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DOUBLE POINTS
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Abstract. This paper provides the complete table of prime knot
projections with their mirror images, without redundancy, up to
eight double points systematically thorough a finite procedure by
flypes. In this paper, we show how to tabulate the knot projec-
tions up to eight double points by listing tangles with at most four
double points by an approach with respect to rational tangles of
J. H. Conway. In other words, for a given prime knot projection
of an alternating knot, we show how to enumerate possible projec-
tions of the alternating knot. Also to tabulate knot projections up
to ambient isotopy, we introduce arrow diagrams (oriented Gauss
diagrams) of knot projections having no over/under information of
each crossing, which were originally introduced as arrow diagrams
of knot diagrams by M. Polyak and O. Viro. Each arrow diagram
of a knot projection completely detects the difference between the
knot projection and its mirror image.

1. Introduction

Arnold ([2, Figure 53], [3, Figure 15]) obtained a table of reduced knot
projections (equivalently, reduced generic immersed spherical curves) up
to seven double points. In Arnold’s table, the number of prime knot pro-
jections with seven double points is six. However, this table is incomplete
(see Figure 1, which equals [2, Figure 53]).
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Figure 1. Arnold’s table [2, Figure 53] of knot projec-
tions with n double points (left) and our table of prime
knot projections up to seven double points (right). The
prime knot projections 7̂3, 7̂5, 7̂6, and 7̂9 are missing in
Arnold’s table.

Nowadays, Arnold’s table had been completed, e.g., by [5] that is a
table, obtained by Gauss diagrams, up to ten double points. However, the
authors have not been able to find any table of knot projections with their
mirror images (see Figure 1). In this paper, we systematically construct
the complete table of prime knot projections with their mirror images
up to eight double points by flypes. We tabulate knot projections using
flypes in a way obeyed by an approach of Conway [6] who studies rational
tangles. This paper provides the complete table of prime knot projections
with their mirror images, without redundancy, up to eight double points
systematically thorough a finite procedure by flypes. In this paper, we
show how to tabulate the knot projections up to eight double points by
listing tangles with at most four double points by an approach of Conway.
Also to tabulate knot projections up to ambient isotopy, we introduce
arrow diagrams (oriented Gauss diagrams) of knot projections having no
over/under information of each crossing, which were originally introduced
as arrow diagrams (oriented Gauss diagrams) of knot diagrams by Polyak
and Viro [15]. An arrow diagram (oriented Gauss diagram) completely
detects the difference between a knot projection and its mirror image
(Proposition 4.8).

In this paper, by a double point we shall mean a transverse double
point of a knot projection and by a crossing we shall mean a double point
with over/under information of a projection of a knot (Definition 2.1).
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In [3], Arnold introduced the notion of a reducible knot projection and
he wrote:

“Many of these irreducible curves are “combinatorics” of simpler curves.
For instance, the first two curves with six crossings are two different com-
binations of two trefoil curves. However, I do not know any formal theory
describing such combinations.”

In fact, Arnold’s theory did not suggest notions of a prime knot projec-
tion and a connected sum. The notion describing “such combination” by
Arnold corresponds to the notion of connected sums, which is defined in
this paper in a standard manner (Definition 2.3). Every knot projection
is one of prime knot projections or a connected sum of some prime knot
projections. The primeness is also defined in this paper (Definition 2.4).
Arnold obtained a table of knot projections [2, 3]. He did not describe
how to tabulate the knot projections. Dowker and Thistlewaite [8] ex-
plained an algorithm that in principal could generate all possible knot
projections up to any crossing number. Carrying out this algorithm de-
pends on available computer power, and using this approach, the current
knot table of prime knots up to 16 crossings has been assembled [11]. One
of the prior existing classical knot tables of prime knots up to 10 crossings
can be found in a book by Rolfsen [16].

Here, we mention the difference between tabulations for knots and knot
projections. On one hand, if you would like to make a knot table with
minimal n crossings, you may apply the Dowker-Thistlewaite algorithm,
arrange the over/under information in the all 2n possible ways, and detect
different pairs by using knot invariants. On the other hand, if you would
like to make a table of knot projections with minimal n double points,
first, enumerate alternating knots because it is known that an (reduced)
alternating knot diagram of a given knot has the minimum number of
crossings (Tait’s conjecture [14]). Second, it is well known that every knot
projection uniquely determines (up to mirror symmetry) an alternating
knot. However, the set of knot projections with n crossings is larger than
the set of alternating knots with minimal n crossings: all alternating knot
diagrams obtained from a given one by a series of flypes correspond to
the same knot.

In this paper, through the use of flyping, we propose a systematic
tabulation of prime knot projections and give the table of prime knot
projections up to eight double points by flypes. Here, note that every
nontrivial knot projection consists of two tangles. In this paper, we show
how to tabulate knot projections up to eight double points by using tangles
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with at most four double points. We expect to extend our approach to a
general case later.

As described above, our tabulation approach is different from other
approaches. Our tabulation approach is basically obeyed by the approach
of Conway [6] (for rational tangles) and is a method for drawing the knot
projection (thus, there is no need with verification of the realizability of a
given code). For tabulating tangles with over/under information, cascade
diagrams were used in [4] and graphs were used in [12]. These methods
are also different from the one proposed in our paper because the two
methods do not use flype theory, which is what our approach is based on.
In particular, for a given knot projection of an alternating knot, we show
how to obtain the other projections of the knot by using tangles with the
smaller number of crossings. Recently, Harrison has assembled a table of
four regular graphs up to 10 double points [10]. It is also necessary to say
that Knotscape software will identify the prime knot type of any given
prime knot projection with at most 16 crossings and thus in some sense
Knotscape contains all knot projections of these knots. While Knotscape
does not handle composites directly, the methods in Knotscape can deal
with composites and their diagrams up to 16 crossings just fine.

The novel approach in this paper is to use tangles and flypes in a sys-
tematical manner to tabulate knot projections. Finally, we introduce an
arrow diagram obtained from a knot projection that allow us to construct
a complete list of mirror images for a given set of knot projections.

2. Preliminaries

Definition 2.1 (knot, knot projection, knot diagram). A knot is the im-
age of a smooth embedding from S1 to R3. A knot projection is the image
of generic immersion into an oriented 2-sphere. Each self-intersection is a
transverse double point. Let P be a knot projection. The mirror image
P ′ of P is P with the orientation of the 2-sphere reversed. Then, we
say that we consider P up to mirror symmetry if we identify P with P ′

depending on situations. Let P and P ′ be knot projections where P is
ambient isotopic to P ′. Then we say that P = P ′. A knot diagram is a
knot projection where the two paths at each double point are assigned to
be the over path and the under path respectively. A double point of a
knot diagram is called a crossing.
Definition 2.2 (tangle). Let T be the image of a generic immersion of
two (one, resp.) interval(s) into R × [0, 1] where the boundary points of
the intervals map bijectively to the four (two, resp.) points

{1, 2} × {0}, {1, 2} × {1} ({1} × {0}, {1} × {1}, resp.).
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These four (two, resp.) points are called the endpoints of T . If there exists
an orientation-preserving embedding ι : R2 → S2, ι|T (T ) is called a tangle
((1, 1)-tangle, resp.). Then, the images of ι|{endpoints} of the endpoints of
T are called endpoints of the tangle.

By definition, there exists a sufficiently long interval I (⊂ R) such
that T ⊂ I × [0, 1] and we choose ι satisfying that ι|I×[0,1](I × [0, 1])
is orientation-preserving homeomorphic to a closed disk D. In the rest
of this paper, without loss of generality, we suppose that every tangle
satisfies this condition. The disk D is called an ambient disk of a tangle.

Definition 2.3 (connected sum of knot projections, prime tangle). Let
P1 and P2 be two knot projections. We choose an orientation of the am-
bient 2-sphere of Pi for each i = 1, 2. Let Di be a 2-disk (⊂ the oriented
S2) where the pair (Di, Di ∩ Pi) is pairwise-homeomorphic to the stan-
dard disk (D2,D1) for each i = 1, 2. Let Ei be the 2-disk satisfying S2 =
Di ∪Ei and Di ∩Ei = ∂Di = ∂Ei for each i = 1, 2. Let S be a 2-sphere
obtained form a disjoint copy of E1 and E2 by identifying (∂E1, ∂E1∩P1)
and (∂E2, ∂E2 ∩ P2) under an orientation reversing homeomorphism
h : ∂E1 → ∂E2 such that h(∂E1) = ∂E2. Then (E1 ∩ P1) ∪ (E2 ∩ P2)
is a knot projection and is called a connected sum of P1 and P2. A knot
diagram obtained from a connected sum of two knot projections is called
a connected sum of knots.

By definition, a connected sum of two nontrivial knot projections is
naturally decomposed into two (1, 1)-tangles, each of which has at least
one double point. Let T be a tangle with an ambient disk D. Suppose
that for any D ⊂ D′ that intersects the arcs of T in a single curve α, α is
a simple arc. Then T is called a prime tangle.

Classically a 2-string tangle means either locally knotted or rational or
prime. Note that, in our definition, we consider standard rational tangle
projections as prime.

Definition 2.4 (trivial knot projection, prime knot projection). Let P
be a knot projection. The knot projection with no double points is called
the trivial knot projection. Suppose that P is not a connected sum of
nontrivial knot projections. Then P is called a prime knot projection.

Definition 2.5 (prime knot, alternating knot). If a knot is not a con-
nected sum of nontrivial knots, it is called a prime knot. An alternating
knot is a knot with a knot diagram that has crossings that alternate be-
tween over and under as one travels around the knot in a fixed direction.
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Definition 2.6 (flype of knot projections). A flype in a knot projection
is an operation as shown in Figure 2. A flype that does not change a knot
projection (up to ambient isotopy of the projection) is called a trivial
flype. A flype is called a nontrivial flype if a flype is not a trivial flype.
The application of finitely many flypes is called flyping.

Figure 2. Flype of knot projections.

Suppose that we apply flyping to a knot projection P , and the resulting
knot projection P satisfies P ̸= P ′. Then the flyping is called nontrivial
flyping.

A flype for knot diagrams is defined by Figure 3 in the same way as
Definition 2.6.

Figure 3. Flype of knot diagrams.

Notation 2.7. We use traditional notations N(·) or N(T1 +T2) as in [7]
where N(T ) is the numerator of a tangle T and for T1 + T2, + means
a tangle addition. By a slight abuse of a notation, for flypes, we use
the same notation for knot projections as that of knot diagrams, P =
N(A + 1 + B) and the tangle is denoted by A + 1 + B. Then, for every
flype in a knot projection P , it is easy to see that P is decomposed into
three tangles, as shown in Figure 4, which are denoted by A, (+1), and B
from the left. By a slight abuse of a notation of knot diagrams, if a flype
is rotating A (B, resp.), this flype is called a flype of a crossing across the
tangle A (B, resp.). Then, we mean that we replace 1 +A (B + 1, resp.)
with A+ 1 (1 +B, resp.).
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Figure 4. N(A+ 1 +B).

Definition 2.8. We use traditional terminologies as in [9] (we also see
[7]). For the standard circle parametrized by reiθ, the four endpoints will
be fixed at NW = re5iπ/4, NE = reiπ/4, SW = re−5iπ/4, and SE =
re−iπ/4. If NW and SW (NE, SE, resp.) are connected, then the tangle
is said to be a parity (∞) ((0), (1), resp.) tangle (e.g., see Figure 5).

Figure 5. Dotted curves indicate the connections of
tangles. From the left, each tangle is called a parity (∞)
tangle T∗, a parity (0) tangle T∗, and a parity (1) tangle
U∗.

Notation 2.9. In this paper, we consider tangles up to a rotation of a
multiple of π/4. Thus, parity (∞) and parity (0) tangles are the same and
one can drop the usual (NW, SW, NE, and SE) boundary designations.
Then, a parity (∞), (0), or (1) prime tangle is denoted by T̂n or Ûn, as
shown in Figure 5, where n is an index which represents the number of
double points of the tangle.

3. The main result and a conjecture

Notation 3.1 (knot projection n̂i). Let n be the number of double points
of a knot projection and let i be a positive integer. The symbol n̂i (n ≤ 8)
denotes a knot projection defined as follows:
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• For n ≤ 6, n̂i corresponds to the knot diagram ni in the knot
table in [16].

• For n = 7 (i ≤ 7), n̂i corresponds to the knot diagram ni in the
knot table in [16].

• For n = 7 (8 ≤ i ≤ 10), 7̂i is the knot projection obtained from
7̂i−3 by a flype.

• For n = 8 (i ≤ 18), n̂i corresponds to the knot diagram ni in the
knot table in [16] (note that each 8i (1 ≤ i ≤ 18) represents an
alternating knot diagram).

• For n = 8 (19 ≤ i ≤ 27), 8̂i is the knot projection obtained from
8̂j (1 ≤ j ≤ 18) by at most two flypes. In the following table, Nf

denotes the minimal number of flypes necessary to deform from
8̂j to 8̂i.

knot projection 8̂6 8̂8 8̂11 8̂12 8̂13 8̂14 8̂15

Nf = 1 8̂19 8̂20 8̂21 8̂22 8̂24 8̂25, 8̂26 8̂27

Nf = 2 8̂23

• For every n, let n̂i
′ be the mirror image of n̂i.

Definition 3.2. Let P≤n be the set of prime knot projections up to
orientations of the ambient 2-sphere with at most n double points. Let
P ′
≤n be the set of knot projections, each of which is the mirror image of

each element of P≤n.
Theorem 3.3. Let P≤8 and P ′

≤8 be the set as in Definition 3.2. The set
P≤8 ∪ P ′

≤8 is given in Table 1 and Table 2.

For a proof of Theorem 3.3, see Section 4.
By Theorem 3.3, prime knots are compared with prime knot projections

up to eight double points as follows.
n 1 2 3 4 5 6 7 8

|Kn| 0 0 1 1 2 3 7 21
|Pn| 1 0 1 1 2 3 10 27

Conjecture 3.4. Let n be a positive integer. Let P be a prime knot pro-
jection and K a prime knot. Let c(P ) be the number of double points
of P and c(K) the minimum number of crossings of K. Let Kn =
{K | c(K) = n} and Pn = {P | c(P ) = n}. For a set S, |S| denotes
the cardinality of S.

(1) If 3 < n < m, |Kn| < |Km| (a famous conjecture [1, Page 34,
Unsolved Question 4]).

(2) If 3 < n < m, |Pn| < |Pm|.
(3) |Kn| ≤ |Pn|.
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Table 1. The table of prime knot projections in P≤8 up
to eight double points (n̂i is the symbol as in Nota-
tion 3.1).
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Table 2. The table of knot projections in P ′
≤8 \ P≤8

(n̂i is the symbol as in Notation 3.1).

Conjecture 3.4 (3) is not obvious, for example, for a knot projection P
in Figure 6, there are at least three distinct knots.

Figure 6. Each of three distinct knots 818, 819, and 820
in the knot table (up to isotopy) in [16] has the knot
projection 8̂18.

4. Proof of Theorem 3.3.

Recall the following well-known facts:
(1) For every knot projection P , there exists a knot diagram D such

that P is obtained from D by forgetting over/under information.
(2) Two alternating knots K1 and K2 are isotopic if and only if any

two corresponding minimal knot diagrams of K1 and K2 are related by
a finite sequence of flypes (Tait flyping conjecture, Theorem of Menasco
and Thistlethwaite [13]).
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4.1. Step 1: Tabulation of tangles at most four double points.
Recall that Notation 2.7. By the definition of flypes (Definition 2.6), we
have Lemma 4.1.

Lemma 4.1. For every flype in a knot projection P , P is decomposed
into two tangles A, B, and the third tangle (+1) that satisfy P = N(A+
1+B). Then, there are two choices, we can flype by either rotating A or
by rotating B. Then, either choice results into the same knot projection
up to mirror symmetry.

In the rest of this paper, we suppose that for every knot projection
P , the number of double points of P is at most eight. The statement of
Lemma 4.2 is given using Notation 2.9.

Lemma 4.2. For a prime knot projection P , suppose that P ′ is obtained
from P by a flype of a crossing across a tangle A or B of P . If the flype
is a nontrivial flype, then, either A + 1 or 1 + B is a parity (∞) tangle
T̂∗ with at most four double points.

Proof. Let P be a knot projection with a decomposition such that P =
N(A + 1 + B). Note that A and B are prime tangles since P is a prime
knot projection. The only parity (1) prime tangles U with at most three
double points are shown in Figure 7. For Û1, it is clear that the flype
of a crossing Û1 across a tangle is a trivial flype. For Û3, the flype of a
crossing across a tangle T̂2 (⊂ Û3) is a trivial flype.

Figure 7. Û1 and Û3.

Thus, it is sufficient to consider the case that both A + 1 and 1 + B

are parity (∞) tangles, each of which is T̂∗ with at most four double
points. �

It is easy to prove Lemma 4.3 and we leave the details to the reader.

Lemma 4.3. Every possibility of a prime parity (∞) tangle T̂∗ with at
most four double points is one of the list of Figure 8.

Lemma 4.2 and Lemma 4.3 imply Lemma 4.4.
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Figure 8. T̂2–T̂4d.

Lemma 4.4. Every nontrivial flyping is generated by flypes, each of which
is a flype of a crossing across the tangle T̂2 or Û3, as shown in Figures 7
and 8.

Proof. For a knot projection P , if there is a flype possible, then P has a
decomposition P = N(A + 1 + B). This fact together with Lemma 4.3
implies that it is sufficient to consider a tangle A + 1 with at most four
double points (A has at most three double points) of type T̂∗ listed in
Figure 8. This A is T̂2, T̂3, or Û3.

Here, note that we can exclude T̂3. This is because, in Figure 8, a flype
of a crossing across the tangle T̂3 is generated by that of T̂2, or is a trivial
flype. �

4.2. Step 2: Tabulation of knot projections by flypes. Recall the
following notations and facts. Let c(P ) be the number of double points
of P . Let Pn = { P : prime | c(P ) = n }. Let Altn be the set of knot
projections, each of which is a projection of an alternating knot diagram,
up to mirror symmetry, with n crossings in the knot table in [16]. By
using facts (1) and (2) in the beginning of Section 4, Pn is obtained from
Altn via flypes.

4.3. Step 2a: Up to six double points. A table of {1̂1} ∪ Alt3 ∪
Alt4 ∪ Alt5 ∪ Alt6 is known as Figure 9.

Figure 9. {1̂1} ∪ Alt3 ∪ Alt4 ∪ Alt5 ∪ Alt6.
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By Lemma 4.1 and Lemma 4.4, for a knot projection, if there exists a
nontrivial flyping which is caused, there exists T̂2 (⊂ T̂3 = 1+ T̂2, T̂2 +1)
for the knot projection. Thus, for each P ∈ Alt6, if a knot projection
P ′ is obtained from P by applying a flype of a crossing across the tangle
T̂2 and P ′ ̸= P , P ′ ∈ P6. However, there is no such tangle up to mirror
symmetry (6̂3

′
is obtained from 6̂3 by a flype of a crossing across the

tangle T̂2). Thus, P6 = Alt6.

4.4. Step 2b: Up to seven double points. A table Alt7 is known as
Figure 10.

Figure 10. Alt7.

By Lemma 4.1 and Lemma 4.4, for a knot projection, if there exists a
nontrivial flyping which is caused, there exists T̂2 (⊂ T̂3 = 1+ T̂2, T̂2 +1)
for the knot projection. Thus, for each P ∈ Alt7, if a knot projection P ′

is obtained from P by applying a flype of a crossing across the tangle T̂2

and P ′ ̸= P , P ′ ∈ P7.
For example, we explain the first line of Figure 12 with respect to 7̂8

and 7̂5. In Figure 11, (1) denotes an existence of a flype of a crossing
across the tangle T̂2 (⊂ T̂3, which equals 1 + T̂2).

Figure 11. 7̂8 is obtained from 7̂5.
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Then, 7̂8 is obtained from 7̂5 up to ambient isotopy, as shown in Fig-
ure 11, which implies that 7̂8 ∈ P7.

Similarly, we list all the possibilities, i.e., for 7̂5, 7̂6, and 7̂7, there exist
three ambient disks, each of which corresponds to a nontrivial flyping, as
shown in Figure 12, which implies that 7̂8, 7̂9, and 7̂10 ∈ P7.

Figure 12. 7̂8 is obtained from 7̂5 (top). 7̂9 is obtained
from 7̂6 (center). 7̂10 is obtained from 7̂7 (bottom).

Secondly, we seek a new knot projection P ′′ obtained from P ′ (= 7̂8,
7̂9, or 7̂10) by applying a flype of a crossing across the tangle T̂2. However,
there is no such T̂2 (it is elementary to check every disk of type T̂2 for
7̂8, 7̂9, or 7̂10). Thus, P7 = Alt7 ∪ {7̂8, 7̂9, 7̂10} that consists of knot
projections up to mirror symmetry.
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Remark 4.5. For a number (n), we often use the symbol (n)’, which is
identified with (n) up to reflection on S2 if necessary.

4.5. Step 2c: Up to eight double points. Step 2c is the same process
as Step 2b. A table Alt8 is known as Figure 13.

Figure 13. Alt8.

By Lemma 4.1 and Lemma 4.4, for a knot projection, if there exists a
nontrivial flyping which is caused, there exists T̂2 such that T̂3 = 1 + T̂2

(T̂4c such that T̂4c = 1 + Û3, resp.), for the knot projection. Thus, for
each P ∈ Alt8, if a knot projection P ′ is obtained from P by applying
a flype of a crossing across the tangle T̂2 and P ′ ̸= P , P ′ ∈ P8. There
exist tangles, each of which corresponds to nontrivial flyping, as shown
in Figures 14–16 (to see these figures, see Figure 11, for example). Thus,
8̂19–8̂22 and 8̂24–8̂27 ∈ P8.

Secondly, we seek a new knot projection P ′′ obtained from the above
P ′ (= 8̂i (19 ≤ i ≤ 27, i ̸= 23)) by applying a flype of a crossing across
the tangle T̂2 or Û3, we should add P ′′ ∈ P8.

Then, 8̂23 ∈ P8.
Thirdly, we seek a new knot projection P ′′′ obtained from 8̂23 by ap-

plying a flype of a crossing across the tangle T̂2 or Û3. However, there is
no such flype for 8̂23. Thus, P8 = Alt8 ∪ {8̂i | 19 ≤ i ≤ 27}. Then, we
have the complete list P≤8 that consists of knot projections up to mirror
symmetry.
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Figure 14. The segment indicates a single flype of a
crossing across the tangle T̂2 or Û3. Each dotted circle
denotes one of the other choices of ambient disks.
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Figure 15. The segment indicates a single flype of a
crossing across the tangle T̂2 or Û3. Each dotted circle
denotes one of the other choices of ambient disks.

4.6. Step 3: Assembling mirror images by using arrow diagrams
of knot projections. Recall the definitions of P≤n and P ′

≤n of Def-
inition 3.2. In this section, we recall the definition of arrow diagrams
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Figure 16. The segment indicates a single flype of a
crossing across the tangle T̂2 or Û3. Each dotted circle
denotes one of the other choices of ambient disks.

(Definition 4.6), which implies a map P≤n ∪ P ′
≤n to the set of arrow

diagrams (Definition 4.7). The map completely detects the difference
between a knot projection and its mirror image (Proposition 4.8). By
applying it to P≤8, we complete the proof of Theorem 3.3, i.e., we have
P≤8 ∪ P ′

≤8.

Definition 4.6 (arrow diagram). An arrow diagram is a configuration
of n pair(s) of points up to ambient isotopy and reflection on a circle,
where each pair of points consists of a starting point and an end point.
Traditionally, two points of each pair are connected by a straight arc. The
straight arc is called a chord. Then an assignment of starting and end
points on the boundary points of a straight arc is represented by an arrow
on the chord from the starting point to the end point.

Definition 4.7 (an arrow diagram of a knot projection P ). Let P be a
knot projection. Then, there is a generic immersion g : S1 → S2 such
that g(S1) = P . We define an arrow diagram of P as follows (Figure 17).
Let l be the number of the double points of P .

We fix a base point, which is not a double point on P . Then we choose
an orientation of P . After we start from the base point, we proceed along
P according to the orientation of P . Assign 1 to the first double point
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Figure 17. An arrow diagram ADP of a knot projection
P via a knot diagram P pos.

Figure 18. A replacement of a double point with a crossing.

which we encounter. Then we assign 2 to the next double point which we
encounter provided it is not the first double point. Suppose that we have
already assigned 1, 2, . . . , k. Then we assign k + 1 to the next double point
which we encounter provided it has not been assigned yet. Following the
same procedure, we finally label the double points of P . Here, note that
g−1(double point assigned i) consists of two points on S1. Now we focus
on the double point corresponding to the two points. Suppose that we re-
gard the double point as the left of Figure 18. The left of Figure 18 consists
of two oriented paths, e.g., a1 and a2, where a1 traverses a2 from the left
side and a2 traverses a1 from the right side. Then, we connect the label
a1 and a2 along the circles with an arrow pointing from a1 to a2, see Fig-
ure 17. The arrow diagram represented by g−1(double point assigned 1),
g−1(double point assigned 2), . . . , g−1(double point assigned l) on S1 is
denoted by ADP and is called an arrow diagram of the knot projection P .
Denote by P pos a knot diagram obtained by the replacement, as shown
in Figure 18, of each double point (e.g., the center of Figure 17).

Note that ADP does not depend on the base point and thus, it is
well-defined up to orientations of P . Thus, we have Proposition 4.8.

Proposition 4.8. A knot projection P is equivalent to its mirror image
P ′ up to ambient isotopy on a 2-sphere if and only if ADP and ADP ′ are
equivalent up to ambient isotopy and reflection on a plane.

Further, ADP ′ is obtained from ADP by replacing the orientation of
each arrow with the inverse orientation.

By using Proposition 4.8, P and its mirror image P ′ are different if
ADP is not ADP ′ (here, note that ADP is defined up to ambient isotopy
and reflection). Tables 3–5 of the arrow diagrams are ADP for each P in
Tables 1 and 2.
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Table 3. Arrow diagrams corresponding to P≤8 (1̂1 to 8̂6).
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Table 4. Arrow diagrams corresponding to P≤8 (8̂7 to 8̂27).
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Table 5. Arrow diagrams corresponding to P ′
≤8 \ P≤8.
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