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ON A CONSTRUCTION OF MALYKHIN

C. A. MARTÍNEZ-RANERO AND U. A. RAMOS-GARCÍA

Abstract. We construct, using ♦, a nondiscrete Hausdorff ex-
tremally disconnected topological group of size ω1 where every
countable subset is closed and discrete.

1. Introduction

A topological space is called extremally disconnected [8], if the closure
of any open set in this space is open (or, equivalently, the closures of
any two disjoint open sets are disjoint). In 1967, Arhangel’skii posed the
problem of the existence in ZFC of a nondiscrete Hausdorff extremally dis-
connected topological group [1]. Recently Reznichenko and Sipacheva in
[6] have announced a proof that the existence of a countable nondiscrete
Hausdorff extremally disconnected group implies the existence of a rapid
ultrafilter; hence, such a group cannot be constructed in ZFC because the
nonexistence of rapid ultrafilters is consistent with ZFC (see [5]). The gen-
eral case is still open. In fact, the uncountable version of Arhangel’skii’s
problem remains largely unexplored. Among the few results that exist,
we can find a forcing construction of Malykhin of a nondiscrete Hausdorff
extremally disconnected group in which all countable subsets are closed
and discrete [4]. More explicitly, he introduced a σ-close forcing notion
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that forces a nondiscrete Hausdorff extremally disconnected linear (i.e.,
with a neighborhood base at neutral element consisting of subgroups)
group topology on a Boolean (i.e., each element has order 2) group of
cardinality ω1 in which all countable subsets are closed and discrete. Re-
call that every Boolean group can be naturally viewed as vector space
over the two element field F2. Then each Boolean group is isomorphic
to ([κ]<ω,4) (the finite subsets of κ equipped with the operation 4 of
symmetric difference) for some cardinal κ. In particular, every Boolean
group of size ω1 is isomorphic to ([ω1]

<ω,4).
The purpose of this note is to present a construction of such a group

using Jensen’s diamond principle ♦. Here we show:

Theorem 1.1. ♦ implies that there exists a nondiscrete Hausdorff ex-
tremally disconnected linear group topology on ([ω1]

<ω,4) where every
countable subset is closed and discrete.

Our construction can be considered a cleaner version of the original
forcing construction. Moreover, the construction brings to light an im-
portant property which is hidden in the original construction of Malykhin.
At first sight, it does not have any relationship with the countable version
of the problem and also does not require the existence of ultrafilters on
ω1 with strong combinatorial properties. However, it follows from our
construction that this group admits a countable quotient group which is
a nondiscrete Hausdorff extremally disconnected group (see Section 3).

2. The construction

Throughout the rest of this paper, we will write + to denote the group
operation of a Boolean group. In particular, we write ([ω1]

<ω,+) instead
of ([ω1]

<ω,4).

The following lemma although elemental is a key ingredient for the
construction to work.

Lemma 2.1 (Diagonalization). Let G be a nondiscrete Hausdorff Boolean
topological group with 〈Un : n < ω〉 a neighborhood base at 0G. Then for
every open set U with 0G ∈ U there exists a linearly independent set
{xn : n < ω} ⊂ G such that
(1) span{xn : n < ω} \ {0G} ⊂ U , and
(2) span{xk : k > n} ⊂ Un for every n < ω.
In particular, the filter generated by 〈span{xk : k > n} : n < ω〉 extends
the neighborhood filter at 0G, which generates a Hausdorff linear group
topology on G.
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Proof. Construct recursively a sequence 〈xn : n ∈ ω〉 ⊂ G and 〈Vn : n ∈ ω〉
a sequence of open neighborhoods of 0G such that
(i) x0 ∈ (U0\{0G})∩U , V0∩(x0+V0) = ∅ and x0+V0 ⊂ (U0\{0G})∩U ;
(ii) xn ∈ (Un \ {0G}) ∩ Vn−1 , Vn ∩ (xn + Vn) = ∅ and xn + Vn ⊂

(Un \ {0G}) ∩ Vn−1, for every n > 0.
The construction follows easily from the following elementary fact:

given V an open neighborhood of 0G and given x ∈ V \ {0G}, there is
an open neighborhood Vx of 0G such that Vxt (x+Vx) ⊂ V .1 Indeed, put
W = V ∩ (x+ V ). Notice that {0G, x} ⊂W and W is an open set. Then
there exists an open neighborhood Vx of 0G such that x /∈ Vx + Vx ⊂ W ,
and we are done.

By construction the set {xn : n < ω} is as required. �

To prove Theorem 1.1 we will use a well known equivalent statement
of ♦ which says: there is a sequence 〈Aα ⊆ α × α : α < ω1〉 such that
for every A ⊆ ω1 × ω1, the set {α : A ∩ α × α = Aα} is stationary. The
sequence 〈Aα : α < ω1〉 is called a ♦-sequence on ω1 × ω1 (e.g., see [2]
Exercise (51) on page 92).

Proof of the Theorem 1.1. Let 〈Aα : α < ω1〉 be a ♦-sequence
on ω1 × ω1. Put C = ω1 ∩ LIM and fix an enumeration f : ω1 → [ω1]

<ω

such that f ′′α = [α]<ω for every α ∈ C.2 We will recursively construct a
sequence 〈Hα : α ∈ C〉 such that
(i) (Group topology) Hα = {Hα

β 6 [α]<ω : β < α} forms a filter base
on [α]<ω and

⋂
Hα = {∅} which generates a nondiscrete Hausdorff

linear group topology τα on [α]<ω.
(ii) (Coherence and continuity) For all β < δ 6 α with δ, α ∈ C

Hα
β = Hδ

β + [α \ δ]<ω.

(iii) (Small subsets are closed and discrete) [α]<ω ∩ Hα+ω
α = {∅} for

every α ∈ C.
(iv) (Full seal) For every α ∈ C, if ∅ ∈

⋃
(γ,β)∈Aα f(γ) +Hα

β

τα then

Hα+ω
α \ {∅} ⊂

⋃
(γ,β)∈Aα

f(γ) +Hα+ω
β .

Base step: If α = ω, let Hω
n = [ω \ n]<ω for every n < ω. Clearly,

Hω = {Hω
n : n < ω} satisfies (i) and (ii). The rest of clauses are vacuous

for this step.

1Here t denotes the disjoint union.
2Here LIM denotes the class of limit ordinals.
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Successor-limit step: Assume α = δ + ω with δ ∈ C, and suppose Hδ
has been constructed satisfying the clauses (i) to (iv). Put

Uδ =
⋃

(γ,β)∈Aδ

f(γ) +Hδ
β ,

and then applying Lemma 2.1 to Uδ if ∅ ∈ Uδ
τδ (or to [δ]<ω \ {∅} if

∅ /∈ Uδ
τδ) we can find a linearly independent set {xn : n < ω} ⊂ [δ]<ω

satisfying the clauses of the lemma. Set

Hα
β =

{
Hδ
β + [α \ δ]<ω if β < δ;

span{{δ + k}+ xk : k > n} if β = δ + n for some n.

We need to verify that Hα = {Hα
β : β < α} satisfies the above four

clauses. To see (i), first we check that Hα forms a filter base on [α]<ω.
For this, fix β, β′ < α. We have to distinguish three cases.

Case 1. β, β′ < δ. Then Hα
β = Hδ

β + [α \ δ]<ω and Hα
β′ = Hδ

β′ +

[α \ δ]<ω. Since Hδ
β and Hδ

β′ are subsets of [δ]<ω, it easily follows that

Hα
β ∩Hα

β′ =
(
Hδ
β ∩Hδ

β′

)
+ [α \ δ]<ω. Now, there exists β′′ < δ such that

Hδ
β′′ ⊂ Hδ

β ∩Hδ
β′ . Hence, Hα

β′′ ⊂ Hα
β ∩Hα

β′ .

Case 2. β < δ and β′ = δ + n for some n. Then Hα
β = Hδ

β + [α \ δ]<ω
and Hα

β′ = span{{δ + k} + xk : k > n}. From Lemma 2.1, we know that
there is m > n such that span{xk : k > m} ⊂ Hδ

β ∩ span{xk : k > n}.
Then,

span{{δ+k}+xk : k > m} ⊂
(
Hδ
β + [α \ δ]<ω

)
∩(span{{δ + k}+ xk : k > n}) ,

that is, Hα
β′′ ⊂ Hα

β ∩Hα
β′ where β′′ = δ +m.

Case 3. β = δ+m and β′ = δ+n for some m and n. Then, Hα
β ∩Hα

β′ =
Hα

max{β,β′}, and we are done.

To prove
⋂
Hα = {∅}, notice that⋂

n<ω

Hα
δ+n = {∅}.

Indeed, let x ∈ [α]<ω \ {∅}. Put y = x ∩ δ and z = x \ δ. Then,
x = y t z = y + z and there is n such that z ⊂ δ + n. If y = ∅, then
z 6= ∅ and x = z /∈ span{{δ + k} + xk : k > n} = Hα

δ+n. Otherwise, if
y 6= ∅, then we can find m > n such that y /∈ span{xk : k > m}. Thus,
x /∈ span{{δ + k}+ xk : k > m} = Hα

δ+m.

To see (ii), let γ ∈ C and β < γ with γ 6 α = δ+ω. If γ = α, then the
equality follows. Otherwise, necessarily γ 6 δ, and soHδ

β = Hγ
β+[δ\γ]<ω.
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Now, since β < γ 6 δ, it follows that Hα
β = Hδ

β + [α \ δ]<ω. Therefore,

Hα
β =

(
Hγ
β + [δ \ γ]<ω

)
+ [α \ δ]<ω = Hγ

β + [α \ γ]<ω.

To check (iii), note that for every x ∈ Hδ+ω
δ = span{{δ+ k}+ xk : k <

ω} with x 6= ∅, it follows that x \ δ 6= ∅. Hence, [δ]<ω ∩Hδ+ω
δ = {∅}.

Finally, to see (iv), assume ∅ ∈ Uδ
τδ . Fix x ∈ Hδ+ω

δ \ {∅}. Put
y = x ∩ δ and z = x \ δ. Then y ∈ span{xk : k < ω} \ {∅}, z ∈ [α \ δ]<ω,
and x = ytz = y+z. Now, by Lemma 2.1 (1), we know that span{xk : k <
ω}\{∅} ⊂ Uδ, so there exists (γ, β) ∈ Aδ such that y ∈ f(γ)+Hδ

β . Thus,

x ∈
(
f(γ) +Hδ

β

)
+ [α \ δ]<ω = f(γ) +

(
Hδ
β + [α \ δ]<ω

)
= f(γ) +Hδ+ω

β .

Therefore, (iv) follows.

Limit-limit step: Assume α is a limit of limit ordinals, and suppose Hδ
has been constructed for every δ < α (with δ ∈ C) satisfying the clauses
(i) to (iv). For every β < α, set

Hα
β = H

δ(β)
β + [α \ δ(β)]<ω,

where β < δ(β) ∈ α ∩ C and δ(β) is minimum with this property.
Let us verify that Hα = {Hα

β : β < α} satisfies the clauses (i) to (iv).
Indeed, to see (i), we need to check first that Hα forms a filter base on
[α]<ω. For this, fix β, β′ < α. Then, δ = max{δ(β), δ(β′)} ∈ α ∩ C and
β, β′ < δ. Thus, since Hδ satisfies the clause (i), there is β′′ < δ such
that Hδ

β′′ ⊂ Hδ
β ∩Hδ

β′ . Then by clause (ii), we conclude that

H
δ(β′′)
β′′ +[δ\δ(β′′)]<ω ⊂

(
H
δ(β)
β + [δ \ δ(β)]<ω

)
∩
(
H
δ(β′)
β′ + [δ \ δ(β′)]<ω

)
.

From this, it easily follows that

H
δ(β′′)
β′′ +[α\δ(β′′)]<ω⊂

(
H
δ(β)
β + [α \ δ(β)]<ω

)
∩
(
H
δ(β′)
β′ + [α \ δ(β′)]<ω

)
,

that is, Hα
β′′ ⊂ Hα

β ∩Hα
β′ .

To prove
⋂
Hα = {∅}, let x ∈ [α]<ω \{∅}. Then there exists δ ∈ α∩C

such that x ∈ [δ]<ω \ {∅}. Hence, since
⋂
Hδ = {∅}, we can find β < δ

such that x /∈ Hδ
β . Now, by condition (ii), we have Hδ

β = H
δ(β)
β + [δ \

δ(β)]<ω. Next note that x /∈ Hδ
β + [α \ δ]<ω, and therefore

x /∈
(
H
δ(β)
β + [δ \ δ(β)]<ω

)
+ [α \ δ]<ω = Hα

β .

To see (ii), let δ ∈ C and β < δ with δ 6 α. The case δ = α is trivial.
Suppose δ < α. By induction hypothesis, Hδ

β = H
δ(β)
β + [δ \ δ(β)]<ω.



214 MARTÍNEZ-RANERO AND RAMOS-GARCÍA

Thus,

Hδ
β + [α \ δ]<ω =

(
H
δ(β)
β + [δ \ δ(β)]<ω

)
+ [α \ δ]<ω = Hα

β .

Finally, the clauses (iii) and (iv) hold for this step.

This completes the recursive construction.

Set H = {H̃β : β < ω1}, where H̃β = H
δ(β)
β + [ω1 \ δ(β)]<ω with

δ(β) = min{α ∈ C : β < α}. Notice that H̃β = Hα
β + [ω1 \ α]<ω for every

α ∈ C with β < α (by clause (ii)). Also, from the clauses (i) and (ii),
it easily follows that H forms a filter base on [ω1]

<ω and
⋂
H = {∅}.

Let τ be the nondiscrete Hausdorff linear group topology on ([ω1]
<ω,+)

generated by H.

We claim that τ is extremally disconnected where [α]<ω is closed and
discrete for every α < ω1.

Indeed, to see the second part, let α < ω1. Without loss of generality,
α ∈ C. Then, by clause (iii), [α]<ω ∩Hα+ω

α = {∅}. But H̃α = Hα+ω
α +

[ω1 \ (α+ ω)]<ω, so we have [α]<ω ∩ H̃α = {∅}.
In order to prove that τ is extremally disconnected, it suffices to show

that for every τ -open set U with ∅ ∈ U there exists α < ω1 such that
H̃α ⊆ U . For this, we need to introduce the following definition: given U
a τ -open set we say that AU ⊆ ω1 × ω1 is a code for U if

U =
⋃

(γ,β)∈AU

f(γ) + H̃β .

Clearly, a code for a τ -open set always exists.

Claim 2.2. Let U be a τ -open set such that ∅ ∈ U . Then, the set

CU = {α ∈ C : ∅ ∈
⋃

(γ,β)∈AαU

f(γ) +Hα
β

τα

where AαU = AU ∩ (α× α)}

forms a club.

Proof of the claim. First, we check that CU is closed. Suppose that
〈αn : n < ω〉 is an increasing sequence in CU , and let α = supαn. Fix
β′ < α. Then α ∈ C and there exists n < ω such that β′ < αn. Thus,
since αn ∈ CU , we can find

x ∈ Hαn
β′ ∩

⋃
(γ,β)∈AαnU

f(γ) +Hαn
β .



ON A CONSTRUCTION OF MALYKHIN 215

Now, sinceHα
β′ = Hαn

β′ +[α\αn]<ω,Hα
β = Hαn

β +[α\αn]<ω and AαnU ⊂ AαU ,
it immediately follows that

x ∈ Hα
β′ ∩

⋃
(γ,β)∈AαU

f(γ) +Hα
β .

Therefore, α ∈ CU .

To see that CU is unbounded we use a standard elementary submodel
argument. Let α < ω1 be given. Find a countable elementary submodel
M ≺ H(θ) (for some large enough θ) containing α, f, AU , H as elements.
Put δ = M ∩ ω1. Clearly α < δ ∈ C. Let us verify that δ ∈ CU . Indeed,
let β′ < δ. Then we have H̃β′ ∩

⋃
(γ,β)∈AU f(γ) + H̃β 6= ∅ (in H(θ)), and

by elementarity, this is true in M as well. Hence there is x ∈ M witness
to the fact that this intersection is nonempty. We claim that

x ∈ Hδ
β′ ∩

⋃
(γ,β)∈AδU

f(γ) +Hδ
β .

To see this, first note that since x is a finite set, x ⊂ M . Thus x ∈
[δ]<ω, but H̃β′ = Hδ

β′ + [ω1 \ δ]<ω and x ∈ H̃β′ , therefore it follows
that x ∈ Hδ

β′ . On the other hand, we have there exits (γ, β) ∈ AU

such that x ∈ f(γ) + H̃β (in H(θ)). Using again elementarity, there
are γ, β ∈ M ∩ ω1 = δ such that (γ, β) ∈ AU and x ∈ f(γ) + H̃β .
Hence, (γ, β) ∈ AδU . Now, since f(γ) ∈ [δ]<ω and H̃β = Hδ

β + [ω1 \ δ]<ω,
necessarily x ∈ f(γ) +Hδ

β . Therefore,

x ∈
⋃

(γ,β)∈AδU

f(γ) +Hδ
β .

This completes the proof of CU is unbounded.

We are now in a position to prove that τ is extremally disconnected.
Let U be a τ -open set such that ∅ ∈ U . By Claim 2.2, we know that CU
is a club. Thus, since {α < ω1 : AU ∩ (α × α) = Aα} is stationary, there
is α ∈ CU such that AαU = Aα. That is, ∅ ∈

⋃
(γ,β)∈Aα f(γ) +Hα

β

τα .
Hence, by clause (iv), we have

Hα+ω
α \ {∅} ⊂

⋃
(γ,β)∈Aα

f(γ) +Hα+ω
β .

Now, since H̃α = Hα+ω
α +[ω1\(α+ω)]<ω and H̃β = Hα+ω

β +[ω1\(α+ω)]<ω,
it follows that

H̃α \ {∅} ⊂
⋃

(γ,β)∈Aα

f(γ) + H̃β ⊆
⋃

(γ,β)∈AU

f(γ) + H̃β = U.
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That is, H̃α ⊆ U . Therefore τ is extremally disconnected.

3. Final remarks and questions

The group topology τ on ([ω1]
<ω,+) constructed in Theorem 1.1 has

the following property:

Claim 3.1. For every α ∈ C the subgroup [ω1 \α]<ω is a nowhere dense
closed set.

Proof of the claim. First, we check that [ω1 \ α]<ω is closed. Let
x ∈ [ω1]

<ω \ [ω1 \α]<ω. Put y = x∩α. So y ∈ [α]<ω \ {∅}. By clause (i),
we can find β < α such that y /∈ Hα

β . Now, since H̃β = Hα
β + [ω1 \ α]<ω

and x ∈ y + [ω1 \ α]<ω, we have x + H̃β =
(
y +Hα

β

)
+ [ω1 \ α]<ω ⊂

[ω1]
<ω \ [ω1 \ α]<ω.
To see that [ω1 \α]<ω is nowhere dense, notice that by construction in

successor-limit step and by Lemma 2.1 (2), we can prove inductively that
for all δ ∈ C and for each β < δ it follows that Hδ

β � ω = {x∩ω : x ∈ Hδ
β}

is a nontrivial subgroup of [ω]<ω and hence H̃β � ω as well. Thus, H̃β *
[ω1 \ α]<ω for all β < ω1.

Using the previous claim we can conclude that for every α ∈ C
the topological quotient group [ω1]

<ω/[ω1 \ α]<ω is a countable nondis-
crete Hausdorff extremally disconnected group (being an open image
of an extremally disconnected group). In fact, this quotient is topo-
logically isomorphic to the topological group ([α]<ω,+, τ � α), where
τ � α = {U � α = {x ∩ α : x ∈ U} : U ∈ τ}.

The above leaves the following open question.

Question 3.2. Does there exist (consistently or in ZFC) a nondiscrete
Hausdorff extremally disconnected group topology on ([ω1]

<ω,+) such that
all subgroups of the form [ω1 \ α]<ω are open (and therefore closed)?

Note that for any such group, all countable subsets are closed and
discrete. We would like to mention here that such a group topology must
have a weight greater than ω1, which makes guessing principles much
harder to apply.

Proposition 3.3. Let τ be a nondiscrete Hausdorff extremally discon-
nected group topology on ([ω1]

<ω,+) such that all subgroups of the form
[ω1 \ α]<ω are open. Then, the weight w(τ) > ω1.

Proof. It suffices to prove that the character χ(τ,∅) > ω1. Let {Uα : α <
ω1} be a family of open neighborhoods at ∅. Since [ω1 \ α]<ω are open
for every α < ω1, we can choose recursively {x0α, x1α} ∈ [Uα]

2 (α < ω1)
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so that γ0α = min(x0α) < min(x1α) = γ1α and sup{γ1β : β < α} < γ0α. Put
Ai = {γiα : α < ω1} for each i < 2, and put A2 = ω1 \

⊔
i<2Ai. Then we

see that [ω1]
<ω \{∅} =

⊔
i<3 Vi where Vi =

⊔
γ∈Ai{γ}+[ω1 \ (γ+1)]<ω is

an open set for all i < 3. Clearly min′′ Vi = Ai for all i < 3. The extremal
disconnectedness of τ implies that there exists i < 3 such that Vi ∪ {∅}
is an open neighborhood at ∅. Now there is j < 2 with j 6= i, and hence
min′′ Vj ∩min′′ Vi = ∅. Thus, {Uα : α < ω1} cannot form a neighborhood
base at ∅. �

We do not know if the condition of all countable subsets are closed and
discrete is compatible with all subgroups of the form [ω1 \α]<ω are dense.

Question 3.4. Does there exist (consistently or in ZFC) a nondiscrete
Hausdorff extremally disconnected group topology on ([ω1]

<ω,+) such that
all subgroups of the form [ω1\α]<ω are dense and also all countable subsets
are closed and discrete?

Concerning Arhangel’skii’s problem, it was known from the beginning
that if κ is a measurable cardinal with U a uniform normal ultrafilter on κ
then τU the group topology (like Sirota’s group topology on ([ω]<ω,+), see
[7]) generated by U<ω = {[A]<ω : A ∈ U} on ([κ]<ω,+) forms a nondis-
crete Hausdorff extremally disconnected linear group topology. In fact,
similar to a result of Louveau on ([ω]<ω,+) (see [3]), if the topological
group ([κ]<ω,+, τU ) is extremally disconnected with U a uniform ultra-
filter on κ uncountable then U is a Ramsey ultrafilter and hence κ is a
measurable cardinal. Clearly, in these kinds of groups every subset of size
< κ is closed and discrete.

Question 3.5. Does there exist (consistently or in ZFC) a nondiscrete
Hausdorff extremally disconnected group topology on ([κ]<ω,+) with κ >
ω1 a small uncountable cardinal ( e.g., ω2, ω3, . . . ) such that all subsets of
size < κ are closed and discrete?
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