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COARSE DIRECT PRODUCTS AND PROPERTY C

G. BELL AND A. LAWSON

Abstract. We show that coarse property C is preserved by finite
coarse direct products. We also show that the coarse analog of
Dydak’s countable asymptotic dimension is equivalent to the coarse
version of straight finite decomposition complexity and is therefore
preserved by direct products.

1. Introduction and Preliminaries

The coarse category was described by Roe [9] as a generalization of
the large-scale approach to discrete groups begun by Gromov [7]. Coarse
spaces are sets that are equipped with a so-called coarse structure that
provides a measure of proximity without referring to a metric. Coarse
structures can be derived from metric structures [9, 11], topological struc-
tures [9], or group structures [8]. Coarse versions of asymptotic dimen-
sion [6, 9] as well as property C and finite decomposition complexity [1]
have been established and studied [12].

The primary goal of this short note is to show that coarse property C
is stable with respect to finite coarse direct products (defined below); this
was shown in the metric case recently [2, 3]. We also show that the coarse
analog of Dydak’s countable asymptotic dimension [4] coincides with the
coarse version of straight finite decomposition complexity (sFCDC); as a
result, this notion is also stable with respect to coarse direct products.

A coarse structure can be defined on any setX. Take the multiplication
(referred to here as composition) and inverse operations from the pair
groupoid structure on the product X × X. A collection E of subsets of
X × X is called a coarse structure on X if it contains the diagonal
and is closed under subsets, finite unions, inverses, and compositions [9].
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Elements of E will be called entourages and we call the pair (X, E) a
coarse space.

Suppose (X1, E1) and (X2, E2) are coarse spaces. Let pi denote the
projection map pi : X1 ×X2 → Xi for i ∈ {1, 2}. We define the (direct)
product coarse structure [6] on the product X1 ×X2 by

E1 ∗ E2 =
{
E ⊆ (X1 ×X2)

2 : (pi × pi)(E) ∈ Ei for each i ∈ {1, 2}
}
.

If X and Y are metric spaces in the bounded coarse structure [9, Ex-
ample 2.5], the coarse space obtained from taking the bounded coarse
structure on X×Y is the same as the coarse product of the spaces X and
Y equipped with bounded coarse structures; by contrast, the C0-coarse
structure (defined by Wright [11]) is not necessarily preserved in this way.
For example, the C0-coarse structure on the metric product N × [0, 1] is
easily seen to be a proper subset of the coarse product of the C0-coarse
structures on the individual spaces. Therefore, a coarse structure on the
product of two spaces does not necessarily correspond to the coarse prod-
uct of those same types of coarse structure on the factors.

To complete this section, we recall the definitions of coarse property C
and sFCDC [1].
Definition 1.1. [1] A coarse space (X, E) has coarse property C if
and only if for any sequence E1 ⊆ E2 ⊆ · · · of entourages there is a finite
sequence of families U1,U2, . . . ,Un of subsets of X satisfying

(1)
⋃n

i=1 Ui is a cover of X;
(2) each Ui is Ei-disjoint; i.e., for any pair of distinct elements U, V

of Ui we have U × V ∩ Ei = ∅; and
(3) each Ui is uniformly bounded; i.e.,

⋃
U∈Ui U × U ∈ E .

Let Y be a subset of a coarse space (X, E) and let U be a family of
subsets of X. Let n be a positive integer and let E ∈ E be an entourage.
We say that Y admits an (E,n)-decomposition over U if Y can be
expressed as a union of n sets Y 1, Y 2, . . . , Y n in such a way that each
Y i can be expressed as an E-disjoint union of sets from U. Here, by an
E-disjoint union of sets from U, we mean that each Y i = tjY i

j , where
Y i
j × Y i

j′ ∩ E = ∅ if j 6= j′ and Y i
j ∈ U for all j.

Definition 1.2. ([1]) The coarse space (X, E) is said to have straight fi-
nite coarse decomposition complexity (sFCDC) if for any infinite
sequence of entourages L1, L2, ... there is a finite sequence of families
V1, ...,Vn of subsets of X so that

(1) V1 = {X};
(2) for every i ≥ 1, each U ∈ Vi admits an (Li, 2)-decomposition over
Vi+1; and

(3) Vn is uniformly bounded.
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Figure 1. We give a possible rearrangement of the se-
quence K1,K2, . . . into a two-dimensional array Ki,j .

It is known that sFCDC is preserved by coarse direct products [1,
Theorem 4.17].

2. Results

The proof that asymptotic property C is preserved by direct products
of metric spaces [2, 3] is based on the technique used to prove the corre-
sponding theorem for topological property C when one of the two factors
is compact [10]. The proof of the following theorem is similar in spirit to
the earlier works, but the absence of a metric means that more care and
bookkeeping is required. In particular the single distance parameter must
be replaced by two sequences of entourages in the factors.

Theorem 2.1. Let (X, E) and (Y,F) be coarse spaces with coarse property
C. Then (X × Y, E ∗ F) has coarse property C.

Proof. Let E1 ⊆ E2 ⊆ · · · be a sequence of entourages in E ∗F . For each
i, put Ki = (p1× p1)(Ei) and Li = (p2× p2)(Ei). Then, by the definition
of E ∗ F , each Ki ∈ E and Li ∈ F . Observe that since Ei ⊆ Ei+1, we
have Ki ⊆ Ki+1 and Li ⊆ Li+1. Arrange the indices 1, 2, 3, . . . into a
two-dimensional array with the property that the indices are increasing
from left to right along rows and from bottom to top along columns. In
Figure 1 we give one example of such an arrangement, which was first
used in the metric proof [2].

For each i, we apply the coarse property C definition to the column
Ki,1,Ki,2, . . . to find an ni and a cover Ui,1,Ui,2, . . . ,Ui,ni

of X by uni-
formly bounded families of subsets of X with the property that each Ui,j
is Ki,j-disjoint. Then, consider the sequence L1,n1 , L2,n2,, . . .. We may
assume that the sequence is increasing by replacing Li,ni by an entourage
that occurs higher in the i-th column, if necessary.

Using this sequence, and the fact that Y has coarse property C, we find
a cover of Y by families V1,V2, . . . ,Vm of subsets of Y that are uniformly
bounded with the property that Vi is Li,ni

-disjoint.
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Using the same rearrangement of indices as above, we construct the
doubly indexed collection {Ei,j} of entourages from the given sequence
E1⊆E2 ⊆ · · · . We claim that the family Wi,j={U×V : U ∈ Ui,j , V ∈ Vi}
covers X × Y , consists of uniformly bounded sets, and has the property
that Wi,j is Ei,j-disjoint. To finish the proof, we simply need to unravel
the re-indexing to arrive at the original sequence, which may now include
some empty families.

First we check that the collection Wi,j covers X × Y . To this end, let
(x, y) ∈ X × Y be given. Since the families V1,V2, . . . ,Vm cover Y , there
is a subset V in one such family (say) Vi0 such that y ∈ V and V ∈ Vi0 .
Now, the families Ui0,1,Ui0,2, . . . ,Ui0,ni0

cover X, so there is some index
(say) j0 so that the family Ui0,j0 contains a subset U of X with x ∈ U .

Fix a pair (i, j) and consider the family Wi,j . To show that Wi,j is
uniformly bounded, we must show that⋃

W∈Wi,j

W ×W

is an entourage in the product coarse structure E∗F . By the definition, we
need only show the projection of this union to each factor is an entourage
in that factor. Since each W ∈ Wi,j can be expressed as a product
W = U × V with U ∈ Ui,j and V ∈ Vi, we observe that,

(p1 × p1)

 ⋃
W∈Wi,j

W ×W

 =(p1 × p1)

[ ⋃
W=U×V

((U × V )× (U × V ))

]

=
⋃

W=U×V
[(p1 × p1) ((U × V )× (U × V ))]

=
⋃

W=U×V
[U × U ] ∈ E .

The conclusion for the projection to the second factor is similar.
Finally, we check that Wi,j is Ei,j-disjoint. To this end, take distinct

U1 × V1 and U2 × V2 in Wi,j . Assume that there were some (a, c, b, d) ∈
Ei,j ∩ ((U1 × V1) × (U2 × V2)). Then, in particular, a ∈ U1, b ∈ U2,
c ∈ V1 and d ∈ V2. Thus, (a, b) ∈ (p1 × p1)(Ei,j) = Ki,j and (c, d) ∈
(p2 × p2)(Ei,j) = Li,j . Since U1 × V1 6= U2 × V2, we either have U1 6= U2

or V1 6= V2. In the first case, the Ki,j-disjointness of Ui,j does not allow
(a, b) to be in Ki,j . In the second case, the fact that Vi is Li,ni-disjoint
and the fact that Li,j ⊂ Li,ni

for all j ≤ ni means that (c, d) cannot be in
Li,j . Thus, there can be no such point (a, c, b, d). We conclude that the
intersection is empty, which is what we needed to show.

�
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Find a cover Vi of Y corresponding to Li,ni

Figure 2. We find covers {Ui,j}ni
j=1 ofX for each column

Ki,1,Ki,2, . . . , and then construct a cover {Vi}mi=1 of Y
corresponding to Li,ni

Dydak defined countable asymptotic dimension for metric spaces [4]
and it was shown to be equivalent to straight finite decomposition com-
plexity by Dydak and Virk [5]. We show that the analogous result also
holds for coarse spaces. As before, some care is needed to work with
entourages in the absence of a metric.

Proposition 2.2. Let (X, E) be a coarse space. The following are equiv-
alent:

(1) there is a sequence (ni) of integers such that for every sequence
of entourages Ki there is a finite sequence of families V1, . . . ,Vr
of subsets of X such that V1 = {X}, every V ∈ Vi admits an
(Ki, ni)-decomposition over Vi+1 and such that Vr is uniformly
bounded.

(2) for every sequence Li of entourages there is a finite sequence of
families U1, . . . ,Us of subsets of X such that U1 = {X}, every
U ∈ Ui admits a (Li, 2)-decomposition over Ui+1 and such that
Us is uniformly bounded.

Proof. Clearly (2) implies (1).
To see the other implication, let (ni) be the sequence of positive integers

satisfying (1) forX. Let L1, L2, . . . be a sequence of entourages. By taking
unions we may assume Li ⊆ Li+1. Put K1 = Ln1 , K2 = Ln1+n2 , and
in general, put Kj = Ln1+···+nj

. Apply (1) with the sequence (Ki) to
obtain V1,V2, . . . such that V1 = {X} and such that Vi admits a (Ki, ni)-
decomposition over Vi+1.
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We will define a sequence Ui of families of subsets of X with the prop-
erty that U1 = {X} and Ui admits an (Li, 2)-decomposition over Ui+1.
To begin, we observe that we can write X = X1 ∪ X2 ∪ · · · ∪ Xn1 ,
with each Xi =

⊔
K1−disjX

i
j , and each Xi

j ∈ V2. Therefore, we take
U2 = {X1

1 , X
1
2 , X

1
3 , . . .} ∪ {X2 ∪ X3 ∪ · · · ∪ Xn1}. Then, it is clear that

X can be (K1, 2)-decomposed over U2 and since L1 ⊆ Ln1 = K1, we see
that there is an (L1, 2)-decomposition of any set in U1 over the family U2.
For U3, we take {X1

1 , X
1
2 , . . .} ∪ {X2

1 , X
2
2 , . . .} ∪ {X3 ∪ X4 ∪ · · · ∪ Xn1};

we also observe that any set in U2 admits an (L2, 2)-decomposition over
U3 since L2 ⊆ Ln1

= K1. Continue to define families this way to ob-
tain U1,U2, . . . ,Un1 with an (Li, 2)-decomposition of each Ui over Ui+1

for 1 ≤ i < n1. We observe that in this way, Un1 = V2.
To define Uj for j ≥ n1 + 1, we observe first that we may assume

each family Vi is a partition of X itself, (cf. [5, Corollary 8.3]). We then
repeat the above procedure to arrive at Un1+n2

= V3. We repeat this
entire process until we arrive at Un1+···+nr−1 = Vr, which is uniformly
bounded. �

A coarse space has sFCDC precisely when it satisfies condition (2) of
Proposition 2.2. Condition (1) of Proposition 2.2 is the coarse analog
of countable asymptotic dimension. Since sFCDC is preserved by coarse
direct products [1, Theorem 4.17], we obtain the following.

Corollary 2.3. The coarse version of Dydak’s countable asymptotic di-
mension is preserved by coarse direct products. �

The authors wish to express their sincere appreciation to the referee
for several helpful suggestions.
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