http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Some topological games, D-spaces and covering properties of hyperspaces

by

LIANG-XUE PENG, YUAN SUN AND SHANG-ZHI WANG

Electronically published on January 23, 2019

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SOME TOPOLOGICAL GAMES, *D*-SPACES AND COVERING PROPERTIES OF HYPERSPACES

LIANG-XUE PENG*, YUAN SUN, AND SHANG-ZHI WANG

ABSTRACT. We study topological games, *D*-spaces and covering properties of hyperspaces with the upper (lower) Vietoris topology $V^+(V^-)$. Let **C** be the class of all compact spaces. Let **W** be the class of all countable spaces. Let **1** denote the class of all one point spaces and empty set. We get the following conclusions:

If X is a 1-like T_1 -space, then the hyperspace $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a 1-like space. If X is a nc-W-like T_1 -space, then $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a nc-W-like space. If X is a D1-like T_1 -space, then $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a D1-like space. If X is a T_1 -space and $(\mathcal{C}(X), V^+)$ is nc-1-like, then X is C-like. If X is a T_1 -space and $(\mathcal{C}(X), V^-)$ is nc-1-like, then X is C-like. If X is a hemicompact Hausdorff space, then $(\mathcal{C}(X), V^+)$ is a nc-1-like space. We finally show that if X is a Hausdorff topological space such that every closed compact subset of X is a G_{δ} -set of X, then $(\mathcal{C}(X), V^+)$ is a nc-1-like space if and only if X is a hemicompact space. We point out that there exists a σ -compact (1-like) T_2 -space X such that the hyperspace $(\mathcal{C}(X), V^+)$ is not a nc-1-like space.

If X is a T_1 D-space, then $(2^X, V^-)$ is a D-space. If X is a T_1 space, then X is a D-space if and only if $(\mathcal{C}(X), V^-)$ is a D-space. If X is a T_1 -space and $(2^X, V^-)$ is a bD-space, then X is a bD-space. If X is a paracompact space, then $(2^X, V^-)$ is metacompact. If X_n is a T_1 -space for each $n \in \mathbb{N}$ such that $\prod_{i=1}^{N} (\mathcal{C}(X_n), V_n^+)$ is Lindelöf,

then $\prod_{n \in \mathbb{N}} X_n$ is Lindelöf.

²⁰¹⁰ Mathematics Subject Classification. Primary 54D99; Secondary 54A35. Key words and phrases. Topological games, C-like, 1-like, W-like, D-space, metacompact, hemicompact, hyperspace.

Research supported by Beijing Natural Science Foundation (Grant No. 1162001) and supported by the National Science Foundation of China (Grant No.11771029). *Corresponding author.

^{©2019} Topology Proceedings.

INTRODUCTION

Some properties of hyperspaces over a space X can be described by properties of the basic space. In [8], Maio and Kočinac studied covering properties of hyperspaces with the Vietoris topologies, as well as its lower and upper parts. The following notations and notions follow form [8] and [9].

Given a topological space, we define its hyperspaces as the following sets:

 $2^X = \{A \subset X : A \text{ is closed and nonempty}\},\$

 $\mathcal{C}(X) = \{A \in 2^X : A \text{ is compact}\}.$

 2^{X} is topologized by the *Vietoris topology* defined as the topology generated by $\mathcal{B} = \{ \langle U_1, \cdots, U_k \rangle : U_1, \cdots, U_k \text{ are open subsets of } X, k \text{ is a positive integer} \}$, where $\langle U_1, \cdots, U_k \rangle = \{A \in 2^X : A \subset \bigcup_{j=1}^k U_j \text{ and } U_j \}$ $A \cap U_j \neq \emptyset$ for each $j \in \{1, \dots, k\}\}$. The topology on 2^X generated by \mathcal{B} is usually called the Vietoris topology, denoted V. If A is a subset of Xand \mathcal{A} is a family of subsets of X, then we write

 $A^{-} = \{F \in 2^{X} : F \cap A \neq \emptyset\} \text{ and } \mathcal{A}^{-} = \{A^{-} : A \in \mathcal{A}\};$ $A^{+} = \{F \in 2^{X} : F \subset A\} \text{ and } \mathcal{A}^{+} = \{A^{+} : A \in \mathcal{A}\}.$ The upper Vietoris topology V⁺ on 2^X is the topology whose base is the collection $\{U^+ : U \text{ is open in } X\}$. The lower Vietoris topology V^- is generated by all the sets $U^-, U \subset X$ nonempty, open. $(\mathcal{C}(X), V^+)$ denotes the hyperspace $\mathcal{C}(X)$ which is a subspace of $(2^X, V^+)$. $(\mathcal{C}(X), V^-)$ denotes the hyperspace $\mathcal{C}(X)$ which is a subspace of $(2^X, V^-)$. Let X be a topological space and $A \subset X$. In the hyperspaces $(\mathcal{C}(X), V^+)$ and $(\mathcal{C}(X), V^{-})$, we denote $A^{-} = \{F \in \mathcal{C}(X) : F \cap A \neq \emptyset\}$ and $A^{+} = \{F \in \mathcal{C}(X) : F \cap A \neq \emptyset\}$ $\mathcal{C}(X)$: $F \subset A$. In this note, we study topological games, D-spaces and covering properties of hyperspaces with the upper (lower) Vietoris topology $V^+(V^-)$.

Let **K** be a class of spaces which are hereditary with respect to closed subspaces. The notion of a K-like space was introduced and studied by R. Telgársky in [12]. The notion of a *nc*-K-like space was introduced by Peng and Shen in [11] is similar to the notion of a K-like space. The difference of the two definitions is that the sets that player ONE chooses in a play of a nc-K-like space may not be closed. Let C be the class of all compact spaces. Let ${f W}$ be the class of all countable spaces. Let ${f 1}$ denote the class of all one point spaces and empty set. In this note, we study topological games, *D*-spaces and covering properties of hyperspaces with the upper (lower) Vietoris topology $V^+(V^-)$ and get the following conclusions:

If X is a 1-like T_1 -space, then the hyperspace $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a 1-like space. If X is a *nc*-W-like T_1 -space, then $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a *nc*-W-like space. If X is a D1-like T_1 -space, then $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a D1-like space. If X is a T_1 -space and $(\mathcal{C}(X), V^+)$ is *nc*-1-like, then X is C-like. If X is a T_1 -space and $(\mathcal{C}(X), V^-)$ is *nc*-1-like, then X is C-like. If X is a hemicompact Hausdorff space, then $(\mathcal{C}(X), V^+)$ is a *nc*-1-like space. We finally show that if X is a Hausdorff topological space such that every closed compact subset of X is a G_{δ} -set of X, then $(\mathcal{C}(X), V^+)$ is a *nc*-1-like space if and only if X is a hemicompact space. We point out that there exists a σ -compact (1-like) T_2 -space X such that the hyperspace $(\mathcal{C}(X), V^+)$ is not a *nc*-1-like space.

If X is a T_1 D-space, then $(2^X, V^-)$ is a D-space. If X is a T_1 -space, then X is a D-space if and only if $(\mathcal{C}(X), V^-)$ is a D-space. If X is a T_1 -space and $(2^X, V^-)$ is a bD-space, then X is a bD-space. If X is a paracompact space, then $(2^X, V^-)$ is metacompact. If X_n is a T_1 -space for each $n \in \mathbb{N}$ such that $\prod_{n \in \mathbb{N}} (\mathcal{C}(X_n), V_n^+)$ is Lindelöf, then $\prod_{n \in \mathbb{N}} X_n$ is Lindelöf.

The set of positive integers is denoted by \mathbb{N} and $\omega = \mathbb{N} \cup \{0\}$. In notation and terminology we will follow [6].

MAIN RESULTS

Let \mathbf{K} be a class of spaces which are hereditary with respect to closed subspaces. The notion of a \mathbf{K} -like space was introduced and studied by R. Telgársky in [12].

A sequence $(E_n : n \in \omega)$ of subsets of a space X is a *play* of $G(\mathbf{K}, X)$ if $E_0 = X$ and for each $n \in \omega$

- (1) E_{2n+1} is the choice of player ONE;
- (2) E_{2n+2} is the choice of player TWO;
- (3) $E_{2n+1} \in \mathbf{K};$
- (4) $E_n \in 2^X \cup \{\emptyset\};$
- (5) $E_{2n+1} \subset E_{2n};$
- (6) $E_{2n+2} \subset E_{2n};$
- (7) $E_{2n+2} \cap E_{2n+1} = \emptyset.$

The player ONE wins the play if $\bigcap \{E_{2n} : n \in \omega\} = \emptyset$. A finite sequence $(E_m : m \leq n)$ is admissible for $G(\mathbf{K}, X)$ if $E_0, E_1, ..., E_n$ satisfy the above conditions (1)-(7). A function s is a strategy for player ONE if the domain of s consists of admissible sequences $(E_0, E_1, ..., E_n)$ with n even, and if $E_{n+1} = s(E_0, E_1, ..., E_n)$, then $(E_0, E_1, ..., E_n, E_{n+1})$ is admissible for $G(\mathbf{K}, X)$. The strategy s is a winning strategy for player ONE if it wins every play $(E_0, E_1, ...)$ of $G(\mathbf{K}, X)$, where $E_{2n+1} = s(E_0, E_1, ..., E_{2n})$, $n \in \omega$. If player ONE has a winning strategy in $G(\mathbf{K}, X)$, then X is said to be a \mathbf{K} -like space [12].

In [11], Peng and Shen introduced the notion of nc-K-like which is similar to the notion of K-like. The difference of the two definitions is that the sets that player ONE chooses in a play of a nc-K-like space may not be closed.

A sequence $(E_n : n \in \omega)$ of subsets of a space X is a play of $G_{nc}(\mathbf{K}, X)$ if $E_0 = X$ and for each $n \in \omega$

- (1) E_{2n+1} is the choice of player ONE;
- (2) E_{2n+2} is the choice of player TWO;
- (3) $E_{2n+1} \in \mathbf{K};$
- (4) $E_{2n} \in 2^X \cup \{\emptyset\};$
- (5) $E_{2n+1} \subset E_{2n};$
- (6) $E_{2n+2} \subset E_{2n};$
- (7) $E_{2n+2} \cap E_{2n+1} = \emptyset.$

Player ONE wins the play if $\bigcap \{E_{2n} : n \in \omega\} = \emptyset$. A function *s* is a *strat-egy for player ONE in* $G_{nc}(\mathbf{K}, X)$ if the domain of *s* consists of admissible sequences $(E_0, E_1, ..., E_n)$ with *n* even, and if $E_{n+1} = s(E_0, E_1, ..., E_n)$, then $(E_0, E_1, ..., E_n, E_{n+1})$ is admissible for $G_{nc}(\mathbf{K}, X)$. The strategy *s* is a *winning strategy for player ONE in* $G_{nc}(\mathbf{K}, X)$ if it wins every play $(E_0, E_1, ..., O)$ of $G_{nc}(\mathbf{K}, X)$, where $E_{2n+1} = s(E_0, E_1, ..., E_{2n})$, $n \in \omega$. If player ONE has a winning strategy in $G_{nc}(\mathbf{K}, X)$, then *X* is said to be a *nc*-**K**-like space. Every **K**-like space is a *nc*-**K**-like space. In [11], it is pointed out that there is a space *X* which is a *nc*-**1**-like space but not a **1**-like space.

For a class **K** and a topological space (X, \mathcal{T}) , let \mathcal{B} be a base of \mathcal{T} . We denote $\mathcal{B}(x) = \{B \in \mathcal{B} : x \in B\}$ for each $x \in X$. The concept of weak **K**-like was introduced by Peng in [10]. Let $WG(\mathbf{K}, X)$ be the following positional game with perfect information. There are two players, player ONE and player TWO. They choose alternatively consecutive terms of a sequence $(E_n : n \in \omega)$ of subsets of X, so that each player knows $\mathbf{K}, E_0, E_1, \ldots, E_n$ when he is choosing E_{n+1} .

A sequence $(E_n : n \in \omega)$ of subsets of X is a *play of* $WG(\mathbf{K}, X)$, if $E_0 = X$ and if for each $n \in \omega$

- (1) E_{2n+1} is the choice of player ONE;
- (2) E_{2n+2} is the choice of player TWO;
- $(3) \quad E_{2n+1} \in \mathbf{K};$
- (4) $E_n \in 2^X \cup \{\emptyset\};$
- (5) $E_{2n+1} \subset E_{2n};$

(6) For each $x \in E_{2n+1}$, player TWO chooses a member $U(x) \in \mathcal{B}(x)$, and $E_{2n+2} = E_{2n} \setminus \bigcup \{ U(x) : x \in E_{2n+1} \}.$

If $\bigcap \{E_{2n} : n \in \omega\} = \emptyset$, then the player ONE wins the play $(E_n : n \in \omega)$.

A finite sequence $(E_m : m \leq n)$ of subsets of X is admissible for $WG(\mathbf{K}, X)$ if the sequence $(E_0, E_1, \ldots, E_n, \emptyset, \ldots, \emptyset, \ldots)$ is a play of $WG(\mathbf{K}, X)$. A function s is a strategy for player ONE in $WG(\mathbf{K}, X)$ if the domain consists of admissible sequences (E_0, \ldots, E_n) with n even, such that $s(E_0, \ldots, E_n) = E_{n+1}$ and $(E_0, \ldots, E_n, E_{n+1})$ is admissible for $WG(\mathbf{K}, X)$.

A strategy s is said to be winning for player ONE in $WG(\mathbf{K}, X)$, if player ONE wins each play of $WG(\mathbf{K}, X)$ by s. $WI(\mathbf{K}, X)$ denotes the set of all winning strategies of player ONE in $WG(\mathbf{K}, X)$. If $WI(\mathbf{K}, X) \neq \emptyset$, then X is called a weak **K**-like space. If $\mathcal{B} = \mathcal{T}$ and X is weak **K**-like with respect to \mathcal{B} , then X is a **K**-like space. The definitions of **K**-like spaces and weak **K**-like spaces are very similar. In [10], Peng proved that **K**-like and weak **K**-like are equivalent. Some results on topological games can be found in [7], [13] and [15].

Lemma 1. ([10, Theorem 1]) A space X is a K-like space if and only if X is a weak K-like space.

Similar to the concept of $WG(\mathbf{K}, X)$, we can give a notion of $WG^*(\mathbf{K}, X)$. Let \mathcal{T} be the topology of the space X and let \mathcal{B} be a base of \mathcal{T} . For each $x \in X$, let $\mathcal{B}^*(x)$ be a subfamily of $\mathcal{B}(x) = \{B \in \mathcal{B} : x \in B\}$ such that $\mathcal{B}^*(x)$ is a base of neighborhoods of the point x in X. If $\mathcal{B}(x)$ is replaced by $\mathcal{B}^*(x)$ in the definition of weak \mathbf{K} -like, then we denote the new game by $WG^*(\mathbf{K}, X)$. If player ONE has a winning strategy in $WG^*(\mathbf{K}, X)$, then X is said to be a $*\mathbf{K}$ -like space. Similar to [10, Theorem 1], we have:

Lemma 2. A space X is a K-like space if and only if X is a *K-like space.

Similar to the notion of weak K-like (*K-like), we have a notion of weak nc-K-like (*nc-K-like). The difference of weak K-like (*K-like) and weak nc-K-like (*nc-K-like) is that the sets that player ONE chooses in a play of a weak nc-K-like (*nc-K-like) space may not be closed.

For a class **K** and a topological space (X, \mathcal{T}) , let \mathcal{B} be a base of \mathcal{T} . For each $x \in X$, let $\mathcal{B}^*(x)$ be a subfamily of $\mathcal{B}(x) = \{B \in \mathcal{B} : x \in B\}$ such that $\mathcal{B}^*(x)$ is a base of neighborhoods of the point x in X.

Let $WG_{nc}(\mathbf{K}, X)$ ($WG_{nc}^*(\mathbf{K}, X)$) be the following positional game with perfect information. There are two players, player ONE and player TWO. They choose alternatively consecutive terms of a sequence ($E_n : n \in \omega$) of subsets of X, so that each player knows $\mathbf{K}, E_0, E_1, \ldots, E_n$ when he is choosing E_{n+1} .

A sequence $(E_n : n \in \omega)$ of subsets of X is a play of $WG_{nc}(\mathbf{K}, X)$ $(WG_{nc}^*(\mathbf{K}, X))$, if $E_0 = X$ and if for each $n \in \omega$ (1) E_{n+1} is the choice of player ONE;

- (2) E_{2n+2} is the choice of player TWO;
- (3) $E_{2n+1} \in \mathbf{K};$
- (4) $E_{2n} \in 2^X \cup \{\emptyset\};$
- (5) $E_{2n+1} \subset E_{2n};$

(6) For each $x \in E_{2n+1}$, player TWO chooses a member $U(x) \in \mathcal{B}(x)$ $(U(x) \in \mathcal{B}^*(x))$, and $E_{2n+2} = E_{2n} \setminus \bigcup \{U(x) : x \in E_{2n+1}\}.$

If $\bigcap \{E_{2n} : n \in \omega\} = \emptyset$, then the player ONE wins the play $(E_n : n \in \omega)$.

A finite sequence $(E_m : m \leq n)$ of subsets of X is admissible for $WG_{nc}(\mathbf{K}, X)$ ($WG_{nc}^*(\mathbf{K}, X)$) if the sequence $(E_0, E_1, \ldots, E_n, \emptyset, \ldots, \emptyset, \ldots)$ is a play of $WG_{nc}(\mathbf{K}, X)$ ($WG_{nc}^*(\mathbf{K}, X)$). A function s is a strategy for player ONE in $WG_{nc}(\mathbf{K}, X)$ ($WG_{nc}^*(\mathbf{K}, X)$) if the domain consists of admissible sequences (E_0, \ldots, E_n) with n even, such that $s(E_0, \ldots, E_n) = E_{n+1}$ and $(E_0, \ldots, E_n, E_{n+1})$ is admissible for $WG_{nc}(\mathbf{K}, X)$).

A strategy s is said to be winning for player ONE in $WG_{nc}(\mathbf{K}, X)$ $(WG_{nc}^*(\mathbf{K}, X))$, if player ONE wins each play of $WG_{nc}(\mathbf{K}, X)$ $(WG_{nc}^*(\mathbf{K}, X))$ by s. If there is a strategy s which is winning for player ONE in $WG_{nc}(\mathbf{K}, X)$ $(WG_{nc}^*(\mathbf{K}, X))$, then X is called a weak nc-K-like $(*nc-\mathbf{K}-like)$ space. If $\mathcal{B} = \mathcal{T}$ and X is weak nc-K-like with respect to \mathcal{B} , then X is a nc-K-like space.

Similar to [10, Theorem 1], we have:

Lemma 3. A space X is a nc-K-like space if and only if X is a weak nc-K-like space.

Lemma 4. A space X is a nc-K-like space if and only if X is a *nc-K-like space.

Proposition 5. If X is a T_1 -space, then $\{\{x\}\}$ is closed in $(\mathcal{C}(X), V^-)$ $((2^X, V^-))$ for each $x \in X$.

Proof. We just prove the case of $(\mathcal{C}(X), V^-)$. The proof of the case of $(2^X, V^-)$ is similar. Let $x \in X$ and let $C \in \mathcal{C}(X)$ such that $C \neq \{x\}$. Then there exists some $y \in C \setminus \{x\}$. Since X is a T_1 -space, the set $\{x\}$ is closed in X. So $V = X \setminus \{x\}$ is open in X. Since $y \in C \setminus \{x\}$, the point $y \in C \cap V$. Thus $C \in V^-$ and $V^- \cap \{\{x\}\} = \emptyset$. So $\{\{x\}\}$ is closed in $(\mathcal{C}(X), V^-)$.

If $X = \mathbb{R}$ with the usual topology, then $\{0\} \in \mathcal{C}(X)$ and $[-1,1] \in \mathcal{C}(X)$. Since every open neighborhood of [-1,1] in $(\mathcal{C}(X), V^+)$ contains $\{0\}$, the set $\{\{0\}\}$ is not closed in $(\mathcal{C}(X), V^+)$.

If A is a countable subset of a T_1 -space X, then $\{\{x\} : x \in A\}$ is a countable subset of $(2^X, V^-)$.

Theorem 6. Let (X, \mathcal{T}) be a T_1 -space and \mathbf{K} be a class of sets such that if $E \subset X$ is in \mathbf{K} , then the set $\{\{x\} : x \in E\} \subset 2^X$ is in \mathbf{K} . If X is a \mathbf{K} -like space, then the space $(2^X, V^-)$ $(\mathcal{C}(X), V^-)$ is nc- \mathbf{K} -like.

Proof. We just prove that $(2^X, V^-)$ is a *nc*-**K**-like space. The proof of the case of $(\mathcal{C}(X), V^-)$ is similar. Let \mathcal{B} be a base of $(2^X, V^-)$, which is generated by $\varphi = \{W^- : W \in \mathcal{T} \setminus \{\emptyset\}\}$. Since X is a T_1 -space, $\{x\} \in 2^X$ for each $x \in X$. For each $x \in X$, let $\mathcal{B}^*(\{x\}) = \{V^- : x \in V \text{ and } V \in \mathcal{T}\}$. It is obvious that $\mathcal{B}^*(\{x\})$ is a base of neighborhoods of the point $\{x\}$ in $(2^X, V^-)$ and $\mathcal{B}^*(\{x\}) \subset \mathcal{B}(\{x\}) = \{B \in \mathcal{B} : \{x\} \in B\}$ for each $x \in X$. To prove $(2^X, V^-)$ is a *nc*-**K**-like space, we just need to prove that $(2^X, V^-)$ is a **nc*-**K**-like space by Lemma 4.

Let s be a winning strategy for player ONE in $G(\mathbf{K}, X)$. Let $E_0 = X$ and let $A_0 = 2^X$. In what follows, we define a winning strategy for player ONE in $WG_{nc}^*(\mathbf{K}, 2^X)$.

Let $E_1 = s(E_0)$. Thus $E_1 \in \mathbf{K}$. So $\{\{x\} : x \in E_1\} \in \mathbf{K}$ and $\{\{x\} : x \in E_1\} \subset 2^X$. Define $t(A_0) = A_1 = \{\{x\} : x \in E_1\}$. For each $x \in E_1$, let V_x^- be any element of $\mathcal{B}^*(\{x\})$. If $A_2 = 2^X \setminus \bigcup\{V_x^- : x \in E_1\}$, then A_2 is closed in 2^X . If $y \in X \setminus \bigcup\{V_x : x \in E_1\}$, then $\{y\} \in A_2$. If $E_2 = X \setminus \bigcup\{V_x : x \in E_1\}$, then E_2 is closed in X. So (E_0, E_1, E_2) is admissiable for G(K, X) and (A_0, A_1, A_2) is admissiable for $WG_{nc}^*(\mathbf{K}, 2^X)$.

Let $n \in \omega$ $(n \geq 1)$. Assume that we have an admissible sequence (E_0, \dots, E_{2n}) for $G(\mathbf{K}, X)$ and an admissible sequence (A_0, \dots, A_{2n}) for $WG_{nc}^*(\mathbf{K}, 2^X)$ with the following properties for each k < n:

- (1) $E_{2k+1} = s(E_0, \dots, E_{2k});$
- (2) $A_{2k+1} = t(A_0, \dots, A_{2k}) = \{\{x\} : x \in E_{2k+1}\};$
- (3) For each $x \in E_{2k+1}, V_x^- \in \mathcal{B}^*(\{x\})$ and $A_{2k+2} = A_{2k} \setminus \bigcup \{V_x^- : x \in E_{2k+1}\};$
- (4) $E_{2k+2} = E_{2k} \setminus \bigcup \{ V_x : x \in E_{2k+1} \};$
- (5) If $x \in E_{2k+2}$, then $\{x\} \in A_{2k+2}$.

If $E_{2n+1} = s(E_0, \ldots, E_{2n})$, then $E_{2n+1} \in \mathbf{K}$ and $\{\{x\} : x \in E_{2n+1}\} \in \mathbf{K}$. Since $E_{2n+1} \subset E_{2n}$, the set $\{\{x\} : x \in E_{2n+1}\} \subset A_{2n}$ by (5). If $A_{2n+1} = t(A_0, \ldots, A_{2n}) = \{\{x\} : x \in E_{2n+1}\}$, then $A_{2n+1} \in \mathbf{K}$ and $A_{2n+1} \subset A_{2n}$. For each $x \in E_{2n+1}$, let V_x^- be any element of $\mathcal{B}^*(\{x\})$. Thus $x \in V_x$ and V_x is open in X for each $x \in E_{2n+1}$. If $E_{2n+2} = E_{2n} \setminus (\bigcup\{V_x : x \in E_{2n+1}\})$, then A_{2n+2} is closed in X. If $A_{2n+2} = A_{2n} \setminus \bigcup\{V_x^- : x \in E_{2n+1}\}$, then A_{2n+2} is a closed subset of 2^X such that $A_{2n+2} \subset A_{2n}$ and $A_{2n+2} \cap A_{2n+1} = \emptyset$. Thus (A_0, \ldots, A_{2n}) is admissiable for $WG_{nc}^*(\mathbf{K}, 2^X)$ and (E_0, \ldots, E_{2n}) is admissiable for $G(\mathbf{K}, X)$.

If $y \in E_{2n+2}$, then $y \in E_{2n}$. Thus $\{y\} \in A_{2n}$. Since $y \in E_{2n+2}$, the point $y \notin V_x$ for each $x \in E_{2n+1}$. Thus $\{y\} \in A_{2n} \setminus \bigcup \{V_x^- : x \in E_{2n+1}\} = A_{2n+2}$.

So we get a play $(E_0, \ldots, E_{2n}, E_{2n+1}, \ldots)$ of $G(\mathbf{K}, X)$ and a play $(A_0, \ldots, A_{2n}, A_{2n+1}, \ldots)$ of $WG_{nc}^*(\mathbf{K}, 2^X)$ with the following properties:

- (1) $E_{2n+1} = s(E_0, \ldots, E_{2n});$
- (2) $A_{2n+1} = t(A_0, \dots, A_{2n}) = \{\{x\} : x \in E_{2n+1}\};$
- (3) $V_x^- \in \mathcal{B}^*(\{x\})$ for each $x \in E_{2n+1}$;
- (4) $E_{2n+2} = E_{2n} \setminus \bigcup \{ V_x : x \in E_{2n+1} \};$
- (5) $A_{2n+2} = A_{2n} \setminus \bigcup \{ V_x^- : x \in E_{2n+1} \};$
- (6) If $x \in E_{2n}$, then $\{x\} \in A_{2n}$.

Since s is a winning strategy for player ONE in $G(\mathbf{K}, X)$, the set $\bigcap_{n \in \omega} E_{2n} = \emptyset$. So $X = \bigcup \{\bigcup \{V_x : x \in E_{2n+1}\} : n \in \omega\}$. For any $E \in 2^X$, there exists some $n \in \omega$ such that $E \cap (\bigcup \{V_x : x \in E_{2n+1}\}) \neq \emptyset$. Thus $E \in V_x^-$ for some $x \in E_{2n+1}$. So $\bigcap_{n \in \omega} A_{2n} = \emptyset$. Thus t is a winning strategy for player ONE in $WG_{nc}^*(\mathbf{K}, 2^X)$, Thus $(2^X, V^-)$ is a *nc-**K**-like space. So X is a nc-**K**-like space by Lemma 4.

Similar to Theorem 6, we have the following Theorems 7 and 8:

Theorem 7. Let (X, \mathcal{T}) be a T_1 -space and \mathbf{K} be a class of sets such that if $E \subset X$ is in \mathbf{K} then $\{\{x\} : x \in E\} \subset 2^X$ is in \mathbf{K} and closed in $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$. If X is a \mathbf{K} -like space, then the space $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is \mathbf{K} -like.

Theorem 8. Let (X, \mathcal{T}) be a T_1 -space and \mathbf{K} be a class of sets such that if $E \subset X$ is in \mathbf{K} , then $\{\{x\} : x \in E\} \subset 2^X$ is in \mathbf{K} . If X is a nc- \mathbf{K} -like space, then the space $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is nc- \mathbf{K} -like.

Then by Proposition 5 and Theorem 7, we have:

Corollary 9. If X is a 1-like T_1 -space, then the hyperspace $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a 1-like space.

By Theorem 8, we have:

Corollary 10. If (X, \mathcal{T}) is a nc-W-like T_1 space, then the hyperspace $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a nc-W-like space.

It is obvious that $(2^X, V^+)$ is a **1**-like space for any space X. Proposition 31 in this article shows that there exists a **1**-like Hausdorff space X such that $(\mathcal{C}(X), V^+)$ is not a *nc*-**1**-like space.

Lemma 11. Let X be a T_1 -space. Then $D \subset X$ is a closed discrete subspace of X if and only if $D^* = \{\{d\} : d \in D\}$ is a closed discrete subspace of $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$.

Proof. We just prove the case $(2^X, V^-)$, the proof of the other case is similar.

Assume that $D \subset X$ is a closed discrete subspace of X. Since X is a T_1 -space, the set $D^* = \{\{d\} : d \in D\} \subset 2^X$. To show that D^* is closed discrete in $(2^X, V^-)$, it is sufficient to show that any subset \mathcal{F} of D^* is closed in $(2^X, V^-)$. Let \mathcal{F} be any subset of D^* . Then $\mathcal{F} = \{\{d\} : d \in F\}$ for some subset F of D. If |F| = 1, then $F = \{p\}$ for some $p \in D$. Thus $\mathcal{F} = \{\{p\}\}$ and \mathcal{F} is closed in $(2^X, V^-)$ by Proposition 5. In what follows, we assume that |F| > 1. Let A be any point of $2^X \setminus \mathcal{F}$. Then A is a nonempty closed subset of X.

Case 1. $A \not\subset F$. Let $a \in A \setminus F$. Since $F \subset D$ and D is a closed discrete subspace of X, the set F is closed in X. If $O_a = X \setminus F$, then O_a is an open neighborhood of a in X. Thus O_a^- is an open neighborhood of the point A in $(2^X, V^-)$ such that $O_a^- \cap \mathcal{F} = \emptyset$.

Case 2. Now we assume that $A \subset F$. Since $A \notin \mathcal{F}$ and $A \subset F$, we know that $|A| \geq 2$. Let x, y be any distinct points of A. If $O_x = X \setminus (F \setminus \{x\})$ and $O_y = X \setminus (F \setminus \{y\})$, then O_x and O_y are open neighborhoods of xand y in X, respectively. Thus $O_A = O_x^- \cap O_y^-$ is an open neighborhood of the point A in $(2^X, V^-)$. Since $O_x \cap F = \{x\}$ and $O_y \cap F = \{y\}$, the set $O_A \cap \mathcal{F} = \emptyset$. Thus \mathcal{F} is closed in $(2^X, V^-)$.

So D^* is a closed discrete subspace of $(2^X, V^-)$.

Now we prove the sufficiency. Assume that $D^* = \{\{d\} : d \in D\}$ is closed discrete in $(2^X, V^-)$. Let F be any subset of D and let x be any point of $X \setminus F$. Since $\{\{y\} : y \in F\}$ is closed discrete in $(2^X, V^-)$ and $\{x\} \notin \{\{y\} : y \in F\}$, there exists an open neighborhood V_x of x in Xsuch that $V_x^- \cap \{\{y\} : y \in F\} = \emptyset$. So $V_x \cap F = \emptyset$. Thus F is closed in X. So D is closed discrete in X.

Let **D1** be the class of discrete spaces. By Theorem 7 and Lemma 11, we have;

Corollary 12. If X is a D1-like T_1 -space, then $(2^X, V^-)$ $(\mathcal{C}(X), V^-)$ is a D1-like space.

Proposition 13. Let X be a T_1 -space. If $i: X \to 2^X$ is a mapping such that $i(x) = \{x\}$ for each $x \in X$ and the topology of 2^X is V^- , then the mapping i is an embedding.

Proposition 14. Let X be a T_1 -space. If $i: X \to 2^X$ is a mapping such that $i(x) = \{x\}$ for each $x \in X$ and the topology of 2^X is V^+ , then the mapping i is an embedding and i(X) is dense in 2^X .

Proposition 15. If X is a Hausdorff space, then X is homeomorphic to a closed subspace of $(2^X, V^-)$.

Proof. Let $i: X \to (2^X, V^-)$ be a mapping such that $i(x) = \{x\}$ for each $x \in X$. Then X is homeomorphic to i(X) by Proposition 13. In what

follows we show that $i(X) = \{\{x\} : x \in X\}$ is closed in $(2^X, V^-)$ if X is a Hausdorff space. Let $E \in 2^X \setminus i(X)$. Then $|E| \ge 2$. Let $p, q \in E$ and $p \ne q$. Since X is a Hausdorff space, there are disjoint open subsets U, V of X such that $p \in U$ and $q \in V$. If $\mathcal{U} = U^- \cap V^-$, then \mathcal{U} is an open neighborhood of E in $(2^X, V^-)$ such that $\mathcal{U} \cap i(X) = \emptyset$. Thus i(X)is closed in $(2^X, V^-)$.

Corollary 16. Let \mathcal{P} be a topological property which is hereditary with respect to closed subsets. If X is a Hausdorff topological space such that $(2^X, V^-)$ has property \mathcal{P} , then X has property \mathcal{P} .

In [11, Lemma 21], it is proved that if α is an ordinal then $\alpha + 1$ with the order topology is a **1**-like space. Thus $\omega_1 + 1$ is a **1**-like space. If $X = \{\alpha : \alpha < \omega_1\}$, then X is a subspace of $\omega_1 + 1$. Since X is not a Lindelöf space, X is not **1**-like. This shows that a subspace of a **1**-like space cannot be **1**-like. To study **K**-like properties of a space X by its hyperspace 2^X , we firstly study separation axioms of hyperspaces.

Proposition 17. If (X, \mathcal{T}) is a T_1 -space, then $(2^X, V^+)$ and $(\mathcal{C}(X), V^+)$ are T_0 -spaces.

Proof. We just prove that $(2^X, V^+)$ is a T_0 -space. The proof of the other case is similar. Let A and B be any distinct points of $(2^X, V^+)$. Then $A \neq B$ and A, B are closed subsets of X. Thus there is some point $x \in A \setminus B$ or there is some point $y \in B \setminus A$. If there is some point $x \in A \setminus B$, then let $U_B = X \setminus \{x\}$. Thus $B \in U_B^+$ and U_B^+ is open in $(2^X, V^+)$ such that $A \notin U_B^+$. If there is some point $y \in B \setminus A$. Then let $U_A = X \setminus \{y\}$. Thus U_A^+ is an open neighborhood of A in $(2^X, V^+)$ and $B \notin U_A^+$. Thus $(2^X, V^+)$ is a T_0 -space. \Box

Proposition 18. If (X, \mathcal{T}) is a topological space, then $(2^X, V^-)$ and $(\mathcal{C}(X), V^-)$ are T_0 -spaces.

Proof. If $A, B \in 2^X$ and $A \neq B$, then $A \setminus B \neq \emptyset$ or $B \setminus A \neq \emptyset$. If $A \setminus B \neq \emptyset$, then $U = X \setminus B$ is an open subset of X and $U \cap A \neq \emptyset$. Thus $A \in U^$ and $B \notin U^-$. If $B \setminus A \neq \emptyset$, then $V = X \setminus A$ is open in X and $V \cap B \neq \emptyset$. Thus $B \in V^-$ and $A \notin V^-$. So $(2^X, V^-)$ is a T_0 -space. Similarly, we can show that $(\mathcal{C}(X), V^-)$ is a T_0 -space.

The spaces $(2^X, V^+)$ and $(\mathcal{C}(X), V^+)$ are not T_1 -spaces. The reason is that if $A, B \in 2^X$ $(\mathcal{C}(X))$ and $A \subset B$ with $A \neq B$ then every open set U in $(2^X, V^+)$ $((\mathcal{C}(X), V^+))$ which contains B must contain A. Similarly, the spaces $(2^X, V^-)$ and $(\mathcal{C}(X), V^-)$ are not T_1 -spaces.

Theorem 19. Let (X, \mathcal{T}) be a T_1 -space. If $(\mathcal{C}(X), V^+)$ is a nc-1-like space, then X is a C-like space.

Proof. Since $(\mathcal{C}(X), V^+)$ is a *nc*-1-like space, let *s* be a winning strategy for player ONE in $G_{nc}(\mathbf{1}, \mathcal{C}(X))$. Let $E_0 = \mathcal{C}(X)$ and let $A_0 = X$. In what follows we define a winning strategy *t* for player ONE in $G(\mathbf{C}, X)$. Let $E_1 = s(E_0) = \{B_1\}$, where $B_1 \in \mathcal{C}(X)$. Thus B_1 is a compact closed subset of *X*. Define $t(A_0) = A_1 = B_1$. Let A_2 be any closed subset of *X* such that $A_2 \cap A_1 = \emptyset$. Let $E_2 = \mathcal{C}(X) \setminus (X \setminus A_2)^+$, Then (E_0, E_1, E_2) is admissible for $G_{nc}(\mathbf{1}, \mathcal{C}(X))$ and (A_0, A_1, A_2) is admissible for $G(\mathbf{C}, X)$.

Let $n \in \mathbb{N}$. Assume that we have an admissible sequence (A_0, \dots, A_{2n}) for $G(\mathbf{C}, X)$ and an admissible sequence (E_0, \dots, E_{2n}) for $G_{nc}(\mathbf{1}, \mathcal{C}(X))$ with the following properties for each k < n:

- (1) $E_{2k+1} = s(E_0, \dots, E_{2k}) = \{B_{2k+1}\}, \text{ where } B_{2k+1} \in \mathcal{C}(X);$
- (2) $A_{2k+1} = t(A_0, \cdots, A_{2k}) = B_{2k+1} \cap A_{2k} \neq \emptyset;$
- (3) $U_{2k+1} = X \setminus A_{2k+2};$
- (4) $B_{2k+1} \in U_{2k+1}^+;$
- (5) $E_{2k+2} = E_{2k} \setminus U_{2k+1}^+$.

Let $E_{2n+1} = s(E_0, \dots, E_{2n}) = \{B_{2n+1}\}$, where $B_{2n+1} \in \mathcal{C}(X)$. So $E_{2n+1} \subset E_{2n}$ and hence $B_{2n+1} \in E_{2n}$. Since $E_{2n} = E_{2n-2} \setminus U_{2n-1}^+ = E_{2n-2} \setminus (X \setminus A_{2n})^+$, the point $B_{2n+1} \notin (X \setminus A_{2n})^+$. So the set $B_{2n+1} \notin X \setminus A_{2n}$. Thus $B_{2n+1} \cap A_{2n} \neq \emptyset$. Since A_{2n} is closed in X and B_{2n+1} is a closed compact subset of X, the set $B_{2n+1} \cap A_{2n}$ is a closed compact subset of X. Define $A_{2n+1} = B_{2n+1} \cap A_{2n} = t(A_0, \dots, A_{2n})$. Let A_{2n+2} be any closed subset of X such that $A_{2n+2} \subset A_{2n}$ and $A_{2n+2} \cap A_{2n+1} = \emptyset$. Then $(A_0, \dots, A_{2n}, A_{2n+1}, A_{2n+2})$ is admissible for $G(\mathbf{C}, X)$. Let $U_{2n+1} = X \setminus A_{2n+2}$. Thus U_{2n+1} is an open subset of X such that $A_{2n+2} \subset E_{2n}$ and $E_{2n+2} \cap U_{2n+1}^+$, then E_{2n+2} is closed in $\mathcal{C}(X)$ such that $E_{2n+2} \subset E_{2n}$ and $E_{2n+2} \cap E_{2n+1} = \emptyset$. Thus $(E_0, \dots, E_{2n}, E_{2n+1}, E_{2n+2})$ is admissible for $G_{nc}(\mathbf{1}, \mathcal{C}(X))$.

So we get a play $(E_0, \dots, E_{2n}, E_{2n+1}, \dots)$ of $G_{nc}(\mathbf{1}, \mathcal{C}(X))$ and a play $(A_0, \dots, A_{2n}, A_{2n+1}, \dots)$ of $G(\mathbf{C}, X)$ with the following properties for each $n \in \omega$:

- (1) $E_{2n+1} = s(E_0, \dots, E_{2n}) = \{B_{2n+1}\}, \text{ where } B_{2n+1} \in \mathcal{C}(X);$
- (2) $A_{2n+1} = t(A_0, \cdots, A_{2n}) = B_{2n+1} \cap A_{2n} \neq \emptyset;$
- (3) $U_{2n+1} = X \setminus A_{2n+2};$
- (4) $B_{2n+1} \in U_{2n+1}^+;$
- (5) $E_{2n+2} = E_{2n} \setminus U_{2n+1}^+$.

Since s is a winning strategy for player ONE in $G_{nc}(\mathbf{1}, \mathcal{C}(X))$. The set $\bigcap_{n \in \omega} E_{2n} = \emptyset$. For any $x \in X$, the set $\{x\}$ is closed in X following T_1 -property of X. Thus $\{x\} \in \mathcal{C}(X)$. Let $m = \min\{n \in \omega : \{x\} \notin E_{2n}\}$. Thus $m \in \mathbb{N}$ and $\{x\} \in E_{2m-2} \setminus E_{2m}$. Since $E_{2m} = E_{2m-2} \setminus U_{2m-1}^+$, the point $\{x\} \in U_{2m-1}^+$. Thus $x \in U_{2m-1}$. So $x \notin X \setminus U_{2m-1} = A_{2m}$. Thus $\bigcap \{A_{2n} : n \in \omega\} = \emptyset$. So t is a winning strategy for player ONE in $G(\mathbf{C}, X)$. Thus X is a **C**-like space.

Theorem 20. Let X be a T_1 -space. If $(\mathcal{C}(X), V^-)$ is a nc-1-like space, then X is a **C**-like space.

Proof. Since $(\mathcal{C}(X), V^-)$ is a *nc*-1-like space, let *s* be a winning strategy for player ONE in $G_{nc}(1, \mathcal{C}(X))$. In what follows, we define a winning strategy *t* for player ONE in $G(\mathbf{C}, X)$. Let $E_0 = \mathcal{C}(X)$ and let $A_0 = X$. Let $E_1 = s(E_0) = \{B_1\}$ for some $B_1 \in \mathcal{C}(X)$. Thus B_1 is a closed compact subset of *X*. Define $t(A_0) = A_1 = B_1$. Let A_2 be any closed subset of *X* such that $A_2 \cap A_1 = \emptyset$. If $V_1 = X \setminus A_2$, then V_1 is an open subset of *X* such that $A_1 \subset V_1$. Since $A_1 = B_1, B_1 \in V_1^-$. If $E_2 = \mathcal{C}(X) \setminus V_1^-$, then E_2 is a closed subset of $\mathcal{C}(X)$ and $E_2 \cap E_1 = \emptyset$. Thus (A_0, A_1, A_2) is admissible for $G(\mathbf{C}, X)$ and (E_0, E_1, E_2) is admissible for $G_{nc}(1, \mathcal{C}(X))$.

Let $n \in \mathbb{N}$. Assume that we have an admissible sequence (E_0, \dots, E_{2n}) in $G_{nc}(\mathbf{1}, \mathcal{C}(X))$ and an admissible sequence (A_0, \dots, A_{2n}) in $G(\mathbf{C}, X)$ with the following properties for each k < n:

- (1) $E_{2k+1} = s(E_0, \dots, E_{2k}) = \{B_{2k+1}\}, \text{ where } B_{2k+1} \in \mathcal{C}(X);$
- (2) $A_{2k+1} = t(A_0, \cdots, A_{2k}) = B_{2k+1};$
- (3) $V_{2k+1} = X \setminus A_{2k+2};$
- (4) $E_{2k+2} = E_{2k} \setminus V_{2k+1}^-;$
- (5) If $C \in E_{2k+2}$, then $C \subset A_{2k+2}$.

Let $E_{2n+1} = s(E_0, \dots, E_{2n}) = \{B_{2n+1}\}$. Thus B_{2n+1} is a closed compact subset of X and $B_{2n+1} \in E_{2n}$. Thus $B_{2n+1} \subset A_{2n}$. Define $A_{2n+1} = t(A_0, \dots, A_{2n}) = B_{2n+1}$. Let A_{2n+2} be any closed subset of X such that $A_{2n+2} \subset A_{2n}$ and $A_{2n+2} \cap A_{2n+1} = \emptyset$. Let $V_{2n+1} =$ $X \setminus A_{2n+2}$. Thus $A_{2n+1} \subset V_{2n+1}$. Since $B_{2n+1} = A_{2n+1}, B_{2n+1} \in V_{2n+1}^-$. If $E_{2n+2} = E_{2n} \setminus V_{2n+1}^-$, then $E_{2n+2} \subset E_{2n}$ is a closed subset of $\mathcal{C}(X)$ such that $E_{2n+2} \cap E_{2n+1} = \emptyset$. Thus $(E_0, \dots, E_{2n+1}, E_{2n+2})$ is admissible for $G_{nc}(\mathbf{1}, C(X))$ and $(A_0, \dots, A_{2n+1}, A_{2n+2})$ is admissible for $G(\mathbf{C}, X)$ and has the following property: If $C \in E_{2n+2}$, then $C \cap V_{2n+1} = \emptyset$ and $C \subset A_{2n+2}$.

So we get a play $(E_0, \dots, E_{2n}, E_{2n+1}, \dots)$ of $G_{nc}(\mathbf{1}, \mathcal{C}(X))$ and a play $(A_0, \dots, A_{2n}, A_{2n+1}, \dots)$ of $G(\mathbf{C}, X)$ with the following properties for each $n \in \omega$:

- (1) $E_{2n+1} = s(E_0, \dots, E_{2n}) = \{B_{2n+1}\}, \text{ where } B_{2n+1} \in \mathcal{C}(X);$
- (2) $A_{2n+1} = t(A_0, \cdots, A_{2n}) = B_{2n+1};$
- (3) $V_{2n+1} = X \setminus A_{2n+2};$
- (4) $E_{2n+2} = E_{2n} \setminus V_{2n+1}^-;$
- (5) If $C \in E_{2n+2}$, then $C \subset A_{2n+2}$.

Since s is a winning strategy for player ONE in $G_{nc}(\mathbf{1}, \mathcal{C}(X))$, the set $\bigcap_{n \in \mathbb{N}} E_{2n} = \emptyset$. Let x be any element of X and let $n_x = \min\{m \in \omega : \{x\} \notin E_{2m}\}$. Thus $n_x > 0$. So $\{x\} \in E_{2(n_x-1)} \setminus E_{2n_x}$.

Since $E_{2n_x} = E_{2(n_x-1)} \setminus V_{2n_x-1}^-$, the point $\{x\} \in V_{2n_x-1}^-$. Thus $x \in V_{2n_x-1}$. Since $V_{2n_x-1} = X \setminus A_{2n_x}$, the point $x \notin A_{2n_x}$. Thus $\bigcap_{n \in \omega} A_{2n} = \emptyset$. So the strategy t is a winning strategy for player ONE in $G(\mathbf{C}, X)$. Thus X is a **C**-like space.

In what follows, we study the *nc*-1-like property of the hyperspace $(\mathcal{C}(X), V^+)$ of a **C**-like space X.

Recall that a space X is *hemicompact* if in the family of all compact subsets of X ordered by \subset there exists a countable cofinal subfamily.

Theorem 21. If X is hemicompact Hausdorff space, then $(\mathcal{C}(X), V^+)$ is a nc-1-like space.

Proof. By Lemma 3, we just need to prove that $(\mathcal{C}(X), V^+)$ is a weak *nc*-**1**-like space with respect to a base $\mathcal{B} = \{U^+ : U \text{ is open in } X\}$ of $(\mathcal{C}(X), V^+)$.

Since X is Hausdorff, $\mathcal{C}(X)$ is the family of all nonempty compact subsets of X. Since X is hemicompact, there exists a countable subfamily $\mathcal{A} = \{A_n : n \in \omega\}$ of $\mathcal{C}(X)$ such that for each $C \in \mathcal{C}(X)$ there exists some $m \in \omega$ such that $C \subset A_m$, we can assume that $A_n \subset A_{n+1}$ for each $n \in \omega$.

We define a winning strategy s for player ONE in $WG_{nc}(\mathbf{1}, \mathcal{C}(X))$. Let $E_0 = \mathcal{C}(X)$ and let $E_1 = s(E_0) = \{A_0\}$ and let $m_1 = 0$. Let V_1 be any open subset of X such that $A_0 \subset V_1$. Thus $A_{m_1} \in V_1^+$ and $V_1^+ \in \mathcal{B}$. If $E_2 = E_0 \setminus V_1^+$, then E_2 is a closed subset of $\mathcal{C}(X)$ and $E_2 \cap E_1 = \emptyset$. Let $m_3 = \min\{n \in \omega : A_n \not\subset V_1\}$. Thus $A_{m_3} \not\in V_1^+$.

Let $n \in \omega$. Assume that we have an admissible sequence $(E_0, E_1, \dots, E_{2n})$ for $WG_{nc}(\mathbf{1}, \mathcal{C}(X))$ with the following properties for each k < n:

- (1) $m_{2k+1} = \min\{n \in \omega : A_n \not\subset V_{2k-1}\};$
- (2) $E_{2k+1} = s(E_0, \cdots, E_{2n}) = \{A_{m_{2k+1}}\};$
- (3) V_{2k+1} is any open subset of X such that $E_{2k+1} \subset V_{2k+1}^+$;
- (4) $E_{2k+2} = E_{2k} \setminus V_{2k+1}^+;$
- (5) If i < j < n, then $m_{2i+1} < m_{2j+1}$.

Thus $E_{2n-1} = \{A_{m_{2n-1}}\}$ and $A_{m_{2n-1}} \subset V_{2n-1}$.

Let $m_{2n+1} = \min\{k \in \omega : A_k \notin V_{2n-1}\}$. Thus $A_{m_{2n+1}} \notin V_{2n-1}^+$ and $m_{2n+1} > m_{2n-1}$. So if k < n then $m_{2k+1} < m_{2n+1}$. Thus $A_{m_{2n+1}} \notin V_{2k+1}$ for each k < n. Thus $A_{m_{2n+1}} \in E_{2k+2}$ for each k < n. So $A_{m_{2n+1}} \notin V_{2k+1}^+$ for each k < n. Thus $A_{m_{2n+1}} \in E_{2n} \setminus V_{2n-1}^+$. Define $s(E_0, \dots, E_{2n}) = E_{2n+1} = \{A_{m_{2n+1}}\}$. Let V_{2n+1} be any open subset of X such that $A_{m_{2n+1}} \in V_{2n+1}^+$. Thus $E_{2n+2} = E_{2n} \setminus V_{2n+1}^+$ is a closed subset of $(\mathcal{C}(X), V^+)$ such that $E_{2n+2} \subset E_{2n}$ and $E_{2n+2} \cap E_{2n+1} = \emptyset$. So $(E_0, E_1, \dots, E_{2n}, E_{2n+1}, E_{2n+2})$ is admissible for $WG_{nc}(\mathbf{1}, \mathcal{C}(X))$. In this way, we get a play $(E_0, \dots, E_{2n}, E_{2n+1}, \dots)$ of $WG_{nc}(\mathbf{1}, \mathcal{C}(X))$ with the following properties for each $n \in \omega$:

- (1) $E_{2n+1} = s(E_0, \cdots, E_{2n}) = \{A_{m_{2n+1}}\};$
- (2) V_{2n+1} is any open subset of X such that $E_{2n+1} \subset V_{2n+1}^+$;
- (3) $E_{2n+2} = E_{2n} \setminus V_{2n+1}^+;$
- (4) $m_{2n+1} = \min\{k \in \omega : A_k \not\subset V_{2n-1}\};$
- (5) If i < j, then $m_{2i+1} < m_{2j+1}$.

Thus $\{m_{2n+1} : n \in \omega\}$ is a strict increasing sequence of \mathbb{N} . Thus $\{A_{m_{2n+1}} : n \in \omega\}$ is an increasing sequence of \mathcal{A} . So for any $C \in \mathcal{C}(X)$ there exists some $n \in \omega$ such that $C \subset A_{m_{2n+1}}$. Since $A_{m_{2n+1}} \subset V_{2n+1}$, the set $C \subset V_{2n+1}$. So $C \in V_{2n+1}^+$. Thus $\mathcal{C}(X) = \bigcup \{V_{2n+1}^+ : n \in \omega\}$. Since $E_{2n+2} = E_{2n} \setminus V_{2n+1}^+$ for each $n \in \omega$, the set $\bigcap_{n \in \omega} E_{2n} = \emptyset$. Thus s is a winning strategy for player ONE in $WG_{nc}(\mathbf{1}, \mathcal{C}(X))$. So $(\mathcal{C}(X), V^+)$ is a weak nc-1-like space. So $(\mathcal{C}(X), V^+)$ is a nc-1-like space by Lemma 3.

Since a **C**-like space is Lindelöf and every Lindelöf locally compact Hausdorff space is hemicompact, we have:

Corollary 22. If X is a C-like locally compact Hausdorff space, then $(\mathcal{C}(X), V^+)$ is a nc-1-like space.

Let $n \in \mathbb{N}$ and let \mathbb{R} be the set of reals with usual topology. By Theorem 21, we know that $(\mathcal{C}(\mathbb{R}^n), V^+)$ is a *nc*-1-like space.

In what follows, we study the following questions:

Suppose that X is a σ -compact T_1 -space. Is $(\mathcal{C}(X), V^+)$ is a *nc*-1-like space?

Suppose that X is a T_1 C-like space. Is $(\mathcal{C}(X), V^+)$ $((\mathcal{C}(X), V^-)$ a *nc*-1-like space?

The following example shows that the converse of Theorem 20 does not hold.

Example 23. Let X = [0,3] be a space with the standary topology. Then X is C-like, but $(\mathcal{C}(X), V^{-})$ is not *nc*-1-like.

Proof. Since X is compact, it is obvious that X is C-like. Suppose that $(\mathcal{C}(X), V^-)$ is a *nc*-1-like. Then let s be a winning strategy for player ONE in $G_{nc}(\mathbf{1}, \mathcal{C}(X))$. Let $E_0 = \mathcal{C}(X)$ and $E_1 = s(E_0)$. So $E_1 = \{B_1\}$ for some compact subset B_1 of X. Let $x_1 \in B_1$ and let $V_1 = \{y \in X : |y - x_1| < \frac{1}{2}\}$. Then V_1 is an open subset of X and $B_1 \in V_1^-$. Thus $E_2 = \mathcal{C}(X) \setminus V_1^-$ is closed in $\mathcal{C}(X)$ and (E_0, E_1, E_2) is

an admissiable sequence in $G_{nc}(\mathbf{1}, \mathcal{C}(X))$. Let $n \in \omega$. Assume that we have an admissiable sequence $(E_0, E_1, \ldots, E_{2n})$ of $G_{nc}(\mathbf{1}, \mathcal{C}(X))$ with the following properties for each k < n:

- (1) $E_{2k+1} = s(E_0, \ldots, E_{2k});$
- (2) $E_{2k+1} = \{B_{2k+1}\}$ for some compact subset B_{2k+1} of X;
- (3) $x_{2k+1} \in B_{2k+1}$ and $V_{2k+1} = \{y \in X : |y x_{2k+1}| < \frac{1}{2^{2k+1}}\};$
- (4) $E_{2k+2} = E_{2k} \setminus V_{2k+1}^{-}$.

Let $E_{2n+1} = s(E_0, \ldots, E_{2n})$. Then there exists some compact subset B_{2n+1} of X such that $E_{2n+1} = \{B_{2n+1}\}$. Let x_{2n+1} be any point of B_{2n+1} and let $V_{2n+1} = \{y \in X : |y - x_{2n+1}| < \frac{1}{2^{2n+1}}\}$. Thus $B_{2n+1} \in V_{2n+1}^-$. Denote $E_{2n+2} = E_{2n} \setminus V_{2n+1}^-$.

So we can get a play $(E_0, \ldots, E_{2n}, E_{2n+1}, \ldots)$ such that $E_{2n+1} = s(E_0, \ldots, E_{2n})$ and $E_{2n+2} = E_{2n} \setminus V_{2n+1}^-$, where $E_{2n+1} = \{B_{2n+1}\}$ for some compact subset B_{2n+1} of X, a point $x_{2n+1} \in B_{2n+1}$ and $V_{2n+1} = \{y \in X : |y - x_{2n+1}| < \frac{1}{2^{2n+1}}\}$. Since s is a winning strategy for player ONE in $G_{nc}(\mathbf{1}, \mathcal{C}(X))$. The set $\bigcap_{n \in \omega} E_{2n} = \emptyset$. But $\bigcup \{V_{2n+1} : n \in \omega\} \neq X$. If $a \in X \setminus \bigcup \{V_{2n+1} : n \in \omega\}$, then $\{a\} \in \mathcal{C}(X)$ and $\{a\} \in \mathcal{C}(X) \setminus \bigcup \{V_{2n+1}^- : n \in \omega\}$.

 $n \in \omega \} = \bigcap_{n \in \omega} E_{2n}. \text{ This contradicts that } \bigcap_{n \in \omega} E_{2n} = \emptyset. \text{ Thus } (\mathcal{C}(X), V^-)$ is not a *nc*-1-like space. \Box

The following example shows that there exists a T_1 C-like space X such that player ONE has a winning strategy s and there exists a sequence $\{V_{2n+1} : n \in \omega\}$ of open subsets of X with the following properties:

- (1) $E_1 = s(E_0) \subset V_1$, where $E_0 = X$;
- (2) $E_{2n} = X \setminus \bigcup \{ V_{2k+1} : k < n \}$ for each $n \in \mathbb{N}$;
- (3) $E_{2n+1} = s(E_0, E_1, \dots, E_{2n}) \subset V_{2n+1}$ for each $n \in \omega$;
- (4) $X = \bigcup \{ V_{2n+1} : n \in \omega \};$
- (5) $\mathcal{C}(X) \neq \bigcup \{ V_{2n+1}^+ : n \in \omega \}.$

Example 24. Let $X = \mathbb{Q}$ be the set of rational numbers with the standard topology. The space X has the above properties.

Proof. Assume $X = \{q_n : n \in \mathbb{N}\}$. Let $E_0 = X$, $s(E_0) = \{q_1\} = E_1$. Denote $n_1 = 1$ and $V_1 = \{x \in X : |x - q_1| < 1\}$. Let $E_2 = X \setminus V_1$ and let $n_3 = \min\{l \in \mathbb{N} : q_l \in E_2\}$. Denote $s(E_0, E_1, E_2) = \{q_{n_3}\}$ and let $V_3 = \{x \in X : |x - q_{n_3}| < \frac{1}{3}\}$. Let $n \in \mathbb{N}$ and assume that we have a finite sequence $\{E_i : i \leq 2n\}$ of closed subsets of X with the following properties for each k < n:

- (1) $E_0 = X, E_1 = s(E_0) = \{q_1\};$
- (2) $E_{2k+1} = s(E_0, \dots, E_{2n}) = \{q_{m_{2k+1}}\};$
- (3) $V_{2k+1} = \{x \in X : |x q_{m_{2k+1}}| < \frac{1}{2k+1}\};$

(4) $E_{2k+2} = E_{2k} \setminus V_{2k+1};$

(5) $m_{2k+1} = \min\{l \in \mathbb{N} : q_l \in E_{2k}\}$

Let $m_{2n+1} = \min\{l \in \mathbb{N} : q_l \in E_{2n}\}$ and let $s(E_0, \dots, E_{2n}) = E_{2n+1} = \{q_{m_{2n+1}}\}, V_{2n+1} = \{x \in X : |x - q_{m_{2n+1}}| < \frac{1}{2n+1}\}$. Thus we have a play $(E_0, \dots, E_{2n}, E_{2n+1}, \dots)$ of $G(\mathbf{1}, X)$. We know that $\bigcap_{n \in \omega} E_{2n} = \emptyset$. Thus s

is a winning strategy for player ONE in $G(\mathbf{1}, X)$. So $X = \bigcup \{V_{2n+1} : n \in \omega\}$. If $A = \{a_n : n \in \omega\}$, where $a_0 = 5$, $a_1 = 100$, $a_n = 5 - \frac{1}{n}$ for each $n \geq 2$. Thus $A \in \mathcal{C}(X)$. But $A \notin V_{2n+1}^+$ for each $n \in \omega$.

Now we study the question that whether $(\mathcal{C}(\mathbb{Q}), V^+)$ a *nc*-1-like space.

Lemma 25. Let X be a topological space. Let A be a closed compact subset of X such that $A = \bigcap \{U_n : n \in \mathbb{N}\}$, where U_n is open in X for each $n \in \mathbb{N}$. Then for any $F \in \mathcal{C}(X)$ the set $F \setminus A \neq \emptyset$ if and only if $F \notin U_m^+$ for some $m \in \mathbb{N}$.

Proof. Let $F \in \mathcal{C}(X)$. If $F \setminus A \neq \emptyset$, then let $b \in F \setminus A$. Since $A = \bigcap \{U_n : n \in \mathbb{N}\}$, there exists some $m \in \mathbb{N}$ such that $b \notin U_m$. So $F \notin U_m^+$. Now we assume that $F \notin U_m^+$ for some $m \in \mathbb{N}$. Thus $F \not\subset U_m$. Since $A \subset U_m$, the set $F \setminus A \neq \emptyset$.

Theorem 26. Let X be a Hausdorff space. If $(\mathcal{C}(X), V^+)$ is a nc-1like space and every compact subset of X is a G_{δ} -set of X, then X is hemicompact.

Proof. Since X is a Hausdorff space, every compact subset of X is closed in X. Let s be a winning strategy for player ONE in $G_{nc}(\mathbf{1}, \mathcal{C}(X))$. Let $E_0 = \mathcal{C}(X)$. Then $E_1 = s(E_0) = \{B_1\}$ for some $B_1 \in \mathcal{C}(X)$. Denote $B_1 = B_1(m_0)$. Since every compact subset of X is a G_{δ} -set of X, there exists a sequence $\{U_{m_2} : m_2 \in \mathbb{N}\}$ of open subsets of X such that $B_1 = \bigcap \{U_{m_2} : m_2 \in \mathbb{N}\}$. For each $m_2 \in \mathbb{N}$, let $E_2(m_2) =$ $\mathcal{C}(X) \setminus U_{m_2}^+$. Then $(E_0, E_1, E_2(m_2))$ is an admissible sequence for $G_{nc}(\mathbf{1}, \mathcal{C}(X))$. Let $n \in \omega$ and for each k < n we have admissible sequences $(E_0, E_1, \ldots, E_{2k}(m_2, \ldots, m_{2k}))$ with the following properties:

- (1) $E_{2k+1}(m_2, \dots, m_{2k}) = s(E_0, E_1, E_2(m_2), \dots, E_{2k}(m_2, \dots, m_{2k}))$ = $\{B_{2k+1}(m_2, \dots, m_{2k})\};$
- (2) $E_{2k}(m_2, \ldots, m_{2k}) \setminus \{C \in \mathcal{C}(X) : C \subset B_{2k+1}(m_2, \ldots, m_{2k})\}$ $= \bigcup \{E_{2k+2}(m_2, \ldots, m_{2k}, m_{2k+2}) : m_{2k+2} \in \mathbb{N}\},$ where $E_{2k+2}(m_2, \ldots, m_{2k}, m_{2k+2})$ is closed in $(\mathcal{C}(X), V^+)$ and $(E_0, E_1, \ldots, E_{2k}(m_2, \ldots, m_{2k}), E_{2k+2}(m_2, \ldots, m_{2k}, m_{2k+2}))$ is admissible for $G_{nc}(\mathbf{1}, \mathcal{C}(X)).$

Thus $(E_0, E_1, \ldots, E_{2n}(m_2, \ldots, m_{2n}))$ is admissible for $G_{nc}(\mathbf{1}, \mathcal{C}(X))$.

So there exists some $B_{2n+1}(m_2, \ldots, m_{2n}) \in \mathcal{C}(X)$ such that $s(E_0, E_1, \ldots, E_{2n}(m_2, \ldots, m_{2n}))$ $=E_{2n+1}(m_2,\ldots,m_{2n})$ $= \{B_{2n+1}(m_2,\ldots,m_{2n+1})\}.$ Since $B_{2n+1}(m_2,\ldots,m_{2n})$ is a G_{δ} -set of X, there exists a sequence $\{U_{2n+1}(m_2,\ldots,m_{2n},m_{2n+2}): m_{2n+2} \in \mathbb{N}\}$ of open subsets of X such that $B_{2n+1}(m_2,\ldots,m_{2n})$ $= \bigcap \{ U_{2n+1}(m_2, \dots, m_{2n}, m_{2n+2}) : m_{2n+2} \in \mathbb{N} \}.$ Denote $E_{2n+2}(m_2,\ldots,m_{2n},m_{2n+2})$ $= E_{2n}(m_2,\ldots,m_{2n}) \setminus U^+_{2n+1}(m_2,\ldots,m_{2n},m_{2n+2})$ for each $m_{2n+2} \in \mathbb{N}$. Thus $E_{2n}(m_2,\ldots,m_{2n}) \setminus \{C \in \mathcal{C}(X) : C \subset B_{2n+1}(m_2,\ldots,m_{2n})\}$ $= \bigcup \{ E_{2n+2}(m_2, \dots, m_{2n}, m_{2n+2}) : m_{2n+2} \in \mathbb{N} \}.$ Thus $(E_0, E_1, E_2(m_2), \ldots, E_{2n+1}(m_2, \ldots, m_{2n}), E_{2n+2}(m_2, \ldots, m_{2n+2}))$ is admissible for $G_{nc}(\mathbf{1}, \mathcal{C}(X))$ and $E_{2n}(m_1,\ldots,m_{2n}) \setminus \{C \in \mathcal{C}(X) : C \subset B_{2n+1}(m_2,\ldots,m_{2n})\}$ $= \bigcup \{ E_{2n+2}(m_2, \dots, m_{2n}, m_{2n+2}) : m_{2n+2} \in \mathbb{N} \}.$ Thus we get plays $(E_0, E_1, E_2(m_2), \dots, E_{2n+1}(m_2, \dots, m_{2n}), E_{2n+2}(m_2, \dots, m_{2n+2}), \dots)$ such that $E_{2n+1}(m_2,\ldots,m_{2n})$ $= s(E_0, E_1, \ldots, E_{2n}(m_2, \ldots, m_{2n}))$ $= \{B_{2n+1}(m_2,\ldots,m_{2n})\}.$ So $\bigcap E_{2n}(m_2,\ldots,m_{2n}) = \emptyset$. In what follows, we show that X = $\bigcup \{B_{2n+1}(m_2,\ldots,m_{2n}) : n \in \omega\}$ and for every $C \in \mathcal{C}(X)$ there exists some $n \in \omega$ such that $C \subset B_{2n+1}(m_2, \ldots, m_{2n})$. Let C be any element of $\mathcal{C}(X)$. Suppose that $C \not\subset B_{2n+1}(m_2, \ldots, m_{2n})$ for each $n \in \omega$. Since $C \not\subset B_1$ and there exists a sequence $\{U_{m_2} : m_2 \in \mathbb{N}\}$ of open subsets of X such that $B_1 = \bigcap \{ U_{m_2} : m_2 \in \mathbb{N} \}$, there exists some $m_2 \in \mathbb{N}$ such that $C \notin U_{m_2}^+$ by Lemma 25. Since $E_2(m_2) = \mathcal{C}(X) \setminus U_{m_2}^+$, the point $C \in E_2(m_2).$

Let $n \in \mathbb{N}$. Assume that there exists an admissible sequence $(E_0, E_1, E_2(m_2), \ldots, E_{2n}(m_2, \ldots, m_{2n}))$ of $G_{nc}(\mathbf{1}, \mathcal{C}(X))$ such that $C \in \bigcap \{E_{2k}(m_2, \ldots, m_{2k}) : 1 \leq k \leq n\}$. Thus

 $E_{2n+1}(m_2,\ldots,m_{2n})$

 $= s(E_0,\ldots,E_{2n}(m_2,\ldots,m_{2n}))$

 $= \{B_{2n+1}(m_2, \dots, m_{2n})\} \text{ for some closed compact subset} \\ B_{2n+1}(m_2, \dots, m_{2n}).$

Since $C \not\subset B_{2n+1}(m_2, \ldots, m_{2n})$ and there exists a sequence $\{U_{2n+1}(m_2, \ldots, m_{2n}, m_{2n+2}) : m_{2n+2} \in \mathbb{N}\}$ of open subsets of X such that

 $B_{2n+1}(m_2, \dots, m_{2n}) = \bigcap \{ U_{2n+1}(m_2, \dots, m_{2n}, m_{2n+2}) : m_{2n+2} \in \mathbb{N} \}, \text{ there exists some } m_{2n+2} \in \mathbb{N} \}$ $\mathbb{N} \text{ such that } C \notin U_{2n+1}^+(m_2, \dots, m_{2n}, m_{2n+2}) \text{ by Lemma 25.}$ Thus $C \in E_{2n}(m_2, \dots, m_{2n}) \setminus U_{2n+1}^+(m_2, \dots, m_{2n}, m_{2n+2}) = E_{2n+2}(m_2, \dots, m_{2n}, m_{2n+2}).$ Then we can get a play $(E_0, E_1, E_2(m_2), \dots, E_{2n}(m_2, \dots, m_{2n}), E_{2n+1}(m_2, \dots, m_{2n}), \dots) \text{ of } G_{nc}(1, \mathcal{C}(X)) \text{ such that}$

 $C \in \bigcap \{E_{2n}(m_2, \ldots, m_{2n}) : n \in \omega\}$. A contradiction.

Thus for every $C \in \mathcal{C}(X)$ there exists some $n \in \omega$ such that $C \subset B_{2n+1}(m_2, \ldots, m_{2n})$. So $X = \bigcup \{B_{2n+1}(m_2, \ldots, m_{2n}) : m \in \omega\}$ and X is a hemicompact space. \Box

By Theorems 21 and 26, we have:

Corollary 27. If X is a Hausdorff topological space such that every compact subset of X is a G_{δ} -set of X, then $(\mathcal{C}(X), V^+)$ is a nc-1-like space if and only if X is hemicompact.

The space \mathbf{P} of the irrationals is identified with ω^{ω} . Given $p, q \in \mathbf{P}$ we denote by $p \leq q$ the fact that $p(n) \leq q(n)$ for any $n \in \omega$. A cover of a space X is compact if its elements are compact. A compact cover \mathcal{K} of the space X is called **P**-ordered if $\mathcal{K} = \{K_p : p \in \mathbf{P}\}$ and, for any $p, q \in \mathbf{P}$ with $p \leq q$ we have $K_p \subset K_q$ [14].

A space X is called *strongly* **P**-*dominated* if it has a **P**-ordered compact cover $\{K_p : p \in \mathbf{P}\}$ which swallows all compact subsets of X in the sense that, for any compact $K \subset X$ there is $p \in \mathbf{P}$ such that $K \subset K_p$ [14].

Let (X, ρ) be a metric space and let $\{x_i\}_{i \in \mathbb{N}}$ be a sequence of points of X. The sequence $\{x_i\}_{i \in \mathbb{N}}$ is called a *Cauchy sequence* in (X, ρ) if for every $\varepsilon > 0$ there exists a natural number k such that $\rho(x_i, x_k) \leq \varepsilon$ whenever $i \geq k$. A metric space (X, ρ) is complete if every Cauchy sequence in (X, ρ) is convergent to a point of X [6].

Theorem 28. ([4, Theorem 3.3]) A second countable space is strongly **P**-dominated if and only if it is completely metrizable.

The above conclusion is also cited in [14, Theorem 3.1].

Lemma 29. ([14, Proposition 3.3(a)]) Any hemicompact space is strongly **P**-dominated.

Let $X = \mathbb{Q}$ be the set of rational numbers with the standary topology. Let $x_n \in \mathbb{Q}$ such that $|x_n - \pi| < \frac{1}{n}$ for each $n \in \mathbb{N}$. Thus the sequence $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{Q} . But $\{x_n\}_{n \in \mathbb{N}}$ does not converges to any point of \mathbb{Q} . Thus the space \mathbb{Q} is not a complete metric space.

Thus we have:

Proposition 30. If $X = \mathbb{Q}$, then X is not hemicompact.

Proof. Since X is a second countable metric space and X is not complete, X is not **P**-dominated by Theorem 28. Thus X is not hemicompact by Lemma 29. \Box

Proposition 31. If $X = \mathbb{Q}$, then X is a 1-like space but $(\mathcal{C}(X), V^+)$ is not a nc-1-like space.

Proof. As proved in Example 24, the space X is a 1-like space. By Corollary 27, a metric space Y is hemicompact if and only if $(\mathcal{C}(Y), V^+)$ is a *nc*-1-like space. Since X is not hemicompact by Proposition 30, the hyperspace $(\mathcal{C}(X), V^+)$ is not a *nc*-1-like space by Corollary 27.

Thus we have:

Suppose that X is a σ -compact T_2 -space. The hyperspace $(\mathcal{C}(X), V^+)$ cannot be a *nc*-**1**-like space. Thus the converse of Theorem 19 does not hold.

In what follows, we study the D-property and covering properties of hyperspaces of a space X.

A neighborhood assignment for a space X is a function ϕ from X to the topology of the space X such that $x \in \phi(x)$ for any $x \in X$ [5]. A space X is called a *D*-space if for any neighborhood assignment ϕ for X there exists a closed discrete subspace D of X such that $X = \bigcup \{\phi(d) : d \in D\}$ [5]. In what follows, we study some duality in connection with D-spaces and covering properties.

Theorem 32. If X is a T_1 D-space, then $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a D-space.

Proof. Let ϕ be any neighborhood assignment for $(2^X, V^-)$. Since X is a T_1 -space, $\{x\} \in 2^X$ for each $x \in X$. Thus there exists an open neighborhood $\psi(x)$ of x in X such that $\psi(x)^- \subset \phi(\{x\})$ for each $x \in X$. Thus $\{\psi(x) : x \in X\}$ is a neighborhood assignment for X. Since X is a D-space, there exists a closed discrete subspace D of X such that $X = \bigcup \{\psi(d) : d \in D\}$. Let $D^* = \{\{d\} : d \in D\}$. Then $D^* \subset 2^X$ and D^* is a closed discrete subspace of $(2^X, V^-)$ by Lemma 11. Thus $D^* \subset 2^X$ and D^* is a closed discrete subspace of $(2^X, V^-)$ such that $2^X = \bigcup \{\phi(p) : p \in D^*\}$. Thus $(2^X, V^-)$ is a D-space.

Similarly, we can show that $(\mathcal{C}(X), V^{-})$ is a *D*-space if X is a T_1 *D*-space.

Theorem 33. Let X be a T_1 -space. Then $(\mathcal{C}(X), V^-)$ is a D-space if and only if X is a D-space.

Proof. If X is a T_1 D-space, then $(\mathcal{C}(X), V^-)$ is a D-space by Theorem 32.

Now assume that $(\mathcal{C}(X), V^-)$ is a *D*-space. Let ϕ be any neighborhood assignment for *X*. For each $A \in \mathcal{C}(X)$, *A* is a compact closed subset of *X*. Thus there exists a finite subset $D_A \subset A$ such that $A \subset \bigcup \{\phi(d) : d \in D_A\} = O_A$. If $\psi(A) = O_A^-$ for each $A \in \mathcal{C}(X)$, then $\{\psi(A) : A \in \mathcal{C}(X)\}$ is a neighborhood assignment for $(\mathcal{C}(X), V^-)$. Since $(\mathcal{C}(X), V^-)$ is a *D*-space, there exists a closed discrete subspace \mathcal{F} of $\mathcal{C}(X)$ such that $\mathcal{C}(X) = \bigcup \{\psi(A) : A \in \mathcal{F}\}$. Let $D = \bigcup \{D_A : A \in \mathcal{F}\}$. Since *X* is a T_1 -space, $\{x\} \in \mathcal{C}(X)$ for each $x \in X$. Let $x \in X$. Thus there exists some $A \in \mathcal{F}$ such that $\{x\} \in \psi(A)$. Thus there exists some $d \in D_A$ such that $x \in \phi(d)$. Thus $X = \bigcup \{\phi(d) : d \in D\}$.

In what follows we show that D is a closed discrete subspace of X. Let x be any point of X. If $\{x\} \notin \mathcal{F}$, then there exists an open neighborhood O_x of x in X such that $O_x^- \cap \mathcal{F} = \emptyset$. Thus $O_x \cap D = \emptyset$. Now assume that $\{x\} \in \mathcal{F}$. Thus $x \in D$. Since \mathcal{F} is discrete in $(\mathcal{C}(X), V^-)$, there exists an open neighborhood W_x of x in X such that $W_x^- \cap (\mathcal{F} \setminus \{x\}) = \emptyset$. Thus $W_x \cap (D \setminus \{x\}) = \emptyset$.

So D is a closed discrete subspace of X and $X = \bigcup \{ \phi(d) : d \in D \}$. Thus X is a D-space.

A space X is a bD-space if for each open cover \mathcal{U} of X there exist a locally finite subset A of X and a mapping ϕ of A into \mathcal{U} such that $a \in \phi(a)$ for each $a \in A$ and $\{\phi(a) : a \in A\}$ covers X [1]. It was observed by Borges and Wehrly in [3] that all subparacompact spaces are bD-spaces.

Theorem 34. Let X be a T_1 -space. If $(2^X, V^-)$ is a bD-space, then X is a bD-space.

Proof. Let \mathcal{U} be any open cover of X. Then $\mathcal{U}^- = \{U^- : U \in \mathcal{U}\}$ is an open cover of $(2^X, V^-)$. Since $(2^X, V^-)$ is a bD-space, there exists a locally finite subset $\mathcal{F} \subset 2^X$ and a mapping φ of \mathcal{F} into \mathcal{U}^- such that $F \in \varphi(F)$ for each $F \in \mathcal{F}$ and $2^X = \bigcup \{\varphi(F) : F \in \mathcal{F}\}$. Since X is a T_1 -space, $\{x\} \in 2^X$ for each $x \in X$. Since \mathcal{F} is locally finite in $(2^X, V^-)$, for each $x \in X$ there exists an open neighborhood V_x of x in X such that $\{F \in \mathcal{F} : F \in V_x^-\}$ is finite. So $|\{F \in \mathcal{F} : F \cap V_x \neq \emptyset\}| < \omega$. Thus the family \mathcal{F} is locally finite in X. For each $F \in \mathcal{F}$, the set $\varphi(F) = U_F^-$ for some U_F of \mathcal{U} and $U_F \cap F \neq \emptyset$. Let $d_F \in U_F \cap F$ for each $F \in \mathcal{F}$ and let $D = \{d_F : F \in \mathcal{F}\}$. Define a mapping ϕ from D into \mathcal{U} such that $\phi(d_F) = U_F$ for each $F \in \mathcal{F}$. Thus $\{d_F : F \in \mathcal{F}\}$ is a locally finite subset of X and $X = \bigcup \{\phi(d_F) : F \in \mathcal{F}\}$. So X is a bD-space. \Box

Since every D-space is a bD-space, we have:

Corollary 35. Let X be a T_1 -space. If $(2^X, V^-)$ is a D-space, then X is a bD-space.

Since every closed subspace of a D-space is a D-space, by Proposition 15 we have:

Theorem 36. Let X be a Hausdorff space. If $(2^X, V^-)$ is a D-space, then X is a D-space.

Recall that a space X is *countably compact* if every countable open cover \mathcal{U} of X there exists a finite subfamily \mathcal{V} of \mathcal{U} such that $X = \bigcup \mathcal{V}$.

Proposition 37. Let X be a T_1 -space. If $(2^X, V^-)$ is countably compact, then X is countably compact.

Since a bD countably compact T_1 -space is compact, by Theorem 34, we have:

Corollary 38. If X is a countably compact T_1 -space and $(2^X, V^-)$ is a *bD*-space, then X is compact.

Corollary 39. If $X = \omega_1$ with the order topology, then $(2^X, V^-)$ is not a bD-space.

In what follows, we discuss some covering properties of $(\mathcal{C}(X), V^{-})$ and $(\mathcal{C}(X), V^{+})$.

Recall that a space X is *mesocompact* if for every open cover \mathcal{U} of X there exists an open refinement \mathcal{V} such that for every compact subset C of X, the set $\{V \in \mathcal{V} : V \cap C \neq \emptyset\}$ is finite [2].

Theorem 40. If X is a mesocompact T_1 -space, then $(\mathcal{C}(X), V^-)$ is a metacompact space.

Proof. Let \mathcal{U} be any open cover of $(\mathcal{C}(X), V^-)$. Since X is a T_1 -space, $\{x\} \in \mathcal{C}(X)$ for each $x \in X$. For each $x \in X$, there exists some $U_x \in \mathcal{U}$ such that $\{x\} \in U_x$. Thus there exists an open neighborhood V_x of x in X such that $\{x\} \in V_x^- \subset U_x$. So $\{V_x : x \in X\}$ is an open cover of X. Since X is mesocompat, $\{V_x : x \in X\}$ has a compact-finite open refinement \mathcal{V} . If $\mathcal{V}^- = \{W^- : W \in \mathcal{V}\}$, then \mathcal{V}^- is point-finite in $\mathcal{C}(X)$ and is an open refinement of \mathcal{U} . Thus $(\mathcal{C}(X), V^-)$ is a metacompact space.

Since every paracompact space is mesocompact, we have:

Corollary 41. If X is a paracompact space, then $(\mathcal{C}(X), V^{-})$ is metacompact.

Theorem 42. Let X_n be a T_1 -space for each $n \in \mathbb{N}$. If $\prod_{n \in \mathbb{N}} (\mathcal{C}(X_n), V_n^+)$ is a Lindelöf space, then $\prod_{n \in \mathbb{N}} X_n$ is a Lindelöf space.

 $\begin{array}{l} Proof. \mbox{ Let } \mathcal{U} \mbox{ be any open cover of } \prod_{n \in \omega} X_n. \mbox{ Let } x^{\star} \mbox{ be any element of } \\ \prod_{n \in \mathbb{N}} \mathcal{C}(X_n). \mbox{ Then } x^{\star} = \prod_{n \in \mathbb{N}} A_n^{x^{\star}}, \mbox{ where } A_n^{x^{\star}} \mbox{ is a closed compact subset of } \\ X_n \mbox{ for each } n \in \mathbb{N}. \mbox{ So there exists a finite subfamily } \mathcal{U}_{x^{\star}} \mbox{ of } \mathcal{U} \mbox{ such that } \\ x^{\star} \subset \bigcup \mathcal{U}_{x^{\star}}. \mbox{ By [6, Theorem 3.2.10], there exist open sets } \\ U_n^{x^{\star}} \subset X_n \mbox{ such that } \\ x^{\star} \subset \bigcup \mathcal{U}_{x^{\star}}. \mbox{ By [6, Theorem 3.2.10], there exist open sets } \\ U_n^{x^{\star}} \subset X_n \mbox{ such that } \\ u_n^{x^{\star}} \neq X_n \mbox{ for finitely many } n \in \mathbb{N} \mbox{ and } \prod_{n \in \mathbb{N}} A_n^{x^{\star}} \subset \prod_{n \in \mathbb{N}} U_n^{x^{\star}} \subset \bigcup \mathcal{U}_{x^{\star}}. \\ \mbox{ Thus } x^{\star} \in \prod_{n \in \mathbb{N}} (U_n^{x^{\star}})^+. \mbox{ So } \{\prod_{n \in \mathbb{N}} (U_n^{x^{\star}})^+ : x^{\star} \in \prod_{n \in \mathbb{N}} \mathcal{C}(X_n)\} \mbox{ is an open cover of } \prod_{n \in \mathbb{N}} \mathcal{C}(X_n). \mbox{ Since } \prod_{n \in \mathbb{N}} \mathcal{C}(X_n) \mbox{ is Lindelöf, there exists some } x_i^{\star} \in \\ \prod_{n \in \mathbb{N}} \mathcal{C}(X_n) \mbox{ for each } i \in \mathbb{N} \mbox{ such that } \prod_{n \in \mathbb{N}} \mathcal{C}(X_n) = \bigcup \{\prod_{n \in \mathbb{N}} (U_n^{x^{\star}})^+ : i \in \mathbb{N}\}. \\ \mbox{ For any } x \in \prod_{n \in \mathbb{N}} X_n, \mbox{ we let } x = (x_n : n \in \mathbb{N}). \mbox{ Define } x^{\star} = \prod_{n \in \mathbb{N}} \{x_n\}. \\ \mbox{ Thus } x^{\star} \in \prod_{n \in \mathbb{N}} \mathcal{C}(X_n). \mbox{ So there is some } i \in \mathbb{N} \mbox{ such that } x^{\star} \in \prod_{n \in \mathbb{N}} (U_n^{x^{\star}})^+. \\ \mbox{ Thus } x_n \in U_n^{x^{\star}} \mbox{ for each } n \in \mathbb{N} \mbox{ and hence } x \in \prod_{n \in \mathbb{N}} U_n^{x^{\star}} \subset \bigcup \mathcal{U}_{x^{\star}}. \mbox{ If } \\ \mathcal{V} = \bigcup \{\mathcal{U}_{x^{\star}_i} : i \in \mathbb{N}\}, \mbox{ then } \mathcal{V} \subset \mathcal{U}, \mbox{ } \mathcal{V} \mbox{ and } \prod_{n \in \mathbb{N}} X_n = \bigcup \mathcal{V}. \mbox{ Thus } \\ \prod_{n \in \mathbb{N}} X_n \mbox{ is a Lindelöf space.} \\ \end{tabular}$

By Proposition 15, we have:

Theorem 43. Let X_n be a Hausdorff space for each $n \in \mathbb{N}$. If $\prod_{n \in \mathbb{N}} (2^{X_n}, V^-)$ has property \mathcal{P} and \mathcal{P} is hereditary with respects to closed sets, then $\prod_{n \in \mathbb{N}} X_n$ has property \mathcal{P} .

Proposition 44. If X is a compact space, then $(\mathcal{C}(X), V^+)$ is compact.

Proof. Let \mathcal{T} be the topology of the space X. Then $\mathcal{B} = \{W^+ : W \in \mathcal{T} \setminus \{\emptyset\}\}$ is a base of $(\mathcal{C}(X), V^+)$. Let $\mathcal{W} \subset \mathcal{B}$ be any subfamily of \mathcal{B} such that $\mathcal{C}(X) = \bigcup \mathcal{W}$. So for each $C \in \mathcal{C}(X)$, there exists some $\mathcal{V}_C \in \mathcal{W}$ such that $C \in \mathcal{V}_C$. Since X is compact, $X \in \mathcal{C}(X)$. So $X \in \mathcal{V}_X$. Since $\mathcal{V}_X \in \mathcal{B}$, there exists some $W \in \mathcal{T}$ such that $\mathcal{V}_X = W^+$. Since $X \in W^+$, the set W = X. Thus for each $C \in \mathcal{C}(X)$ the point $C \in W^+ = \mathcal{V}_X$. So $\mathcal{C}(X) = \mathcal{V}_X$. Thus $(\mathcal{C}(X), V^+)$ is compact. \Box

Corollary 45. Let X be a T_1 -space. If $Y \subset X$ is a closed compact subset of X, then $(\mathcal{C}(Y), V_Y^+) = (\mathcal{C}(Y), V^+|Y)$ is compact.

Recall that a space X is *locally compact* if every point $x \in X$ has a neighborhood which is compact.

Theorem 46. If X is a locally compact Hausdorff space, then $(\mathcal{C}(X), V^+)$ is locally compact.

Proof. Let F be any element of $\mathcal{C}(X)$. Then F is a compact closed subset of X. Since X is locally compact, for each $x \in X$ there exists a compact neighborhood V_x of X. Thus there exist $n_F \in \mathbb{N}$ and $x_i \in F$ for each $i \leq n_F$ such that $F \subset \bigcup \{V_{x_i}^\circ : i \leq n_F\} = W \subset \bigcup \{V_{x_i} : i \leq n_F\} = Y$. If $W^+ = \{C \in \mathcal{C}(X) : C \subset W\}$ and $Y^+ = \{C \in \mathcal{C}(X) : C \subset Y\}$, then $F \in W^+ \subset Y^+$. Since X is a Hausdorff space and Y is compact, the set Y is closed in X. So $Y^+ = \mathcal{C}(Y)$ is compact by Corollary 45. Thus $(\mathcal{C}(X), V^+)$ is locally compact. \Box

Theorem 47. Let X be a T_1 -space. Then X has a countable base if and only if $(2^X, V^-)$ has a countable base.

Proof. Assume that X has a countable base \mathcal{B} . Let $\mathcal{B}^* = \{\bigcap_{i \leq n} B_i^- : B_i \in \mathcal{B}, i \leq n, n \in \mathbb{N}\}$. Then $|\mathcal{B}^*| \leq \omega$. Let $F \in 2^X$ be any element of 2^X and let \mathcal{V} be any open neighborhood of F in $(2^X, V^-)$.

There exist some $n \in \mathbb{N}$ and an open subset U_i for each $i \leq n$ such that $F \in \bigcap_{i \leq n} U_i^- \subset \mathcal{V}$. For each $i \leq n$ there exists some $x_i \in F \cap U_i$. Since \mathcal{B} is a base of X, for each $i \leq n$ there exists some $B_i \in \mathcal{B}$ such that

 $x_i \in B_i \subset U_i$. Thus $F \in \bigcap_{i \leq n} B_i^- \subset \bigcap_{i \leq n} U_i^- \subset \mathcal{V}$ and $\bigcap_{i \leq n} B_i^- \in \mathcal{B}^*$. So \mathcal{B}^* is a countable base of $(2^X, V^-)$.

The inverse implication follows from Proposition 13.

Theorem 48. Let X be a T_1 -space. Then X has a countable base if and only if $(\mathcal{C}(X), V^+)$ has a countable base.

Proof. Let \mathcal{B} be a countable base of X. If $\mathcal{B}^* = \{(\bigcup \mathcal{V})^+ : \mathcal{V} \subset \mathcal{B} \text{ and } |\mathcal{V}| < \omega\}$, then \mathcal{B}^* is a countable family of open subsets of $(\mathcal{C}(X), V^+)$. Let F be any element of $\mathcal{C}(X)$. If \mathcal{U} is an open neighborhood of F in $(\mathcal{C}(X), V^+)$, then there is an open subset U of X such that $F \in U^+ \subset \mathcal{U}$. Thus there exists a finite family $\mathcal{V} \subset \mathcal{B}$ such that $F \subset \bigcup \mathcal{V} \subset U$. So $F \in (\bigcup \mathcal{V})^+ \subset \mathcal{U}^+ \subset \mathcal{U}$ and $(\bigcup \mathcal{V})^+ \in \mathcal{B}^*$. Thus \mathcal{B}^* is a countable base of $(\mathcal{C}(X), V^+)$.

Now we prove the inverse implication. By Proposition 14, the space X is homeomorphic to a subspace of $(\mathcal{C}(X), V^+)$. Thus X has a countable base if $(C(X), V^+)$ has a countable base.

Similar to Theorem 47, we have:

Proposition 49. Let X be a T_1 -space. Then X has a countable network if and only if $(2^X, V^-)$ has a countable network.

Acknowledgement. The authors would like to thank the referee for his (or her) valuable remarks and suggestions which greatly improved the paper.

References

- A.V. Arhangel'skii, D-spaces and covering properties, Topology Appl. 146-147 (2005), 437-449.
- [2] R. Boone, Some characterizations of paracompactness in k-spaces, Fund. Math. 72 (1971), 145–155.
- [3] R. Borges and C. Wehrly, A study of D-spaces, Topology Proc. 16 (1991), 7-15.
- [4] J.P.R. Christensen, Topology and Borel structure, North Holland, Math. Studies, 10 (Amsterdam, 1974).
- [5] E.K. van Douwen and W.F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific Journal of Mathematics, 81(2) (1979), 371–377.
- [6] R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed. 1989.
- [7] F. Galvin and R. Telgársky, Stationary strategies in topological games, Topology Appl. 22 (1986), 51–69.
- [8] G.D. Maio and L.D.R. Kočinac, Some covering properties of hyperspaces, Topology Appl. 155 (2008), 1959–1969.
- [9] E. Michael, Topologies on spaces of subsets, Trans. Am. Math. Soc. 71 (1951), 152–182.
- [10] L.-X. Peng, About Lindelöf DK-like spaces and related conclusions, Topology Proc. 30(2) (2006), 577–584.
- [11] L.-X. Peng and Z.C. Shen, A note on the Menger (Rothberger) property and topological games, Topology Appl. 199 (2016), 132–144.
- [12] R. Telgársky, Spaces defined by topological games, Fund. Math. 88 (1975), 193– 223.
- [13] _____, Spaces defined by topological games, II, Fund. Math. 116 (1983), 189–207.
- [14] V.V. Tkachuk, A space $C_p(X)$ is dominated by irrationals if and only if it is *K*-analytic, Acta Math. Hungar. **107**(4) (2005), 253–265.
- [15] Y. Yajima, Topological games and applications, In: K. Morita, J. Nagata (Eds.), Topics in General Topology, (1989) 523–561.

College of Applied Science, Beijing University of Technology, Beijing 100124, China

Email address, Peng: pengliangxue@bjut.edu.cn Email address, Sun: sy121690@126.com

Department of Mathematics, Capital Normal University, Beijing, 100048, China

Email address, Wang: zhyk@vip.sina.com