(t) = shootG(v)(t)≫ shootF(v),

so shootH(t)≫ {U}, and hence heightH(t) ∈ spanH(p,U). Therefore to
complete the proof it is enough to show that α(r) = heightH(t). Indeed,
using (c6) and (5.9) we have

heightH(t) = heightH(v)+heightG(v)(t) = heightH(v)+heightG(v)(s)−1 =

heightH(v) + (heightG(v) − 1) − 1 = heightH(v) + (k(v) + 1) − 2 =

α(heightF(v) − 1) + 1 + α(heightF(v)) − α(heightF(v) − 1) − 1 =

α(heightF(v)) = α(r). �

6. Nice π-Tree for a Co-Countable Subspace

In this section we prove Corollary 6.2, which states that if a space
X has a “very nice” π-tree (that is, a π-tree F such that cofinω ≫
spectrumF(X) ) and if A ⊆ X is at most countable, then the subspace
X ∖A has a “nice” π-tree — that is, a π-tree that satisfies the conditions
of Theorem 5.1. This result allows to apply Theorem 5.1 to co-countable
subspaces of the Sorgenfrey line, see (c) of Lemma 7.1 and Corollary 7.2
in Section 7.

Proposition 6.1. Suppose that F is a Baire foliage tree on a space X
and A ⊆X is at most countable. Then there exists a Baire foliage tree H
on the subspace X ∖A such that for every p ∈ X ∖A, there is a strictly
increasing function fp∶ω → ω with a property
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(©) {2n+1 ∶ n ∈ω and fp(n) ∈ spanF(p,U) } ⊆ spanH(p,U∖A)
for all U ∈ nbhds(p,X).

Corollary 6.2. Suppose that F is a π-tree on a space X such that
cofinω ≫ spectrumF(X) and A ⊆ X is at most countable. Then there
exists a π-tree H on the subspace X ∖A such that

(«) cofin{2n + 1 ∶ n ∈ ω} ≫ spectrumH(X ∖A).
Remark 6.3. In statements of Proposition 6.1 and Corollary 6.2 the
sequence ⟨2n + 1⟩n∈ω can be replaced by an arbitrary sequence ⟨kn⟩n∈ω
of natural numbers such that k0 ⩾ 1 and kn+1 > kn + 1 for all n ∈ ω.
Proof of Corollary 6.2. Let H be a Baire foliage tree on the subspace
X ∖A from Proposition 6.1. First we show that condition («) is satisfied.
Suppose that D ∈ spectrumH(X ∖A); that is, D = spanH(p,U ∖A) for
some p ∈ X ∖A and U ∈ nbhds(p,X). Let fp∶ω → ω be a function that
satisfies condition (©) of Proposition 6.1. Since F is a π-tree on X,
then spanF(p,U) ≠ ∅ by (a) of Lemma 3.6, so it follows from cofinω ≫
spectrumF(X) that there is some m̄ ∈ ω such that ω ∖ m̄ ⊆ spanF(p,U).
Therefore, since fp is strictly increasing, there is some n̄ ∈ ω such that
fp(n) ∈ spanF(p,U) for all n ⩾ n̄. Then by (©) we have

{2n + 1 ∶ n ∈ ω ∖ n̄} ⊆ spanH(p,U ∖A) = D,

hence («) is satisfied.
It follows from the above reasoning that D ≠ ∅, so ∅ ∉ spectrumH(X∖

A), and hence H grows into X ∖A by (a) of Lemma 3.6. This means
that H is a π-tree on X ∖A. �

In the following lemma we use terminology of the foliage hybrid oper-
ation, see Definition 8.2 in Section 8.
Lemma 6.4. Suppose that F is a Baire foliage tree on a space X, p ∈X,
and v ∈ scopeF(p). Then there exists a foliage tree G such that

(d1) 0G = v and maxG = sonsG(0G);
(d2) Gv = Fv ∖{p} ≡ ⊔m∈maxGFm;
(d3) G is a foliage graft for F;
(d4) implantG = ∅;
(d5) G is ω-branching, locally strict, open in X, has bounded chains,

and heightG = 2.
Proof. Put

B ∶= ⋃{ sonsF(u) ∶ u ∈ scopeF(p)∩ vsF} and MAX ∶= B ∖ scopeF(p).
Let T be a partial order such that

nodesT ∶= {v} ∪MAX and <T ∶= {(v,m) ∶m ∈MAX}.
Then T is a tree, 0T = v, maxT =MAX, and T is a graft for skeletonF.
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Now let G be a foliage tree with skeletonG ∶= T and with leaves
Gv ∶= Fv ∖ {p} and Gm ∶= Fm for all m ∈ maxT . Then using (b) of
Lemma 3.2 and Corollary 3.3 it is not hard to verify that clauses (d1)–
(d5) are satisfied. �

Proof of Proposition 6.1. We may assume that A = {pi ∶ i ∈ ∣A∣} and
pi ≠ pj for all i ≠ j ∈ ∣A∣. First we build sequences ⟨Mi⟩i∈∣A∣, ⟨zi⟩i∈∣A∣,
and ⟨G(i)⟩

i∈∣A∣ by recursion on i ∈ ∣A∣ :

(e1) M0 ∶= {0F};
(e2) zi ∶= the node in F such that {zi} =Mi ∩ scopeF(pi);
(e3) G(i) ∶= the foliage tree G from Lemma 6.4 with p=pi and v = zi;
(e4) Mi+1 ∶= (Mi ∖{zi}) ∪ ⋃{ sonsF(m) ∶m ∈ maxG(i)}.

The correctness of clause (e2) follows from (f3), see below.
It is not hard to verify that for each i ∈ ∣A∣, the following conditions

are satisfied:
(f1) Mi is an antichain in F

(that is, u ≮F v and v ≮F u for all u, v ∈Mi );
(f2) Mi+1 ⊆ (Mi){F;
(f3) X ∖ {pj ∶ j ∈ i} ≡ ⊔m∈Mi

Fm;
(f4) 0G(i) ∈Mi;

(f5) cut (F,G(i)) = {pi};
(f6) {G(j) ∶ j ∈ i+1} is a consistent family of foliage grafts for F.

Now it follows from (f6) that φ ∶= {G(i) ∶ i ∈ ∣A∣} is a consistent family
of foliage grafts for F, so we can define H ∶= fol.hybr(F, φ). Then H is
a Baire foliage tree on X ∖ A by Lemma 8.4, (f5), and (d5). Also H
satisfies the following:

(g1) H has nonempty leaves.
This follows from (b) of Corollary 3.3.

(g2) nodesH ⊆ nodesF.
This follows from (d4).

(g3) Hu = Fu ∖A for all u ∈ nodesH.
This also follows from (d4).

(g4) heightH(u) ∈ {2n ∶ n ∈ ω} for all u ∈Mi and i ∈ ∣A∣.
We prove (g4) by induction on i ∈ ∣A∣. Obviously, heightH(u)
is even when u ∈ M0. Assume as inductive hypothesis that the
assertion of (g4) holds for all u ∈ ⋃i⩽kMi and prove it for an
arbitrary u ∈ Mk+1. If u ∈ Mk, then heightH(u) is even by
the inductive hypothesis. If u ∉ Mk, then (e4) implies that u ∈
sonsF(m) for some m ∈ maxG(k). We have

maxG(k) = sonsG(k)(0G(k)) and sonsG(k)(0G(k)) = sonsH(0G(k))
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by (d1) and by (a) of Proposition 8.3, so it follows from (f4)
and from the inductive hypothesis that heightH(m) is odd and
then, using (f4) and the inductive hypothesis again, we have m ∉
{0G(j) ∶ j ∈ k + 1}. Let us show that m ∉ {0G(j) ∶ j ∈ ∣A∣}. If not,
then

m ∈ {0G(j) ∶ j ∈ ∣A∣∖(k+1)}, so m ∈ ⋃{Mj ∶ j ∈ ∣A∣∖(k+1)}
by (f4). Then it follows from (f2) that m ∈ (Mk+1){F — that is,
m ⩾F t for some t ∈ Mk+1. Since u ∈ sonsF(m), then u >F m,
therefore u >F t. This contradicts (f1) because t, u ∈Mk+1. Now
it follows from (d4) and (a) of Proposition 8.3 that sonsF(m) =
sonsH(m), so u ∈ sonsH(m). Then heightH(u) ∈ {2n ∶ n ∈ ω}
because heightH(m) is odd.

Now suppose that p ∈ X ∖A; we must find a strictly increasing func-
tion fp∶ω → ω that satisfies (©). First, using (d) of Corollary 3.3, for
each n ∈ ω, we define m(p,n) to be the node in scopeH(p) such that
heightH (m(p,n)) = 2n + 1. Using (g3) we have

(6.1) ∀n ∈ω [m(p,n) ∈ scopeF(p)].
Next, using (g2), we can define

fp(n) ∶= heightF (m(p,n)) for every n ∈ ω;
then fp∶ω → ω by (a) of Corollary 3.3. If n′′ > n′, then m(p,n′′) >H
m(p,n′) (because scopeH(p) is a chain in H by (c) of Corollary 3.3), so
m(p,n′′) >F m(p,n′) by (g2) and (b) of Lemma 8.3. This implies that
fp is strictly increasing. Now, using (f4) and (g4), for every n ∈ ω, we
have

m(p,n) ∉ {0G(i) ∶ i ∈ ∣A∣}, so sonsH (m(p,n)) = sonsF (m(p,n))
by (d4) and (a) of Proposition 8.3. Then (g3) and (g1) imply

(6.2) shootH (m(p,n))≫ shootF (m(p,n)) for all n ∈ ω.

To complete the proof it remains to verify (©); suppose that

U ∈ nbhds(p,X), n ∈ ω, and fp(n) ∈ spanF(p,U).
The last formula means that fp(n) = heightF(v) for some v ∈ scopeF(p)
such that shootF(v) ≫ {U}. Then v = m(p,n) by (d) of Corollary 3.3,
by (6.1), and by definition of fp(n). It follows that

shootF (m(p,n))≫ {U}, so shootH (m(p,n))≫ {U}

by (6.2). Then (g3) implies shootH (m(p,n))≫ {U ∖A}, therefore

2n + 1 = heightH (m(p,n)) ∈ spanH(p,U ∖A)
by definition of spanH(p,U ∖A). �
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7. New Examples of Spaces with a π-Tree

Recall that N is the Baire space, RS is the Sorgenfrey line, and
IS ∶=RS ∖Q is the irrational Sorgenfrey line.

Lemma 7.1.
(a) N has a π-tree F such that cofinω ≫ spectrumF(N ).
(b) RS has a π-tree G such that cofinω ≫ spectrumG(RS).
(c) If X ⊆RS and RS ∖X is at most countable,

then X has a π-tree H such that cofin{2n+1∶n∈ω}≫ spectrumH(X).

Proof. Part (a) follows from (b) of Lemma 2.6 and Example 3.5; part (b)
can be derived from the proof of Lemma 3.6 in [8]; part (c) follows from
part (b) and Corollary 6.2. �

Using the above lemma and Theorem 5.1 we obtain the following state-
ment:

Corollary 7.2. Suppose that 1 ⩽ ∣A∣ ⩽ ω and for each α ∈ A,
either Xα =N or Xα ⊆RS with ∣RS∖Xα∣ ⩽ ω.

Then the product ∏α∈AXα has a π-tree. �
Corollary 7.3.

(a) RSn and ISn have a π-tree for all n ∈ ω ∖ {0}.
(b) RSω and ISω have a π-tree. �

Note that if X ⊆ N with ∣N ∖X ∣ ⩽ ω, then X is homeomorphic to N
(this can be easily derived from the Alexandrov-Urysohn characterization
of the Baire space and from the characterization of its Polish subspaces —
see Theorems 3.11 and 7.7 in [6]). Notice also that Nn is homeomorphic
to N for all n ∈ ω ∖ {0} and Nω is also homeomorphic to N .

Corollary 7.4. If a space X has a π-tree, then X ×N , X ×RS , and
X ×RSω also have a π-tree.

Proof. This statement follows from Corollary 4.2 and Lemma 7.1. �

8. Appendix. The Foliage Hybrid Operation

In the proofs of Lemma 5.3 and Proposition 6.1 we employ the foliage
hybrid operation, which was introduced in [10]. For completeness of ex-
position we list here definitions and results that we use. The definition
of graft, which we give below, slightly differs from the definition of graft
in [10], but these two definitions are easily seen to be equivalent. The
same can be said about our definition of hybrid(T , γ), see details in [10,
Remark 20]. To ease comprehension of notions from Definition 8.2, you
can look at pictures that illustrate this definition in [9].
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Notation 8.1.
. ∀x≠ y ∈A φ(x, y) ∶←→ ∀x, y ∈A [x ≠ y → φ(x, y)];
. x ∥P y ∶←→ x ≰P y and x ≯P y.

Definition 8.2 ([10, definitions 15, 17, 19, and 25–27 and Remark 20]).
Suppose that T , G are trees and F,G are nonincreasing foliage trees.

. G is a graft for T ∶←→
â ∣nodesG∣ > 1,
â G has the least node,
â nodesG ∩ nodesT = {0G} ∪maxG, and
â ∀x, y ∈ nodesG ∩ nodesT [x <G y↔ x <T y].

. If G is a graft for T , then:
â implantG ∶= nodesG ∖ ({0G} ∪maxG);
â explant(T ,G) ∶= (0G)⫰T ∖ (maxG){T .

. γ is a consistent family of grafts for T ∶←→
â ∀G ∈γ [ G is a graft for T ],
â ∀D ≠E ∈γ [ implantD ∩ implantE = ∅ ], and
â ∀D ≠E ∈γ [0D ∥T 0E or 0D ∈ (maxE){T or 0E ∈ (maxD){T ].

. If γ is a consistent family of grafts for T , then:
â support(T , γ) ∶= nodesT ∖ ⋃

G∈γ
explant(T ,G);

â hybrid(T , γ) ∶= the pair (H,<) (actually, a tree) such that
H ∶= support(T , γ) ∪ ⋃

G∈γ
implantG and

< ∶= the transitive closure of relation (<T ∪⋃
G∈γ
<G)∩(H×H).

. G is a foliage graft for F ∶←→
â G is nonincreasing,
â skeletonG is a graft for skeletonF,
â G0G ⊆ F0G , and
â ∀m ∈ maxG [Gm = Fm].

. If G is a foliage graft for F, then
â cut(F,G) ∶= F0G ∖G0G .

. φ is a consistent family of foliage grafts for F ∶←→
â ∀G ∈φ [G is a foliage graft for F],
â ∀D≠E ∈φ [skeletonD ≠ skeletonE], and
â {skeletonG ∶ G ∈ φ} is a consistent family of grafts for

skeletonF.
. If φ is a consistent family of foliage grafts for F, then:

â loss(F, φ) ∶= ⋃
G∈φ

cut(F,G);

â fol.hybr(F, φ) ∶= the foliage hybrid of F and φ ∶=
the foliage tree H such that
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skeletonH ∶= hybrid ( skeletonF,{skeletonG ∶G ∈ φ}) and

Hx ∶=
⎧⎪⎪⎨⎪⎪⎩

Gx ∖ loss(F, φ), if x ∈ implantG for some G ∈ φ;
Fx ∖ loss(F, φ), otherwise.

Lemma 8.3 ([10, Lemma 21 and Proposition 23]). Suppose that γ is a
consistent family of grafts for a tree T , H = hybrid(T , γ), and G ∈ γ.

(a) nodesG ⊆ nodesH and ∀x, y ∈nodesG [x <H y↔ x <G y].
(b) support(T , γ) = nodesH ∩ nodesT and
∀x, y ∈ support(T , γ) [x <H y↔ x <T y].

(c) For each x ∈ nodesH,

sonsH(x)=
⎧⎪⎪⎨⎪⎪⎩

sonsG(x), if x ∈ {0G} ∪ implantG for some G ∈ γ;
sonsT (x), else (i.e., when x ∈ support(T,γ)∖{0G ∶G∈γ}).

Lemma 8.4 ([10, Lemma 30]). Suppose that F is a Baire foliage tree on
a space X and φ is a consistent family of foliage grafts for F such that
every G in φ is ω-branching, locally strict, open in X, has bounded
chains, and has heightG ⩽ ω. Then the foliage hybrid of F and φ is a
Baire foliage tree on X ∖ loss(F, φ).

Definition 8.5 ([10, Definition 31 and Definition 33]). Suppose that H,F
are nonincreasing foliage trees and G is a foliage graft for F.

. H shoots into F ∶←→
∀p ∈ fleshH ∀y ∈ scopeF(p) ∃x ∈ scopeH(p) [ shootH(x)≫ shootF(y)].

. G preserves shoots of F ∶←→
∀p ∈ fleshG ∀y ∈ scopeF(p) ∩ ({0G} ∪ explant(F,G))
∃x ∈ scopeG(p)∩({0G}∪ implantG) [ shootG(x)≫ shootF(y)].

Lemma 8.6 ([10, Lemma 34]). Suppose that F is a nonincreasing foliage
tree, φ is a consistent family of foliage grafts for F, the foliage hybrid
of F and φ has nonempty leaves, and each G ∈ φ preserves shoots of
F. Then the foliage hybrid of F and φ shoots into F.

Lemma 8.7 ([10, Lemma 32]). Suppose that a foliage tree H shoots into
a foliage tree F and F grows into a space X. Then H grows into the
subspace X ∩ fleshH of X.
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