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ON BOREL SEMIFILTERS

ANDREA MEDINI

Abstract. Building on work of van Engelen and van Mill, we show
that a zero-dimensional Borel space is homeomorphic to a semifilter
if and only if it is homogeneous and not locally compact. Under
Σ1

1-Determinacy, this result extends to all analytic and coanalytic
spaces.

1. Introduction

Throughout this paper, Ω will denote a countably infinite set. We
will denote by P(Ω) the collection of all subsets of Ω. Define Fin(Ω) =
{x ⊆ Ω : x is finite} and Cof(Ω) = {x ⊆ Ω : Ω \ x is finite}. Also define
Fin = Fin(ω) and Cof = Cof(ω).

A collection X ⊆ P(Ω) is upward-closed if and only if y ⊇ x ∈ X
implies y ∈ X for all x, y ∈ P(Ω). We will write x ⊆∗ y to mean that
x \ y is finite, and we will write x =∗ y to mean that x ⊆∗ y and y ⊆∗ x.
A collection X ⊆ P(Ω) is closed under finite modifications if and only if
y =∗ x ∈ X implies y ∈ X for all x, y ∈ P(Ω).

A semifilter on Ω is a collection S ⊆ P(Ω) that satisfies the following
conditions.

• ∅ /∈ S and Ω ∈ S.
• S is closed under finite modifications.
• S is upward-closed.

All semifilters are assumed to be on ω unless we explicitly say otherwise.
The notion of semifilter is a natural weakening of the notion of filter,

and it has found applications in several areas of mathematics (see [1]).
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Throughout this paper, we will freely identify any collection X ⊆ P(Ω)
with the subspace of 2Ω consisting of the characteristic functions of ele-
ments of X . In particular, every semifilter will inherit the subspace topol-
ogy from 2ω. Notice that Cof ⊆ S and Fin∩S = ∅ for every semifilter S.
In particular, every semifilter is dense in 2ω and not locally compact.

By space we will always mean separable metrizable topological space.
Recall that a space X is homogeneous if and only if for every x, y ∈ X
there exists a homeomorphism h : X −→ X such that h(x) = y. This
is a classical notion in topology, which has been studied in depth. In
particular, in his remarkable doctoral thesis [2], van Engelen obtained a
complete classification of the homogeneous zero-dimensional Borel spaces.
Recall that a space X is an absolute Borel set (or simply Borel) if every
homeomorphic copy of X in any space Z is a Borel subspace of Z. Using
Lavrentiev’s Theorem (see [7, Theorem 3.9]), one can show that a space
is Borel if and only if it is homeomorphic to a Borel subspace of some
completely metrizable space.

The following is our main result, and it is a consequence of Corol-
lary 4.3, Theorem 8.4 and Theorem 12.1. In Section 14, assuming Σ1

1-
Determinacy, we will show that this result extends to all analytic and
coanalytic spaces.

Theorem 1.1. Let X be a zero-dimensional Borel space. Then the fol-
lowing conditions are equivalent.

• X is homeomorphic to a semifilter.
• X is homogeneous and not locally compact.

2. Topological preliminaries

Given spaces X and Y , we will write X ≈ Y to mean that X is home-
omorphic to Y . Let C = 2ω denote the Cantor set, P = ωω denote Baire
space, and Q denote the space of rationals. Given s ∈ 2<ω, we will use
the notation [s] = {x ∈ C : s ⊆ x}.

We will assume some familiarity with the theory of Borel sets, and
in particular with the notions of Σ0

ξ , Π0
ξ and ∆0

ξ subset of a space for
1 ≤ ξ < ω1 (see for example [7, Section 11.B]). For brevity, we will simply
write complete when we mean completely metrizable. It is well-known
that a subspace of a complete space is complete if and only if it is Π0

2 (see
[7, Theorem 3.11]).

We will also assume that the reader is comfortable with the basic theory
of analytic and coanalytic subsets of a complete space. As in [7, page
315], we will say that a space is analytic (respectively coanalytic) if it is
homeomorphic to an analytic (respectively coanalytic) subspace of some
complete space (see [15, Section 4] for a more detailed treatment).
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A subset of a space is clopen if and only if it is closed and open. A
space is zero-dimensional if and only if it has a base consisting of clopen
sets. It is well-known that a space is zero-dimensional if and only if it is
homemorphic to a subspace of C (see for example [19, Corollary 1.5.7]).
Given a topological property P, it will be convenient to say that a space
X is nowhere P if and only if X is non-empty and no non-empty open
subspace of X is P.

A space is dense in itself if and only if it is non-empty and it has no
isolated points. We will be using freely the following classical character-
izations of Q, C, and P (see [2, Theorem 2.4.1], [2, Theorem 2.1.1], and
[2, Theorem 2.3.1] respectively). Let X be a zero-dimensional space.

• X ≈ Q if and only if X is a dense in itself countable space.
• X ≈ C if and only if X is a dense in itself compact space.
• X ≈ P if and only if X is a complete nowhere compact space.

In the rest of this article, we will often exclude locally compact spaces
from our treatment, as they constitute the trivial case. In fact, it is easy
to see that if X is a zero-dimensional homogeneous locally compact space
then either X is discrete, X ≈ C, or X ≈ ω ×C.

A space X is first category if and only if X =
∪

n∈ωXn, where the
closure of each Xn has empty interior. A space X is Baire if and only if∩

n∈ω Un is dense in X whenever each Un is an open dense subset of X.
We will be using freely the following well-known facts (see [2, 1.12.1] and
[2, 1.12.2] respectively).

• Every homogeneous space is either first category or Baire.
• If a Borel space is Baire then it contains a dense complete sub-

space.
A space X is strongly homogeneous (or h-homogeneous) if and only if

U ≈ X for every non-empty clopen subspace U of X. It is well-known
that every zero-dimensional strongly homogeneous space is homogeneous
(see [2, 1.9.1] or [12, Proposition 3.32]). The following is a special case
of [23, Theorem 2.4] (see also [11, Theorem 2 and Appendix A] or [12,
Theorem 3.2 and Appendix B]).

Lemma 2.1 (Terada). Let X be a non-compact space, and assume that
X has a base B consisting of clopen sets such that U ≈ X for every U ∈ B.
Then X is strongly homogeneous.

3. Filters, semiideals, and ideals

A collection X is closed under finite intersections if and only if x∩y ∈ X
for all x, y ∈ X . A filter on Ω is a semifilter on Ω that is closed under
finite intersections.
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The following result is [3, Theorem 3.4], and it gives a purely topologi-
cal characterization of filters among the zero-dimensional Borel spaces, in
the same spirit as Theorem 1.1. In fact, it is the result which inspired this
entire article. Our phrasing is slightly different from the original, but the
discussion in the remainder of this section should clarify all the possible
confusion.

Theorem 3.1 (van Engelen). Let X be a zero-dimensional Borel space.
Then the following conditions are equivalent.

• X is homeomorphic to a filter.
• X is homogeneous, first category, homeomorphic to X2, and not

locally compact.

A collection X ⊆ P(Ω) is downward-closed if and only if x ⊆ y ∈ X
implies x ∈ X for all x, y ∈ P(Ω). A semiideal on Ω is a collection
R ⊆ P(Ω) that satisfies the following conditions.

• ∅ ∈ R and Ω /∈ R.
• R is closed under finite modifications.
• R is downward-closed.

A collection X is closed under finite unions if and only if x ∪ y ∈ X for
all x, y ∈ X . An ideal on Ω is a semiideal on Ω that is closed under finite
unions. All filters, semiideals and ideals are assumed to be on ω unless
we explicitly say otherwise.

Next we will show that, from the topological point of view, semifilters
(respectively filters) are indistinguishable from semiideals (respectively
ideals). Given any F ⊆ ω, define hF : C −→ C by setting

hF (x)(n) =

{
1− x(n) if n ∈ F,
x(n) if n ∈ ω \ F.

It is easy to check that hF is a homeomorphism for every F ⊆ ω.
Throughout this article, we will let c = hω denote the complement

function. Given any X ⊆ P(ω), it is trivial to check that X is a semifilter
(respectively a semiideal) if and only if c[X ] is a semiideal (respectively
a semifilter). Similarly, one sees that X is a filter (respectively an ideal)
if and only if c[X ] is an ideal (respectively a filter). Since X ≈ c[X ], this
means that every result about the topology of semifilters (respectively
filters) immediately translates to a result about semiideals (respectively
ideals), and viceversa.

As an application of this principle, one can see that every filter is a
topological group. In fact, every ideal is a topological subgroup of C
under the operation of coordinatewise addition modulo 2, and any space
that is homeomorphic to a topological group is itself a topological group.
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In particular, every filter is homogeneous. Corollary 4.3 shows that this
holds for semifilters as well, but the proof is considerably more involved.
For an example of a semifilter that is not a topological group, consider
the spaces S and T as described in Propositions 5.3 and 5.4. These spaces
are not topological groups by [2, Corollary 3.6.6].

We conclude this section by remarking that many authors (including
van Engelen in [3]) give a more general notion of filter than the one we
gave above. The most general notion possible seems to be the following.
Define a prefilter on Ω to be a collection of subsets of Ω that is upward-
closed and closed under finite intersections. The next proposition, which
can be safely assumed to be folklore, shows that our definition of filter
does not result in any substantial loss of generality. Given a collection X
consisting of subsets of ω and Ω ⊆ ω, define X � Ω = {X ∩ Ω : X ∈ X}.

Proposition 3.2. Let G be an infinite prefilter on ω. Then either G ≈ C
or G ≈ F for some filter F .

Proof. Let Ω = ω\
∩
G, and observe that Ω is infinite because G is infinite.

Notice that G � Ω is a prefilter on Ω. First assume that ∅ ∈ G � Ω. This
means that

∩
G = ω \ Ω ∈ G, hence G = {X ⊆ ω :

∩
G ⊆ X} ≈ C.

Now assume that ∅ /∈ G � Ω. We claim that G � Ω is in fact a
filter on Ω. In order to prove this claim, it will be enough to show that
Cof(Ω) ⊆ G � Ω. So let F be a finite subset of Ω. Since Ω = ω \

∩
G

and G is closed under finite intersections, there must be X ∈ G such that
X ⊆ ω \ F . It follows that ω \ F ∈ G, hence Ω \ F ∈ G � Ω. Finally, it is
straightforward to check that G ≈ G � Ω. �

4. Every semifilter is homogeneous

The following result is a fundamental tool for constructing homoge-
neous spaces, and it first appeared as [17, Lemma 2.1] (see also [19,
Lemma 1.9.1], or [16, Theorem 3] for a more general result). Corollary
4.2 is essentially the same as [14, Lemma 2].

Theorem 4.1 (van Mill). Assume that X is a zero-dimensional space,
and fix a compatible metric on X. Let x, y ∈ X. Suppose that, for every
ε > 0, there exist clopen neighborhoods U and V of x and y respectively
such that diam(U) < ε, diam(V ) < ε and U ≈ V . Then there exists a
homeomorphism h : X −→ X such that h(x) = y.

Corollary 4.2. Let X be a subspace of C that is closed under finite
modifications. Then X is homogeneous.

Proof. Fix a compatible metric on C. Recall the definition of hF from
Section 3. Observe that hF [X] = X whenever F is finite, because X
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is closed under finite modifications. In order to verify the hypotheses
of Theorem 4.1, fix x, y ∈ X and ε > 0. Start by choosing m ∈ ω
large enough so that diam([x � m]) < ε and diam([y � m]) < ε. Let
U = [x � m]∩X and V = [y � m]∩X. It is clear that U and V are clopen
neighborhoods in X of x and y respectively. To see that U ≈ V , simply
observe that hF [U ] = V , where F = {n < m : x(n) ̸= y(n)}. �

Corollary 4.3. If S is a semifilter then S is homogeneous.

Corollary 4.4. If S is a Borel semifilter then S is strongly homogeneous.

Proof. Simply apply Corollary 4.3 and [2, Corollary 4.4.6]. �

5. Some concrete examples

In this section, if X is one of the notable spaces Q, Q×C, S or T (see
below), we will exhibit a semifilter that is homeomorphic to X. The first
two cases are given by the following trivial proposition, where the desired
semifilter will actually be a filter.

Proposition 5.1. If X = Q or X = Q ×C then there exists a filter F
such that F ≈ X.

Proof. If X = Q, simply let F = Cof. Now assume that X = Q×C. Fix
infinite sets Ω1 and Ω2 such that Ω1 ∪ Ω2 = ω and Ω1 ∩ Ω2 = ∅. Define
F = {x ⊆ ω : Ω1 ⊆∗ x}, and observe that F is a filter. Since

F = {x1 ∪ x2 : x1 ∈ Cof(Ω1) and x2 ⊆ Ω2},
one sees that F ≈ Cof(Ω1)× 2Ω2 ≈ X. �

The remainder of this section will not be needed later, but it might be
useful for a better understanding of Section 7. Furthermore, the proofs of
Propositions 5.3 and 5.4 yield concrete descriptions of S and T that are
as nice as possible from the combinatorial point of view.

The spaces S and T were introduced respectively by van Mill (in
[18]) and by van Douwen (unpublished). In hindsight, they are the first
non-trivial step in the classification of the homogeneous zero-dimensional
spaces in ∆ (see Sections 6 and 7). We will not give the original defini-
tions of S and T, but use the following characterizations instead (see [18,
Section 5] and [4, Appendix] respectively).

Theorem 5.2 (van Mill; van Douwen). Let X be a zero-dimensional
space.

• X ≈ S if and only if X is the union of a complete subspace and a
σ-compact subspace, X is nowhere σ-compact, and X is nowhere
the union of a complete and a countable subspace.
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• X ≈ T if and only if X is the union of a complete subspace and a
countable subspace, X is nowhere σ-compact, and X is nowhere
complete.

Proposition 5.3. There exists a semifilter S such that S ≈ S.

Proof. Fix infinite sets Ω1 and Ω2 such that Ω1∪Ω2 = ω and Ω1∩Ω2 = ∅.
Also fix an infinite Ω ⊆ Ω2 such that Ω2 \ Ω is infinite. Define

S = {x1 ∪ x2 : x1 ⊆ Ω1, x2 ⊆ Ω2, and (x1 /∈ Fin(Ω1) or Ω ⊆∗ x2)},
and observe that S is a semifilter. Furthermore, it is clear that S is the
union of its complete subspace {x ⊆ ω : x ∩ Ω1 /∈ Fin(Ω1)} and its σ-
compact subspace {x ⊆ ω : Ω ⊆∗ x} (see the proof of Proposition 5.1).
It follows that S is Borel, hence it is strongly homogeneous by Corollary
4.4.

Therefore, in order to apply Theorem 5.2, it will be enough to show
that S is neither σ-compact nor the union of a complete and a
countable subspace. To see that S is not σ-compact, simply observe that
P(Ω1) \ Fin(Ω1) is a closed subspace of S that is homeomorphic to P.
To see that S is not the union of a complete and a countable subspace,
simply observe that {x2 ⊆ Ω2 : Ω ⊆∗ x2} is a closed subspace of S that
is homeomorphic to Q×C. �
Proposition 5.4. There exists a semifilter T such that T ≈ T.

Proof. Fix infinite sets Ω1 and Ω2 such that Ω1∪Ω2 = ω and Ω1∩Ω2 = ∅.
Define

T = {x1 ∪ x2 : x1 ⊆ Ω1, x2 ⊆ Ω2, and (x1 /∈ Fin(Ω1) or x2 ∈ Cof(Ω2))},
and observe that T is a semifilter. Furthermore, it is clear that T is
the union of its complete subspace {x ⊆ ω : x ∩ Ω1 /∈ Fin(Ω1)} and its
countable subspace {x1 ∪ x2 : x1 ∈ Fin(Ω1) and x2 ∈ Cof(Ω2)}. It follows
that T is Borel, hence it is strongly homogeneous by Corollary 4.4.

Therefore, in order to apply Theorem 5.2, it will be enough to show that
T is neither σ-compact nor complete. To see that T is not σ-compact,
simply observe that P(Ω1) \ Fin(Ω1) is a closed subspace of T that is
homeomorphic to P. To see that T is not complete, simply observe that
Cof(Ω2) is a closed subspace of T that is homeomorphic to Q. �

6. Preliminaries on Wadge classes

The remaining part of this article relies heavily on results and tech-
niques of van Engelen from [2] and [3]. In particular, having a copy of
[2] available will be indispensable for the reading of this article. For this
reason, we have tried to follow the notation and terminology of [2] as
closely as possible.
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Given a set Z and a collection Γ ⊆ P(Z), let Γ̌ = {Z \X : X ∈ Γ} and
∆(Γ) = Γ ∩ Γ̌ (what Z is will be clear from the context). The following
is [2, Definition 3.1.1] (see also [7, Section 22.E]).

Definition 6.1. Let Z be a space, η < ω1 and 1 ≤ ξ < ω1.
• Given an increasing sequence of sets ⟨Aζ : ζ < η⟩, define

D(⟨Aζ : ζ < η⟩) =
{ ∪

{Aζ \
∪

β<ζ Aβ : ζ < η and ζ is odd} if η is even,∪
{Aζ \

∪
β<ζ Aβ : ζ < η and ζ is even} if η is odd.

• X ∈ DZ
η (Σ

0
ξ) if and only if there exists an increasing sequence

⟨Aζ : ζ < η⟩ of Σ0
ξ subsets of Z such that X = D(⟨Aζ : ζ < η⟩).

• X ∈ Dη(Σ
0
ξ) if and only if Y ∈ DZ

η (Σ
0
ξ) whenever Z is space and

Y is a subspace of Z such that X ≈ Y . The elements of this class
are the absolutely Dη(Σ

0
ξ) spaces. Similarly define Ďη(Σ

0
ξ).

• ∆ = Dω(Σ
0
2) ∩ Ďω(Σ

0
2).

For example D0(Σ
0
ξ) = {∅}, D1(Σ

0
2) consists of the σ-compact spaces,

and Ď1(Σ
0
2) consists of the complete spaces. One can easily check that

Dη(Σ
0
ξ) ∪ Ďη(Σ

0
ξ) ⊆ Dµ(Σ

0
ξ)

whenever 1 ≤ ξ < ω1 and η < µ < ω1.
Given a zero-dimensional space X, η < ω1, and 2 ≤ ξ < ω1, using

Lavrentiev’s Theorem (see [7, Theorem 3.9]), it is not hard to see that
X ∈ Dη(Σ

0
ξ) if and only if X ≈ Y for some Y ∈ DC

η (Σ
0
ξ). In particular,

a zero-dimensional space X is Borel if and only if X ≈ Y for some Borel
subspace Y of C. Given a subspace X of C, notice that X ∈ ∆ if and
only if X ∈ ∆(DC

ω (Σ
0
2)).

Definition 6.2. Assume that Γ ⊆ P(C) and 1 ≤ ξ < ω1. Define
SU(Γ,Σ0

ξ) as the collection of all sets in the form
∪

n∈ω(Xn ∩Wn), where
the Wn are pairwise disjoint Σ0

ξ subsets of C and each Xn ∈ Γ.

Wadge reduction is a fundamental tool in [2] and [3], as well as in
this article. Here, we limit ourselves to the most basic definitions (see
[2, Sections 4.1 and 4.2] for a more comprehensive treatment). Given
A,B ⊆ C, we will write A ≤W B to mean that there exists a continuous
function f : C −→ C such that A = f−1[B]. In this case, we will say that
A is Wadge-reducible to B. Given X ⊆ C, let [X] = {A ⊆ C : A ≤W X}.
We will say that Γ is a Wadge class if there exists X ⊆ C, such that
Γ = [X]. In this case, we will say that X generates Γ. A Borel Wadge
class is a Wadge class that consists only of Borel sets. A Wadge class Γ
is self-dual if Γ̌ = Γ.

The following is the fundamental result in the theory of Borel Wadge
classes (see [7, Theorem 21.14]).
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Lemma 6.3 (Wadge). Let X and Y be Borel subsets of C. Then either
X ≤W Y or Y ≤W C \ Y .

Following the results of Louveau from [8], van Engelen defines a certain
subset D of ωω

1 , then he associates a Wadge class Γu to each u ∈ D so
that the following fundamental theorem holds. For every u ∈ D, he also
defines the type of u as a suitable t(u) ∈ {0, 1, 2, 3} (see [2, Definition
4.2.3]). We do not think it would be particularly useful or enlightening
to give all the details here. We will only mention that if u = ξ⌢1⌢η⌢0,
where 1 ≤ ξ, η < ω1, then u ∈ D and Γu = DC

η (Σ
0
ξ). Here 0 denotes the

element of ωω
1 which is constant with value 0.

Theorem 6.4 (Louveau for P; van Engelen for C). The collection of
non-self-dual Borel Wadge classes is precisely

{Γu : u ∈ D} ∪ {Γ̌u : u ∈ D}.

Proof. By [2, Theorem 4.2.7], it will be enough to show that Γu is
non-self-dual for each u ∈ D, and this can be done as in the proof of
[8, Proposition 1.3]. The desired result also follows from items 4 and 1 on
[9, page 90]. �

7. The classification of homogeneous spaces: the case
below ∆

This section is a minimalist introduction to the classification of the ho-
mogeneous zero-dimensional (Borel) spaces that are in ∆ and not locally
compact.

The following is essentially [2, Definition 3.1.7] (see also [2, Lemma
3.1.4]). It is included for completeness, since we will only need the obvious
fact that if X ∈ Dℓ(Σ

0
2) for some ℓ ∈ ω then X has one of the following

properties.

Definition 7.1 (van Engelen). Let X be a space, and let k ∈ ω.
• X is P4k if and only if X is the union of a subspace in
D2k(Σ

0
2) and a complete subspace.

• X is P4k+1 if and only if X ∈ D2(k+1)(Σ
0
2).

• X is P1
4k+2 if and only if X is the union of a subspace in

D2k(Σ
0
2), a complete subspace, and a countable subspace.

• X is P1
4k+3 if and only if X is the union of a subspace in

D2(k+1)(Σ
0
2) and a countable subspace.

• X is P2
4k+2 if and only if X is the union of a subspace in

D2k(Σ
0
2), a complete subspace, and a σ-compact subspace.

• X is P2
4k+3 if and only if X is the union of a subspace in

D2(k+1)(Σ
0
2) and a σ-compact subspace.
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Also define P1
−1 as the property of being countable, and P2

−1 as the prop-
erty of being σ-compact. To indicate one of these properties generically
(that is, in case we do not know whether the superscript i ∈ {1, 2} is
present or not) we will use the notation P(i)

n .

In [2, Theorem 3.4.24], the following order is declared on these prop-
erties.

P1
−1< P2

−1< · · · < P4k< P4k+1< P1
4k+2< P1

4k+3< P2
4k+2< P2

4k+3< · · · .

In [2, Definition 3.4.6], van Engelen defines the classes X 1
−1, X 2

−1, and X4k,
X4k+1, X 1

4k+2, X 1
4k+3, X 2

4k+2, X 2
4k+3 for k ∈ ω. As with the properties P(i)

n ,
we will use the notation X (i)

n to indicate one of these classes generically.
The following two results are the most important facts about the classes

X (i)
n (see [2, Theorem 3.4.13] and [2, Theorem 3.4.24]). In fact, we will not

give the general definition of X (i)
n , but use the more easily understandable

Theorem 7.3 instead. Notice that, by Theorem 7.3, the class X (i)
n is closed

under homeomorphisms for every n ∈ ω and i ∈ {1, 2}.

Theorem 7.2 (van Engelen). Let n ∈ ω and i ∈ {1, 2}. Then, up to
homeomorphism, the class X (i)

n contains exactly one element, which is
homogeneous.

Theorem 7.3 (van Engelen). Let n ∈ ω and i ∈ {1, 2}. Then, for a
zero-dimensional space X, the following conditions are equivalent.

• X ∈ X (i)
n .

• X is P(i)
n and nowhere P(j)

m for every m ∈ {−1}∪ω and j ∈ {1, 2}
such that P(j)

m < P(i)
n .

To complete the picture, let us define the classes that are not covered
by Theorem 7.3. In [2, Definition 3.4.6], these classes are defined as single-
tons, but it seems clear that they should be closed under homeomorphism.

• X 1
−1 is the class of spaces that are homeomorphic to Q.

• X 2
−1 is the class of spaces that are homeomorphic to Q×C.

Similarly, X0 should be defined as the class of spaces that are homeomor-
phic to P.

The following diagram (which is taken from [2, page 28]) illustrates
the first few classes X (i)

n . Spaces that appear at the same level generate
the same Wadge class when embedded into C (see [2, Theorems 4.6.4 and
4.6.5]). In particular, Wadge class and Baire category are not sufficient
to determine the homeomorphism type. This phenomenon starts with Q
and Q × C and propagates throughout ∆. As we will see in Section 9,
this ambiguity disappears for spaces that are not in ∆.



ON BOREL SEMIFILTERS 107

Q ∈ X 1
−1

**

Q×C ∈ X 2
−1

tt
P ∈ X0

��

Q×P ∈ X1

{{ $$

T ∈ X 1
2

��

S ∈ X 2
2

��

Q×T ∈ X 1
3

++

Q× S ∈ X 2
3

ssX4

��

...

The following theorem is one of the reasons why the class ∆ plays such
an important role (the other reason is Lemma 11.1). It does not appear
explicitly in [2], but Lemma 7.5 is mentioned (without giving any precise
reference) in the proofs of [3, Lemmas 2.4 and 2.5]. The rest of this section
is devoted to its proof.

Theorem 7.4. Let X be a zero-dimensional homogeneous space such
that X ∈ ∆ and X is not locally compact. Then X ∈ X (i)

n for some
n ∈ ω ∪ {−1} and i ∈ {1, 2}.
Proof. Simply embed X in C, then apply Lemmas 7.5 and 7.6. �

For the proof following lemma, we will need a couple more definitions.
As in [2, Definition 3.5.7], define Pω as the property of being Dω(Σ

0
2). As

in [2, Definition 3.1.8] (see also the remark at the beginning of [2, Section
3.5]), define X 2

ω as the class of all spaces that are Pω and nowhere P(i)
n

for every n ∈ ω and i ∈ {1, 2}. See Section 9 for the definition of Y0
u.

Lemma 7.5. Let X be a homogeneous subspace of C. Assume that X ∈
∆. Then X ∈ Dℓ(Σ

0
2) for some ℓ ∈ ω.

Proof. Since X ∈ ∆ ⊆ Dω(Σ
0
2), we can fix the least α ∈ ω ∪ {ω} such

that X ∈ Dα(Σ
0
2). Assume, in order to get a contradiction, that α = ω.
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It follows from [2, Lemma 3.6.1] that X is Pω and nowhere P(i)
n for every

n ∈ ω and i ∈ {1, 2}. This means that X ∈ X 2
ω . However X 2

ω = Y0
u by [2,

Theorem 4.6.2(a)], where u = 2⌢1⌢ω⌢0. This contradicts the definition
of Y0

u, because X ∈ ∆(DC
ω (Σ

0
2)) ⊆ ĎC

ω (Σ
0
2) = Γ̌u. �

The proof of the following lemma is taken from the proof of [2, Theorem
3.6.2].

Lemma 7.6. Let X be a zero-dimensional homogeneous space. Assume
that X is not locally compact and X ∈ Dℓ(Σ

0
2) for some ℓ ∈ ω. Then

X ∈ X (i)
n for some n ∈ ω ∪ {−1} and i ∈ {1, 2}.

Proof. Let < denote the linear ordering on the properties P(j)
m for m ∈

ω ∪ {−1} and j ∈ {1, 2} defined earlier in this section. First notice that
X is P(i)

n for some n ∈ ω and i ∈ {1, 2}. For example, picking any k ∈ ω
such that 2(k + 1) ≥ ℓ will show that X is P4k+1. Therefore, we can fix
n ∈ ω and i ∈ {1, 2} such that P(i)

n is the minimal property with respect
to < such that X is P(i)

n .
Notice that X is nowhere compact because it is homogeneous and not

locally compact. Therefore, if X is σ-compact then either X ≈ Q (if X
is countable) or X ≈ Q×C (if X is nowhere countable, by [2, Theorem
2.4.5]). Notice that X ∈ X 1

−1 in the first case and X ∈ X 2
−1 in the second

case. So assume that X is not σ-compact.
By [2, Lemma 3.6.1], it follows that X is nowhere P(j)

m whenever m ∈
ω ∪ {−1} and j ∈ {1, 2} are such that P(j)

m < P(i)
n . Therefore X ∈ X (i)

n

by Theorem 7.3. �

8. From homogeneous space to semifilter: the case
below ∆

In the proof of Theorem 8.4, we will need the fact that certain opera-
tions, when applied to a semifilter, yield a space that is still homeomorphic
to a semifilter. The following three lemmas make this explicit. Notice that
Lemma 8.1 cannot be generalized to filters.

Lemma 8.1. Let S be a semifilter. Then C \ S is homeomorphic to a
semifilter.

Proof. It is straightforward to check that C \ S is a semiideal. It follows
that T = c[C\S] is a semifilter. The trivial fact that T ≈ C\S concludes
the proof. �

Lemma 8.2. Let S be a semifilter. Then Q × S is homeomorphic to a
semifilter.
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Proof. Let Ω1 and Ω2 be infinite sets such that Ω1∪Ω2 = ω and Ω1∩Ω2 =
∅. Fix a bijection π : ω −→ Ω2, and let S(Ω2) = {π[x] : x ∈ S}. It is
clear that S(Ω2) is a semifilter on Ω2 that is homeomorphic to S. Define

T = {x1 ∪ x2 : x1 ∈ Cof(Ω1) and x2 ∈ S(Ω2)},

and observe that T is a semifilter. The trivial fact that T ≈ Cof(Ω1) ×
S(Ω2) concludes the proof. �

Lemma 8.3. Let S be a semifilter. Then (C × C) \ (Fin × (C \ S)) is
homeomorphic to a semifilter.

Proof. Let Ω1 and Ω2 be infinite sets such that Ω1∪Ω2 = ω and Ω1∩Ω2 =
∅. Fix bijections σ :ω−→Ω1 and π :ω−→Ω2. Let S(Ω2)={π[x] :x∈S},
and define

T = {x1 ∪ x2 : x1 ⊆ Ω1, x2 ⊆ Ω2, and (x1 /∈ Fin(Ω1) or x2 ∈ S(Ω2))},

and observe that T is a semifilter. We will show that T is the desired
semifilter.

It is clear that σ and π induce homeomorphisms h : C −→ 2Ω1 and
g : C −→ 2Ω2 respectively such that h[Fin] = Fin(Ω1) and g[S] = S(Ω2).
It follows that h×g : C×C −→ 2Ω1 ×2Ω2 is a homeomorphism such that

(h×g)[(C×C)\ (Fin× (C\S))] = (2Ω1 ×2Ω2)\ (Fin(Ω1)× (2Ω2 \S(Ω2))).

The trivial fact that T ≈ (2Ω1 ×2Ω2)\ (Fin(Ω1)×(2Ω2 \S(Ω2))) concludes
the proof. �

Theorem 8.4. Let X be a zero-dimensional homogeneous space. Assume
that X ∈ ∆ and X is not locally compact. Then there exists a semifilter
S such that S ≈ X.

Proof. We will use induction to show that X (i)
n contains a semifilter for

every n ∈ ω ∪ {−1} and i ∈ {1, 2}. By Theorems 7.4 and 7.2, this will be
enough.

The case n = −1 is the base of our induction, and it follows from
Proposition 5.1. For the inductive step, assume that the claim holds for
X 1

4k−1 and X 2
4k−1, where k ∈ ω is given. We will show that the claim

holds for X4k, X4k+1, X 1
4k+2, X 2

4k+2, X 1
4k+3 and X 2

4k+3.
Case 1: X4k. Fix i ∈ {1, 2} (either one will work). By the inductive

assumption, there exists a semifilter S ∈ X i
4k−1. By [2, Lemma 3.4.11(b)],

it follows that C \ S ∈ X4k. An application of Lemma 8.1 concludes the
proof in this case.

Case 2: X4k+1. As we just showed, there exists a semifilter S ∈ X4k.
By [2, Lemma 3.4.9], it follows that Q × S ∈ X4k+1. An application of
Lemma 8.2 concludes the proof in this case.
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Case 3: X i
4k+2. Fix i ∈ {1, 2}. By the inductive hypothesis, there

exists a semifilter Si ∈ X i
4k−1. Case 2 of the proof of [2, Lemma 3.4.12]

shows that Yi ∈ X i
4k+3 whenever Q is a countable dense subspace of C

and Xi ∈ X i
4k−1 is a dense subspace of C, where

Yi = (C×C) \ (Q× (C \Xi)).

Therefore, it will be enough to set Q = Fin, Xi = Si, and apply Lemma
8.3.

Case 4: X i
4k+3. Fix i ∈ {1, 2}. As we just showed, there exists a

semifilter Si ∈ X i
4k+2. By [2, Lemma 3.4.9], it follows that Q×Si ∈ X i

4k+3.
An application of Lemma 8.2 concludes the proof. �

9. The classification of homogeneous spaces: the case
above ∆

This section is a minimalist introduction to the classification of the
homogeneous zero-dimensional Borel spaces that are not in ∆. The fol-
lowing are [2, Definitions 4.3.1 and 4.3.2].

Definition 9.1 (van Engelen). Let u ∈ D. Assume that X is a zero-
dimensional space.

• X is Pu if and only if Y ≈ X implies Y ∈ Γu for every subspace
Y of C.

• X is P̌u if and only if Y ≈ X implies Y ∈ Γ̌u for every subspace
Y of C.

Definition 9.2 (van Engelen). Let u ∈ D. Assume that X is a zero-
dimensional space.

• X ∈ Y0
u if and only if X is Pu, nowhere P̌u, and first category.

• X ∈ Y1
u if and only if X is Pu, nowhere P̌u, and Baire.

• X ∈ Z0
u if and only if X is P̌u, nowhere Pu, and first category.

• X ∈ Z1
u if and only if X is P̌u, nowhere Pu, and Baire.

The following two results classify the homogeneous zero-dimensional
Borel spaces not in ∆. The first one follows from [2, Lemma 4.3.5, Lemma
4.3.6, and Theorem 4.3.8], and the second one is [2, Theorem 4.4.4]. Recall
the following definitions from [2, page 100].

• D0 = {u ∈ D : ∆(DC
ω (Σ

0
2)) ⊆ Γu and u(0) ≥ 2}.

• D1 = {u ∈ D0 : u(0) ≥ 3 or t(u) = 3}.

Theorem 9.3 (van Engelen). If u ∈ D0 then, up to homeomorphism,
both Y0

u and Z1
u contain exactly one element, which is homogeneous. If

u ∈ D1 then, up to homeomorphism, both Y1
u and Z0

u contain exactly one
element, which is homogeneous.
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Theorem 9.4 (van Engelen). Let X be a homogeneous zero-dimensional
Borel space such that X /∈ ∆. Then X ∈ Y0

u ∪ Z1
u for some u ∈ D0 or

X ∈ Y1
u ∪ Z0

u for some u ∈ D1.

Finally, the following proposition makes explicit which Wadge classes
are generated by the spaces considered above.

Proposition 9.5. Let X be a subspace of C. If X ∈ Y0
u ∪ Y1

u for some
u ∈ D0 then [X] = Γu. If X ∈ Z0

u ∪ Z1
u for some u ∈ D0 then [X] = Γ̌u.

Proof. Since the other case is similar, we will assume that X ∈ Y0
u ∪ Y1

u

for some u ∈ D0. This means in particular that X ∈ Γu, hence [X] ⊆ Γu.
Since X is not P̌u, there must be a subspace Y of C such that Y ≈ X and
Y /∈ Γ̌u. By [2, Lemma 4.2.16], it follows that X /∈ Γ̌u. Using Lemma
6.3, one sees that this implies Γu ⊆ [X]. �

10. Some useful results

In this section, we collect some miscellaneous results that will be useful
later. Each one of them was either explicitly stated by van Engelen, or
follows easily from his results.

Lemma 10.1. Assume that X is a homogeneous Borel subspace of C that
is not locally compact. Let Γ = [X].

• Then Γ ∈ {Γu, Γ̌u} for some u ∈ D with u(0) ≥ 2.
• If X /∈ ∆ then Γ ∈ {Γu, Γ̌u} for some u ∈ D0.

In particular, Γ is non-self-dual.

Proof. IfX /∈ ∆, the desired result follows immediately from Theorem 9.4
and Proposition 9.5. Now assume that X ∈ ∆. Notice that, by Theorem
7.4, we can fix n ∈ {−1}∪ω and i ∈ {1, 2} such that X ∈ X (i)

n . If n = −1,
then X is a Σ0

2 subspace of C that is not Π0
2, hence [X] = DC

1 (Σ
0
2) = Γu

by Lemma 6.3, where u = 2⌢1⌢1⌢0. If n = 0, then X is a Π0
2 subspace

of C that is not Σ0
2, hence [X] = ĎC

1 (Σ
0
2) = Γ̌u by Lemma 6.3, where

u = 2⌢1⌢1⌢0. If n > 0, then the desired result follows from [2, Lemma
4.6.4]. The fact that Γ is non-self-dual follows from Theorem 6.4. �

The following is [3, Lemma 2.4(c)]. It shows that, no matter how a
zero-dimensional homogeneous Borel space is embedded in C, the Wadge
class that it generates will remain the same (with the trivial exception of
locally compact spaces).

Lemma 10.2 (van Engelen). Let X be a homogeneous Borel subspace of
C that is not locally compact. Assume that Y is a subspace of C such
that Y ≈ X. Then X ≡W Y .
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Proof. If X /∈ ∆, the desired result follows from Theorem 9.4 and Propo-
sition 9.5. If X ∈ ∆, simply observe that [X] = [Y ] by the second part
of the proof of Lemma 10.1. �

The next three results clarify the closure properties of certain Wadge
classes. The second part of Lemma 10.3 is a particular case of [3, Lemma
2.4(b)]. Lemma 10.4 follows from [2, Lemma 4.2.11(b)]. Lemma 10.5 is
[2, Lemma 4.2.12].

Lemma 10.3 (van Engelen). Let X be a homogeneous Borel subspace of
C that is not locally compact, and let Γ = [X].

• Then SU(Σ0
1,Γ) = Γ.

• If X is first category and X /∈ ∆ then SU(Σ0
2,Γ) = Γ.

Proof. By Lemma 10.1, we have Γ ∈ {Γu, Γ̌u} for some u ∈ D with u(0) ≥
2. Therefore, it follows from [2, Lemma 4.2.11(a)] that SU(Σ0

1,Γ) ⊆
SU(Σ0

ξ ,Γ) = Γ, where ξ = u(0). The trivial fact that Γ ⊆ SU(Σ0
1,Γ)

concludes the proof of the first statement.
Now assume that X is first category and X /∈ ∆. By Theorem 9.4,

either there exists u ∈ D0 such that X ∈ Y0
u ∪ Z1

u or there exists u ∈ D1

such that X ∈ Y1
u ∪Z0

u. By Definition 9.2, the cases X ∈ Z1
u and X ∈ Y1

u

are impossible. First assume that X ∈ Y0
u for some u ∈ D0. Observe that

Γ = Γu by Proposition 9.5. It follows from [2, Lemma 4.2.11(a)] that
SU(Σ0

2,Γ) = Γ. Finally, assume that X ∈ Z0
u for some u ∈ D1. Observe

that Γ = Γ̌u by Proposition 9.5. Furthermore, by the definition of D1,
either u(0) ≥ 3 or u(0) = 2 and t(u) = 3. By [2, Corollary 4.2.14], it
follows that SU(Σ0

2,Γ) = Γ. �

Lemma 10.4 (van Engelen). Assume that Γ ∈ {Γu, Γ̌u} for some u ∈ D
such that u(0) ≥ 2. If X ∈ Γ and H ∈ ∆0

2 then X ∩H ∈ Γ.

Lemma 10.5 (van Engelen). Assume that Γ ∈ {Γu, Γ̌u} for some u ∈
D0.

• If X ∈ Γ and G is a Π0
2 subset of C then X ∩G ∈ Γ.

• If X ∈ Γ and F is a Σ0
2 subset of C then X ∪ F ∈ Γ.

The following result is essentially [3, Lemma 2.11].

Lemma 10.6 (van Engelen). Let X and Y be Borel subspaces of C such
that X is a closed subset of Y . Let Γ = [X], and assume that Γ ∈ {Γu, Γ̌u}
for some u ∈ D such that u(0) ≥ 2. Then X ≤W Y .

Proof. In order to get a contradiction, suppose that X ̸≤W Y . Then
Y ≤W C \ X by Lemma 6.3, hence Y ∈ Γ̌. Since X = Y ∩ H for some
closed subset H of C, it follows from Lemma 10.4 that X ∈ Γ̌, which
contradicts the fact that Γ is non-self-dual. �
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The following theorem shows that, no matter how one embeds a ho-
mogeneous zero-dimensional Borel space X into C, the embedding will
be extremely nice, provided it is a dense embedding and X /∈ ∆. It is
inspired by the notion of being h-homogeneously embedded in a space,
which first appeared in [13, Definition 7.1]. Notice that, by [14, Theorem
6], the assumption that X is Borel cannot be dropped in Corollary 10.8.

Theorem 10.7. Let X be a homogeneous Borel dense subspace of C.
Assume that X /∈ ∆. Then, for every non-empty clopen subset U of C,
there exists a homeomorphism hU : C −→ U such that hU [X] = U ∩X.

Proof. Since X /∈ ∆, it follows from Theorem 9.4 that X ∈ Y0
u ∪ Y1

u ∪
Z0

u ∪ Z1
u for some u ∈ D0. Therefore, by [2, Theorem 4.3.9], if Y is a

dense subspace of C such that Y ≈ X, then there exists a homeomor-
phism h : C −→ C such that h[X] = Y . Furthermore, since X is not
locally compact, it follows from [2, Corollary 4.4.6] that X is strongly
homogeneous.

Now let U be a non-empty clopen subset of C. Notice that U ≈ C
and U ∩ X is a dense subspace of U . Furthermore, the fact that X is
strongly homogeneous implies that U ∩X ≈ X. Hence, the existence of
the desired homeomorphism follows from the observations in the first part
of this proof. �

Corollary 10.8. Let X be a homogeneous Borel dense subspace of C.
Assume that X /∈ ∆. Then C \X is homogeneous.

Proof. Using Theorem 10.7, it is easy to see that C\X has a base consist-
ing of clopen subspaces that are homeomorphic to C\X. By Lemma 2.1,
it follows that C \X is strongly homogeneous, hence homogeneous. �

11. A theorem of Steel

The following is a particular case of [22, Theorem 2]. It is the funda-
mental tool for dealing with homogeneous Borel spaces that are not in ∆
(here, as well as in [2] and [3]). We remark that the proof of Theorem 11.2
uses the fact that all Borel games are determined (this is a deep result
due to Martin, see [7, Theorem 20.5]). As usual, we will follow closely the
exposition of van Engelen (see [2, Section 4.1]).

Let Γ ⊆ P(C) and X ⊆ C be given. We will say that X is everywhere
properly Γ if U ∩X ∈ Γ \ Γ̌ for every non-empty open subset U of C. We
will say that Γ is continuously closed if f−1[A] ∈ Γ whenever A ∈ Γ and
f : C −→ C is a continuous function.
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Given i ∈ {0, 1}, define Qi = {x ∈ C : x(n) = i for all but finitely
many n ∈ ω}. Also define the function ϕ : C\ (Q0∪Q1) −→ C by setting

ϕ(x)(n) =

{
0 if the n-th block of zeros in x has even length,
1 if the n-th block of zeros in x has odd length,

where we start counting from the 0-th block. Given Γ ⊆ P(C), we will say
that Γ is reasonably closed if it is continuously closed and ϕ−1[A]∪Q0 ∈ Γ
whenever A ∈ Γ. The only fact involving reasonably closed classes that
we will need is the following lemma, as it will allow us to apply Theorem
11.2 to the subspaces of C that we will consider in the next section.

Lemma 11.1. Let X be a homogeneous Borel subspace of C, and let
Γ = [X]. Assume that X /∈ ∆. Then Γ is reasonably closed.

Proof. By Lemma 10.1, we see that Γ ∈ {Γu, Γ̌u} for some u ∈ D0. It
follows from [2, Lemma 4.2.17] that Γ is reasonably closed. �
Theorem 11.2 (Steel). Let Γ be a reasonably closed class of Borel subsets
of C. Let X and Y be subspaces of C that satisfy the following conditions.

• X,Y are everywhere properly Γ.
• X,Y are either both first category or both Baire.

Then there exists a homeomorphism h : C −→ C such that h[X] = Y .

The following is [3, Lemma 2.7].

Theorem 11.3 (van Engelen). Let X,Y be homogeneous Borel subspaces
of C such that X,Y /∈ ∆. Then the following conditions are equivalent.

• X ≈ Y .
• X ≡W Y and X,Y are either both first category or both Baire.

Proof. One implication is an immediate consequence of Lemma 10.2. Now
assume that X ≡W Y and X,Y are either both first category or both
Baire. First notice that, given any two dense in itself subspaces A and B
of C and a Wadge reduction f : C −→ C from A to B, the restriction
f � cl(A) : cl(A) −→ cl(B) will still be a Wadge reduction from A to B,
where cl denotes closure in C. Therefore, we can assume that X and Y
are dense in C.

Let Γ = [X] = [Y ]. Notice that Γ is reasonably closed by Lemma 11.1.
Therefore, in order to to apply Theorem 11.2, it will be sufficient to show
that X and Y are everywhere properly Γ. We will only prove this for X,
since the proof for Y is similar.

Let U be a non-empty clopen subset of C. It is trivial to show that
U ∩ X ≤W X. Therefore U ∩ X ∈ Γ. Now assume, in order to get a
contradiction, that U ∩ X ∈ Γ̌. By Theorem 10.7, we can fix a home-
omorphism hU : C −→ U such that hU [X] = U ∩ X. Since hU clearly
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witnesses that X ≤W U ∩X, we see that X ∈ Γ̌, which contradicts the
fact that Γ is non-self-dual (see Lemma 10.1). In conclusion, we have
proved that U ∩X ∈ Γ \ Γ̌ for every non-empty clopen subset U of C.

Finally, assume that U is a non-empty open subset of C. Without
loss of generality, assume that U is not clopen, and let Un for n ∈ ω be
pairwise disjoint non-empty clopen subsets of C such that

∪
n∈ω Un = U .

Notice that each Un ∩X ∈ Γ \ Γ̌. In particular, we immediately see that
U ∩ X /∈ Γ̌. Now observe that SU(Σ0

1,Γ) = Γ by Lemma 10.3. Since
U ∩X =

∪
n∈ω(Un ∩X) ∈ SU(Σ0

1,Γ), this concludes the proof. �

12. From homogeneous space to semifilter: the case
above ∆

In this section, we will complete the proof of Theorem 1.1.

Theorem 12.1. Let X be a zero-dimensional homogeneous Borel space
such that X /∈ ∆. Then X is homeomorphic to a semifilter.

Proof. Without loss of generality, assume that X is a dense (Borel) sub-
space of C. First assume that X is Baire. In this case, by Theorem
12.5, there exists a Baire semifilter S such that S ≡W X. It follows from
Theorem 11.3 and Corollary 4.3 that S ≈ X.

Now assume that X is first category. In this case, by Theorem 12.4,
there exists a first category semiideal R such that R ≡W X. It follows
from Theorem 11.3 and Corollary 4.3 that R ≈ X. Let S = c[R], and
observe that S is a semifilter. The trivial fact that S ≈ R concludes the
proof. �

For the proof of Theorem 12.4, which is taken almost verbatim from
the proof of [3, Lemma 3.3], we will need a few more preliminaries. Given
a space Z, it is possible to define the relative Wadge class Γu(Z) for u ∈ D
by performing the same operations as in [2, Definition 4.2.2] to subsets of
Z. The following two lemmas (see [3, Lemma 2.3] and [2, Lemma 4.2.15])
are then proved by a tedious but straightforward induction.

Lemma 12.2 (van Engelen). Fix u ∈ D. Let X and Y be spaces. If A ∈
Γu(Y ) and f : X −→ Y is a continuous function then f−1[A] ∈ Γu(X).

Lemma 12.3 (van Engelen). Fix u ∈ D. Suppose X is a subspace of
C and A ⊆ X. Then A ∈ Γu(X) if and only if A = A′ ∩ X for some
A′ ∈ Γu.

Theorem 12.4. Let X be a homogeneous dense Borel subspace of C.
Assume that X is first category and X /∈ ∆. Then there exists a first
category semiideal R such that R ≡W X.
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Proof. We begin by making the following definitions.
• D = P(2<ω).
• K = {{x � n : n ∈ ω} : x ∈ C}.
• Given S ⊆ K, let Ŝ = {y ∈ D : y ⊆ z for some z ∈ S}.
• Given S ⊆ K, let S̈ = {y ∈ Ŝ : y is infinite}.
• Given e ∈ Fin(2<ω), let De = {x ∈ D : x ∩ e = ∅}.

It is easy to check that K and K̂ are subspaces of D that are homeomor-
phic to C, and that K̈ is a Π0

2 subset of D.
From this point on, assume that a bijection between ω and 2<ω has

been fixed. This will allow us to identify C and D. In particular, given
any X ⊆ D, it will make sense to consider the Wadge class generated by
X.

By Lemma 10.2, we can assume without loss of generality that X is a
dense subspace of K. Let Γ = [X], and observe that Γ ∈ {Γu, Γ̌u} for
some u ∈ D0 by Lemma 10.1. Define Y = X̂.

Claim 1: Y ≡W X.
The fact that X ≤W Y follows immediately from Lemma 10.6, because

X = Y ∩ K. Now consider the unique function f : K̈ −→ K such that
x ⊆ f(x) for every x ∈ K̈, and observe that f is continuous. By Lemma
12.2, it follows that Ẍ = f−1[X] ∈ Γ(K̈). Hence, by Lemma 12.3, there
exists X ′ ∈ Γ such that Ẍ = X ′ ∩ K̈. Since Y = (X ′ ∩ K̈) ∪ Fin(2<ω),
it follows from Lemma 10.5 that Y ∈ Γ, which completes the proof of
Claim 1.

Now define

R = {y ∪ e : y ∈ Y and e ∈ Fin(2<ω)},

and observe that R is a semiideal on 2<ω.
Claim 2: R ≡W X.
Given e ∈ Fin(2<ω), define Re = R∩K̂∩De = Y ∩De, and observe that

each Re is a semifilter on 2<ω \ e. In particular, each Re is homogeneous
(by Corollary 4.3) and not locally compact. Notice that each Re ≤W Y ,
because Re is the intersection of Y with the clopen subset De of D. By
Claim 1, it follows that each Re ∈ Γ.

Given e ∈ Fin(2<ω), define ψe : D −→ D by ψe(x) = x∪e, and observe
that ψe � R : R −→ R is continuous and closed. Since ψe � De is injective,
it follows that ψe[Re] ≈ Re. Let {Zn : n ∈ ω} be an enumeration of
{ψe[Re] : e ∈ Fin(2<ω)}, and notice that each Zn ∈ Γ by Lemma 10.2.
Furthermore, it is clear that R =

∪
n∈ω Zn.

Define Wn = cl(Zn) \
∪

m<n cl(Zm) for n ∈ ω, where cl denotes clo-
sure in D, and observe that each Wn is a Σ0

2 subset of D. Furthermore,
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using the fact that each Zn is closed in R, one can easily check that
R =

∪
n∈ω(Zn ∩Wn). This shows that R ∈ SU(Σ0

2,Γ). Hence R ∈ Γ by
Lemma 10.3.

To complete the proof of Claim 2, it remains to show that X ≤W R.
By Claim 1, it will be enough to show that Y ≤W R. This follows from
Lemma 10.6, since Y = R ∩ K̂ is a closed subset of R and [Y ] = Γ by
Claim 1.

Claim 3: R is first category.
It is straightforward to check that R has the finite union property (that

is,
∪
F /∈ Cof(2<ω) whenever F ⊆ R is finite), hence R generates an ideal

I on 2<ω. Notice that I is analytic because R is Borel. It follows from
[7, Theorems 21.6 and 8.47] that I is first category, which completes the
proof of Claim 3. �

Corollary 12.5. Let X be a homogeneous dense Borel subspace of C.
Assume that X is Baire and X /∈ ∆. Then there exists a Baire semifilter
S such that S ≡W X.

Proof. Notice that C \ X must also be dense in C, otherwise X would
be locally compact. Furthermore, since X is Borel and Baire, it has
a complete dense subspace G. Since G must be a dense Π0

2 subset of
C, it follows that C \ X is first category. Also observe that C \ X is
homogeneous by Corollary 10.8. In conclusion, it is possible to apply
Theorem 12.4, which yields a first category semiideal R such that R ≡W

C \ X. Obviously, this implies that S ≡W X, where S = C \ R. It is
straightforward to check that S is a Baire semifilter. �

13. Open problems

The main open problem is of course whether the assumption “Borel” in
Theorem 1.1 can be weakened. First of all, we will show that it cannot be
altogether removed. This is an immediate consequence of the following
two propositions. The first one is trivial, and the second one follows from
[13, Proposition 8.3] and Lemma 2.1. Recall that a λ-set is a space in
which every countable set is Π0

2. Observe that no subspace of a λ-set can
be homeomorphic to C.

Proposition 13.1. Let S be an uncountable semifilter. Then S contains
a subspace that is homeomorphic to C.

Proof. Since S is uncountable, we can fix Ω ∈ S \Cof. It is easy to realize
that {x ⊆ ω : Ω ⊆ x} is the desired subspace of S. �

Proposition 13.2. There exists a homogeneous subspace of C of size ω1

that is a λ-set.
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Furthermore, by a classical theorem of Martin and Solovay from [10]
(see also [20, Theorem 23.3] or [15, Theorem 8.1]), it is consistent that
every subspace of C of size ω1 is coanalytic. Hence, it is consistent that
Theorem 1.1 fails when “Borel” is weakened to “coanalytic”. However,
we do not know the answer to the following questions. As in [7, page
315], we will say that a space is projective if it is homeomorphic to a
projective subspace of some complete space (see [15, Section 4] for a more
detailed treatment). For the definition of Projective Determinacy, see [7,
Definition 38.15].

Question 13.3. Can Theorem 1.1 be generalized to analytic spaces in
ZFC?

Question 13.4. Assume Projective Determinacy. Can Theorem 1.1 be
generalized to all projective spaces?

The assumption of Projective Determinacy is natural because it en-
sures that Theorem 11.2 generalizes to projective subspaces of C (see the
original statement of the theorem in [22]). In the next section, we will
make the very first step towards answering Question 13.4. On the other
hand, answering Question 13.4 in full using the same strategy as in this
paper would require a detailed analysis, in the spirit of [8], of the Wadge
classes generated by projective subsets of C. This problem, unsolved even
at the lowest levels of the projective hierarchy, is the object of current re-
search (see [6]). However, it might be possible to circumvent this obstacle
by using a more direct approach.

Finally, since every semifilter is homogeneous by Corollary 4.3, the
following question seems natural.

Question 13.5. Is every semifilter strongly homogeneous?

We remark that the answer to the above question is affirmative for
Borel semifilters (by Corollary 4.4) and for filters (by the following result).

Proposition 13.6. Let F be a filter. Then F is strongly homogeneous.

Proof. By Lemma 2.1, it will be enough to show that F ∩ [s] ≈ F for
every s ∈ 2<ω. So let ℓ ∈ ω and s : ℓ −→ 2. Since the case F = Cof is
trivial, assume that F ) Cof, and fix Ω ∈ F \ Cof such that Ω ∩ ℓ = ∅.
Since Ω /∈ Cof, we can fix a bijection π : ω \Ω −→ ω \ (ℓ∪Ω). Define the
function h : C −→ [s] by setting

h(x)(n) =

 s(n) if n ∈ ℓ,
x(n) if n ∈ Ω,
x(π−1(n)) if n ∈ ω \ (ℓ ∪ Ω).
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It is straightforward to check that h is a homeomorphism. Furthermore,
it is clear that h(x) ∩ Ω = x ∩ Ω for every x ∈ C. Since Ω ∈ F , it follows
that h[F ] = F ∩ [s]. �

14. Analytic and coanalytic homogeneous spaces

We will denote by Σ1
1 the collection of all analytic subsets of C, and by

Π1
1 the collection of all coanalytic subsets of C. We will say that a space

is properly analytic if it is analytic and not coanalytic. We will say that
a space is properly coanalytic if it is coanalytic and not analytic. In this
section we will show that, under Σ1

1-Determinacy (see [7, Definition 26.3]),
Theorem 1.1 extends to all analytic and coanalytic spaces. This follows
from Corollary 14.5, together with the fact that every analytic coanalytic
space is Borel (this is a classical result of Souslin, see [7, Theorem 14.11]).

Once again, our main tool will be [22, Theorem 2]. Next, we state
explicitly the version of this result that we will need. The reason why
Σ1

1-Determinacy is sufficient is explained in [22, proof of Theorem 1] (see
also [21]). Notice that Σ1

1 and Π1
1 are reasonably closed by [7, Proposition

14.4].

Theorem 14.1 (Steel). Assume Σ1
1-Determinacy. Let Γ ∈ {Σ1

1,Π
1
1}.

Let X and Y be subspaces of C that satisfy the following conditions.
• X,Y are everywhere properly Γ.
• X,Y are either both first category or both Baire.

Then there exists a homeomorphism h : C −→ C such that h[X] = Y .

Lemma 14.2. Let Γ ∈ {Σ1
1,Π

1
1}. Assume that X is a homogeneous

dense subspace of C such that [X] = Γ. Then X is everywhere properly
Γ.

Proof. Let U be a non-empty clopen subset of C. It is trivial to show that
U ∩X ≤W X. Therefore U ∩X ∈ Γ. Using the fact that Γ is closed under
countable unions (see [7, Proposition 14.4]), one sees that U ∩X ∈ Γ for
every non-empty open subset U of C.

Now assume, in order to get a contradiction, that U is a non-empty
open subset U of C such that U ∩ X ∈ Γ̌. Since X is homogeneous,
it is possible to find Xn ⊆ C for n ∈ ω such that each Xn ≈ U ∩ X
and

∪
n∈ωXn = X. Since each Xn ∈ Γ̌ and Γ̌ is closed under countable

unions, we obtain that X ∈ Γ̌. Using [7, Theorem 14.11], it follows that
X is Borel, which contradicts the assumption [X] = Γ. �

The following well-known result (see [5, Theorems 3.2, 3.3, 3.4 and
3.6]) is the last ingredient that will be needed in the proof of Theorem
14.4.
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Proposition 14.3. Let Γ ∈ {Σ1
1,Π

1
1}. Then there exists a filter F such

that [F ] = Γ.

Theorem 14.4. Assume Σ1
1-Determinacy. Let X be a zero-dimensional

homogeneous space. Assume that X is properly analytic or properly co-
analytic.

• If X is first category then X ≈ F for some filter F .
• If X is Baire then X ≈ C \ F for some filter F .

Proof. Assume without loss of generality that X is a dense subspace of
C. Let Γ = [X], and notice that Γ ∈ {Σ1

1,Π
1
1} by [7, Theorem 26.4]. It

follows from Lemma 14.2 that X is everywhere properly Γ.
First assume that X is first category. By Proposition 14.3, we can

fix a filter F such that [F ] = Γ. It follows from Lemma 14.2 that F is
everywhere properly Γ. Furthermore, using [7, Theorem 21.6 and 8.47], it
is easy to see that F is first category. Therefore, by Theorem 14.1, there
exists a homeomorphism h : C −→ C such that h[X] = F .

Now assume that X is Baire. By Proposition 14.3, we can fix a filter
F such that [F ] = Γ̌. Notice that [C \ F ] = Γ. Furthermore, C \ F is
homogeneous by Corollary 4.2. It follows from Lemma 14.2 that C \ F
is everywhere properly Γ. Furthermore, using the fact that F is first
category, it is easy to see that C\F is Baire. Therefore, by Theorem 14.1,
there exists a homeomorphism h : C −→ C such that h[X] = C \ F . �

Corollary 14.5. Assume Σ1
1-Determinacy. Let X be a zero-dimensional

homogeneous space. Assume that X is properly analytic or properly co-
analytic. Then X is homeomorphic to a semifilter.

Proof. This is clear if X is first category. If X is Baire, apply Lemma
8.1. �

Finally, we remark that all the results in this section generalize in a
straightforward way to the classes Σ1

n and Π1
n for every n ≥ 1.
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