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WEAK SELECTIONS AND
COUNTABLE COMPACTNESS

KOICHI MOTOOKA

Abstract. We prove that every countably compact Hausdorff
space with a continuous weak selection is weakly orderable, which
answers a question of Buhagiar and Gutev affirmatively. We also
prove that every feebly compact regular space with a continuous
weak selection is suborderable.

1. Introduction

All spaces in this paper are assumed to be Hausdorff topological spaces.
For a space X, let F2(X) = {F ⊂ X : 1 ≤ |F | ≤ 2}, where |F | is the
cardinality of F . The set F2(X) is assumed to have the Vietoris topology
τV which has a base consisting of all sets of the form

⟨V⟩ = {S ∈ F2(X) : S ⊂
∪
V and S ∩ V ̸= ∅ for each V ∈ V},

where V runs over all finite families of open subsets of X. (It suffices to
take only |V| ≤ 2 here.) We say that a function σ : F2(X) → X is a
weak selection on the space X if σ(F ) ∈ F for every F ∈ F2(X). A weak
selection on the space X is said to be continuous if it is continuous with
respect to the Vietoris topology on F2(X) and the topology of X.

For a linear order ≼ on a set X, let τ≼ be the order topology gener-
ated by ≼. A space (X, τ) is orderable (respectively, weakly orderable) if
τ≼ = τ (respectively, τ≼ ⊂ τ) for some linear ordering ≼ on the set X.

2010 Mathematics Subject Classification. 54B20, 54C65, 54D55, 54F05.
Key words and phrases. Vietoris topology, continuous weak selection, locally uni-

form weak selection, countably compact, sequentially compact, weakly orderable,
suborderable.

c⃝2018 Topology Proceedings.
123



124 KOICHI MOTOOKA

A space (X, τ) is suborderable if it is a subspace of an orderable space. A
suborderable space is also called a generalized ordered space (GO-space).
The following implications hold for every space:

(1) orderable→ suborderable→ weakly orderable
→ admits a continuous weak selection.

Studying the relation between continuous weak selections and order-
ability properties of a space traces back to [9, Lemma 7.2]. In 1981,
van Mill and Wattel proved that all implications in (1) are reversible for
compact spaces.

Theorem 1.1 ([10, Theorem 1.1]). A compact space is orderable if and
only if it has a continuous weak selection.

In 1984, van Mill and Wattel characterized suborderability of Tychonoff
spaces in terms of weak selections.

Theorem 1.2 ([11, Theorem 3.1]). A Tychonoff space is suborderable if
and only if it has a locally uniform weak selection.

For the definition of local uniformity, see Section 2.
Applying Theorem 1.2, Artico, Marconi, Pelant, Rotter and Tkachenko

[1] proved that the last two implications in (1) remain reversible for count-
ably compact Tychonoff spaces.

Theorem 1.3 ([1, Corollary 1.6]). A countably compact Tychonoff space
is suborderable if and only if it has a continuous weak selection.

Buhagiar and Gutev gave an example of a non-regular (Hausdorff)
countably compact space with a continuous weak selection, which is not
suborderable [2, Example 3.9]. Motivated by this, they posed the follow-
ing question.

Question 1.4 ([2, Question 1]). Let X be a countably compact space
which has a (separately) continuous weak selection. Then, is it true that
X is weakly orderable? What about if X is regular?

The purpose of this paper is to answer Question 1.4 for the case of a
countably compact space with a continuous weak selection.

Theorem 1.5. Every countably compact space with a continuous weak
selection is weakly orderable.

Under the additional assumption of regularity, we provide a much
stronger conclusion than what Question 1.4 asks.

Theorem 1.6. Every countably compact regular space with a continuous
weak selection is suborderable.
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Since every suborderable space is hereditary normal, Theorem 1.6 im-
plies the following.

Corollary 1.7. Every countably compact regular space with a continuous
weak selection is hereditary normal.

The proofs of Theorems 1.5 and 1.6 are given in Section 3.
The part of Question 1.4 asking whether every countably compact (reg-

ular) space with a separately continuous weak selection is weakly order-
able remains open.

2. Preliminaries

Every weak selection σ : F2(X) → X determines a natural order-
like relation ≼σ on the set X defined by letting x ≼σ y if and only if
σ({x, y}) = x for {x, y} ∈ F2(X). The relation ≼σ is total and antisym-
metric, but it could fail to be transitive. We write x ≺σ y if x ≼σ y and
x ̸= y.

Let σ be a weak selection on a space X. For disjoint subsets A,B ⊂ X,
we will write A ≺σ B if a ≺σ b for every (a, b) ∈ A × B. For a point
x ∈ X, we use A ≺σ x and x ≺σ B instead of A ≺σ {x} and {x} ≺σ B,
respectively. We define

(←, x)σ = {y ∈ X : y ≺σ x} and (x,→)σ = {y ∈ X : x ≺σ y}.
The topology τ≼σ on the space X having all ≼σ-open intervals (←, x)σ
and (x,→)σ with x ∈ X as a subbase is called the selection topology
determined by σ [6].

We use the following theorems.

Theorem 2.1 ([7, Corollary 2.3]). For every weak selection σ on a space
X, the space (X, τ≼σ ) is regular.

Note that Hrušák and Martínez-Ruiz [8] proved that the space (X, τ≼σ )
is Tychonoff for every weak selection σ on a space X.

Theorem 2.2 ([6, Theorem 3.5]). If σ is a continuous weak selection on
a space (X, τ), then τ≼σ

⊂ τ .

Theorem 2.3 ([3, Theorem 2]). Every countably compact space with a
continuous weak selection is sequentially compact.

A weak selection σ on a space X is said to be locally uniform [11]
if for every x ∈ X and for every neighborhood U of x there exists a
neighborhood V of x which is contained in U and such that for all p ∈ X\U
and y ∈ V ,

σ({p, y}) = p if and only if σ({p, x}) = p.
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For two topologies τ and τ ′ on a set X, we say that a weak selection σ
on the space X is (τ ′, τ)-locally uniform if for every x ∈ X and for every
τ ′-neighborhood U of x there exists a τ -neighborhood V of x such that
for all p ∈ X \ U , either

p ≺σ V or V ≺σ p.

The notion of (τ≼σ , τ)-local uniformity was introduced under the name
selection-local uniformity in [12].

Remark 2.4. A weak selection σ on a space (X, τ) is locally uniform if
and only if σ is (τ, τ)-locally uniform [12, Proposition 2.1(ii)].

According to [12, Proposition 2.1 (i), (iii)], the following implications
hold for every weak selection σ on a space (X, τ).

(2) locally uniform→ (τ≼σ
, τ)-locally uniform→ continuous.

Note that none of the implications in (2) are reversible in general; see [12,
Remark 3.6].

We also use the following theorems.

Theorem 2.5 ([12, Theorem 3.1]). If a space (X, τ) has a (τ≼σ , τ)-locally
uniform weak selection σ, then X is weakly orderable.

Theorem 2.6 ([12, Theorem 3.2]). If a space X has a locally uniform
weak selection, then X is suborderable.

The symbol ω will denote the first infinite ordinal.

3. Proofs of Theorems 1.5 and 1.6

First, we prove the following lemma needed in the sequel.

Lemma 3.1. Let (X, τ) be a countably compact space and σ a continuous
weak selection on the space (X, τ). Assume that a topology τ ′ on the set
X satisfies the following conditions:

(a) (X, τ ′) is regular;
(b) τ≼σ ⊂ τ ′ ⊂ τ .

Then σ is (τ ′, τ)-locally uniform.

Proof. Our proof is based on the argument in [1, Lemma 1.3]. By Theo-
rem 2.3, (X, τ) is sequentially compact. Suppose to the contrary that the
weak selection σ is not (τ ′, τ)-locally uniform. Then we can find x ∈ X
and τ ′-neighborhood U of x satisfying the following property:

(3) for each τ -neighborhood V of x, there are pV ∈ X \ U and yV ∈ V
such that (pV ≺σ yV and x ≺σ pV ) or (yV ≺σ pV and pV ≺σ x).
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For a subset V of X, V and V
τ ′

denote the closure of V with respect
to τ and τ ′, respectively.

Claim 1. For each n ∈ ω, there exist a τ ′-neighborhood Vn of x and
points pVn

, yVn
satisfying the following conditions:

(i) pVn ∈ X \ U and yVn ∈ Vn;
(ii) (pVn ≺σ yVn and x ≺σ pVn) or (yVn ≺σ pVn and pVn ≺σ x);
(iii) V0 ⊂ U and Vn+1 ⊂ Vn;
(iv) Vn+1 ≺σ pVn

⇐⇒ x ≺σ pVn
.

Proof of Claim 1. We choose Vn, pVn
and yVn

by induction on n. Since
x ∈ U ∈ τ ′, by (a), there exists a τ ′-neighborhood V0 of x such that
V0 ⊂ V0

τ ′

⊂ U . Since V0 ⊂ V0
τ ′

by (b), we have V0 ⊂ U . Assume that
Vn has been obtained. By (b), Vn is a τ -neighborhood of x. Thus, by (3),
there exist pVn

∈ X \ U and yVn
∈ Vn satisfying (ii).

In case of x ≺σ pVn
, since (←, pVn

)σ ∈ τ≼σ
⊂ τ ′ by (b), (←, pVn

)σ ∩Vn

is a τ ′-neighborhood of x. By (a), there exists a τ ′-neighborhood Vn+1 of
x such that Vn+1 ⊂ Vn+1

τ ′

⊂ (←, pVn
)σ ∩ Vn. Since Vn+1 ⊂ Vn+1

τ ′

by
(b), we have that Vn+1 ⊂ Vn and Vn+1 ≺σ pVn

.
In case of pVn

≺σ x, a similar argument allows to find a τ ′-neighborhood
Vn+1 of x such that Vn+1 ⊂ Vn and pVn

≺σ Vn+1. Thus, we can find
pVn , yVn and Vn+1 which satisfy the conditions (i)–(iv). �

Since {n ∈ ω : x ≺σ pVn
} ∪ {n ∈ ω : pVn

≺σ x} = ω, without loss
of generality, we may assume that |{n ∈ ω : x ≺σ pVn

}| = ω, that is,
pVn ≺σ yVn and x ≺σ pVn for every n ∈ ω.

Since the space X is sequentially compact, X ×X is also sequentially
compact [4, Theorem 3.10.35]. Therefore, the sequence {(pVn

, yVn
)}n∈ω

has a subsequence {(pVnm
, yVnm

)}m∈ω converging to a point (u, v) ∈ X ×
X. Since u ∈ {pVnm

: m ∈ ω} ⊂ X \U and v ∈ {yVnm
: m ∈ ω} ⊂ V0 ⊂ U ,

we have u ̸= v. Since pVnm
≺σ yVnm

for every m ∈ ω, by the continuity
of σ, we have u ≺σ v.

On the other hand, since v ∈ {yVnk
: k ∈ ω and k ≥ m+ 1} ⊂ Vnm+1

and Vnm+1
⊂ Vnm+1 ≺σ pVnm

for every m ∈ ω, we have that v ≺σ pVnm

for every m ∈ ω. Thus, by the continuity of σ, we have v ≺σ u. However,
this contradicts the fact u ≺σ v. The attained contradiction means that
σ is (τ ′, τ)-locally uniform. �
Proposition 3.2. Every continuous weak selection σ on a countably com-
pact space (X, τ) is (τ≼σ

, τ)-locally uniform.
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Proof. Let σ be a continuous weak selection on a countably compact space
(X, τ). Define τ ′ = τ≼σ . By Theorems 2.1 and 2.2, τ ′ satisfies items (a)
and (b) of Lemma 3.1, respectively. Thus, by Lemma 3.1, σ is (τ≼σ

, τ)-
locally uniform. �

By Proposition 3.2 and Theorem 2.5, we have Theorem 1.5.

Proposition 3.3. Every continuous weak selection on a countably com-
pact regular space is locally uniform.

Proof. Let σ be a continuous weak selection on a countably compact reg-
ular space (X, τ). Define τ ′ = τ . Since (X, τ) is regular, τ ′ satisfies item
(a) of Lemma 3.1. By Theorem 2.2, τ ′ satisfies item (b) of Lemma 3.1.
Thus, by Lemma 3.1, σ is (τ, τ)-locally uniform, which means that σ is
locally uniform by Remark 2.4. �

By Proposition 3.3 and Theorem 2.6, we have Theorem 1.6.

4. On extension to feebly compact spaces

A space X is said to be feebly compact (or, lightly compact) if every
locally finite family of open sets in X is finite. The following implications
hold for every space:

(4) countably compact→ feebly compact→ pseudocompact.

Here, a space X is said to be pseudocompact if every continuous real-
valued function on X is bounded. Note that every pseudocompact
Tychonoff space is feebly compact and none of the implications in (4)
are reversible in general; see [13, 1.11(d), 1P(3) and 1U].

By the same argument as in [5] and [1], we can generalize Theorem 1.6
to feebly compact regular spaces as follows:

Theorem 4.1. Every feebly compact regular space with a continuous weak
selection is suborderable.

Proof. Let X be a feebly compact regular space with a continuous weak
selection σ. By the same argument as in [5, Theorem 2.3], we can prove
that X × X is feebly compact. This and the same argument as in [1,
Lemma 1.3] yield that σ is locally uniform. Thus, by Theorem 2.6, X is
suborderable. �

Comparing Theorems 1.6 and 4.1, we can ask the following question.

Question 4.2. Is every feebly compact space with a continuous weak
selection weakly orderable?
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