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SOME TOPOLOGICAL GAMES, D-SPACES AND
COVERING PROPERTIES OF HYPERSPACES

LIANG-XUE PENG∗, YUAN SUN, AND SHANG-ZHI WANG

Abstract. We study topological games, D-spaces and covering
properties of hyperspaces with the upper (lower) Vietoris topology
V +(V −). Let C be the class of all compact spaces. Let W be the
class of all countable spaces. Let 1 denote the class of all one point
spaces and empty set. We get the following conclusions:

If X is a 1-like T1-space, then the hyperspace (2X , V −)

((C(X), V −)) is a 1-like space. If X is a nc-W-like T1-space, then
(2X , V −) ((C(X), V −)) is a nc-W-like space. If X is a D1-like
T1-space, then (2X , V −) ((C(X), V −)) is a D1-like space. If X is
a T1-space and (C(X), V +) is nc-1-like, then X is C-like. If X is
a T1-space and (C(X), V −) is nc-1-like, then X is C-like. If X
is a hemicompact Hausdorff space, then (C(X), V +) is a nc-1-like
space. We finally show that if X is a Hausdorff topological space
such that every closed compact subset of X is a Gδ-set of X, then
(C(X), V +) is a nc-1-like space if and only if X is a hemicompact
space. We point out that there exists a σ-compact (1-like) T2-space
X such that the hyperspace (C(X), V +) is not a nc-1-like space.

If X is a T1 D-space, then (2X , V −) is a D-space. If X is a T1-
space, then X is a D-space if and only if (C(X), V −) is a D-space. If
X is a T1-space and (2X , V −) is a bD-space, then X is a bD-space.
If X is a paracompact space, then (2X , V −) is metacompact. If Xn

is a T1-space for each n ∈ N such that
∏
n∈N

(C(Xn), V
+
n ) is Lindelöf,

then
∏
n∈N

Xn is Lindelöf.
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Introduction

Some properties of hyperspaces over a space X can be described by
properties of the basic space. In [8], Maio and Kočinac studied covering
properties of hyperspaces with the Vietoris topologies, as well as its lower
and upper parts. The following notations and notions follow form [8] and
[9].

Given a topological space, we define its hyperspaces as the following
sets:

2X = {A ⊂ X : A is closed and nonempty},
C(X) = {A ∈ 2X : A is compact}.
2X is topologized by the Vietoris topology defined as the topology gen-

erated by B = {⟨U1, · · · , Uk⟩ : U1, · · · , Uk are open subsets of X, k is a
positive integer}, where ⟨U1, · · · , Uk⟩ = {A ∈ 2X : A ⊂

∪k
j=1 Uj and

A∩Uj ̸= ∅ for each j ∈ {1, · · · , k}}. The topology on 2X generated by B
is usually called the Vietoris topology, denoted V . If A is a subset of X
and A is a family of subsets of X, then we write
A− = {F ∈ 2X : F ∩A ̸= ∅} and A− = {A− : A ∈ A};
A+ = {F ∈ 2X : F ⊂ A} and A+ = {A+ : A ∈ A}.
The upper Vietoris topology V + on 2X is the topology whose base

is the collection {U+ : U is open in X}. The lower Vietoris topology
V − is generated by all the sets U−, U ⊂ X nonempty, open. (C(X), V +)
denotes the hyperspace C(X) which is a subspace of (2X , V +). (C(X), V −)
denotes the hyperspace C(X) which is a subspace of (2X , V −). Let X be
a topological space and A ⊂ X. In the hyperspaces (C(X), V +) and
(C(X), V −), we denote A− = {F ∈ C(X) : F ∩ A ̸= ∅} and A+ = {F ∈
C(X) : F ⊂ A}. In this note, we study topological games, D-spaces
and covering properties of hyperspaces with the upper (lower) Vietoris
topology V +(V −).

Let K be a class of spaces which are hereditary with respect to closed
subspaces. The notion of a K-like space was introduced and studied by
R. Telgársky in [12]. The notion of a nc-K-like space was introduced by
Peng and Shen in [11] is similar to the notion of a K-like space. The
difference of the two definitions is that the sets that player ONE chooses
in a play of a nc-K-like space may not be closed. Let C be the class of
all compact spaces. Let W be the class of all countable spaces. Let 1
denote the class of all one point spaces and empty set. In this note, we
study topological games, D-spaces and covering properties of hyperspaces
with the upper (lower) Vietoris topology V +(V −) and get the following
conclusions:
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If X is a 1-like T1-space, then the hyperspace (2X , V −) ((C(X), V −))
is a 1-like space. If X is a nc-W-like T1-space, then (2X , V −)
((C(X), V −)) is a nc-W-like space. If X is a D1-like T1-space, then
(2X , V −) ((C(X), V −)) is a D1-like space. If X is a T1-space and
(C(X), V +) is nc-1-like, then X is C-like. If X is a T1-space and
(C(X), V −) is nc-1-like, then X is C-like. If X is a hemicompact Haus-
dorff space, then (C(X), V +) is a nc-1-like space. We finally show that if
X is a Hausdorff topological space such that every closed compact subset
of X is a Gδ-set of X, then (C(X), V +) is a nc-1-like space if and only if
X is a hemicompact space. We point out that there exists a σ-compact
(1-like) T2-spaceX such that the hyperspace (C(X), V +) is not a nc-1-like
space.

If X is a T1 D-space, then (2X , V −) is a D-space. If X is a T1-space,
then X is a D-space if and only if (C(X), V −) is a D-space. If X is a
T1-space and (2X , V −) is a bD-space, then X is a bD-space. If X is a
paracompact space, then (2X , V −) is metacompact. If Xn is a T1-space
for each n ∈ N such that

∏
n∈N

(C(Xn), V
+
n ) is Lindelöf, then

∏
n∈N

Xn is

Lindelöf.
The set of positive integers is denoted by N and ω= N∪{0}. In notation

and terminology we will follow [6].

Main results

Let K be a class of spaces which are hereditary with respect to closed
subspaces. The notion of a K-like space was introduced and studied by
R. Telgársky in [12].

A sequence (En : n ∈ ω) of subsets of a space X is a play of G(K, X)
if E0 = X and for each n ∈ ω

(1) E2n+1 is the choice of player ONE;
(2) E2n+2 is the choice of player TWO;
(3) E2n+1 ∈ K;
(4) En ∈ 2X ∪ {∅};
(5) E2n+1 ⊂ E2n;
(6) E2n+2 ⊂ E2n;
(7) E2n+2 ∩ E2n+1 = ∅.

The player ONE wins the play if
∩
{E2n : n ∈ ω} = ∅. A finite sequence

(Em : m ≤ n) is admissible for G(K, X) if E0, E1, ..., En satisfy the
above conditions (1)-(7). A function s is a strategy for player ONE if the
domain of s consists of admissible sequences (E0, E1, ..., En) with n even,
and if En+1 = s(E0, E1, ..., En), then (E0, E1, ..., En, En+1) is admissible
for G(K, X). The strategy s is a winning strategy for player ONE if it
wins every play (E0, E1, ...) ofG(K, X), where E2n+1 = s(E0, E1, ..., E2n),
n ∈ ω. If player ONE has a winning strategy in G(K, X), then X is said
to be a K-like space [12].
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In [11], Peng and Shen introduced the notion of nc-K-like which is
similar to the notion of K-like. The difference of the two definitions is
that the sets that player ONE chooses in a play of a nc-K-like space may
not be closed.

A sequence (En : n ∈ ω) of subsets of a space X is a play of Gnc(K, X)
if E0 = X and for each n ∈ ω

(1) E2n+1 is the choice of player ONE;
(2) E2n+2 is the choice of player TWO;
(3) E2n+1 ∈ K;
(4) E2n ∈ 2X ∪ {∅};
(5) E2n+1 ⊂ E2n;
(6) E2n+2 ⊂ E2n;
(7) E2n+2 ∩ E2n+1 = ∅.

Player ONE wins the play if
∩
{E2n : n ∈ ω} = ∅. A function s is a strat-

egy for player ONE in Gnc(K, X) if the domain of s consists of admissible
sequences (E0, E1, ..., En) with n even, and if En+1 = s(E0, E1, ..., En),
then (E0, E1, ..., En, En+1) is admissible for Gnc(K, X). The strategy s
is a winning strategy for player ONE in Gnc(K, X) if it wins every play
(E0, E1, ...) of Gnc(K, X), where E2n+1 = s(E0, E1, ..., E2n), n ∈ ω. If
player ONE has a winning strategy in Gnc(K, X), then X is said to be
a nc-K-like space. Every K-like space is a nc-K-like space. In [11], it is
pointed out that there is a space X which is a nc-1-like space but not a
1-like space.

For a class K and a topological space (X, T ), let B be a base of T . We
denote B(x) = {B ∈ B : x ∈ B} for each x ∈ X. The concept of weak
K-like was introduced by Peng in [10]. Let WG(K, X) be the following
positional game with perfect information. There are two players, player
ONE and player TWO. They choose alternatively consecutive terms of
a sequence (En : n ∈ ω) of subsets of X, so that each player knows
K, E0, E1, . . . , En when he is choosing En+1.

A sequence (En : n ∈ ω) of subsets of X is a play of WG(K, X), if
E0 = X and if for each n ∈ ω

(1) E2n+1 is the choice of player ONE;
(2) E2n+2 is the choice of player TWO;
(3) E2n+1 ∈ K;
(4) En ∈ 2X ∪ {∅};
(5) E2n+1 ⊂ E2n;
(6) For each x ∈ E2n+1, player TWO chooses a member U(x) ∈ B(x),

and E2n+2 = E2n \
∪
{U(x) : x ∈ E2n+1}.

If
∩
{E2n :n ∈ ω} = ∅, then the player ONE wins the play (En :n ∈ ω).
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A finite sequence (Em : m ≤ n) of subsets of X is admissible for
WG(K, X) if the sequence (E0, E1, . . . , En, ∅, . . . , ∅, . . .) is a play of
WG(K, X). A function s is a strategy for player ONE in WG(K, X)
if the domain consists of admissible sequences (E0, . . . , En) with n even,
such that s(E0, . . . , En) = En+1 and (E0, . . . , En, En+1) is admissible for
WG(K, X).

A strategy s is said to be winning for player ONE in WG(K, X), if
player ONE wins each play of WG(K, X) by s. WI(K, X) denotes the set
of all winning strategies of player ONE in WG(K, X). If WI(K, X) ̸= ∅,
then X is called a weak K-like space. If B = T and X is weak K-like with
respect to B, then X is a K-like space. The definitions of K-like spaces
and weak K-like spaces are very similar. In [10], Peng proved that K-like
and weak K-like are equivalent. Some results on topological games can
be found in [7], [13] and [15].

Lemma 1. ([10, Theorem 1]) A space X is a K-like space if and only if
X is a weak K-like space.

Similar to the concept of WG(K, X), we can give a notion of
WG∗(K, X). Let T be the topology of the space X and let B be a base of
T . For each x ∈ X, let B∗(x) be a subfamily of B(x) = {B ∈ B : x ∈ B}
such that B∗(x) is a base of neighborhoods of the point x in X. If B(x)
is replaced by B∗(x) in the definition of weak K-like, then we denote
the new game by WG∗(K, X). If player ONE has a winning strategy
in WG∗(K, X), then X is said to be a ∗K-like space. Similar to [10,
Theorem 1], we have:

Lemma 2. A space X is a K-like space if and only if X is a ∗K-like
space.

Similar to the notion of weak K-like (∗K-like), we have a notion of weak
nc-K-like (∗nc-K-like). The difference of weak K-like (∗K-like) and weak
nc-K-like (∗nc-K-like) is that the sets that player ONE chooses in a play
of a weak nc-K-like (∗nc-K-like) space may not be closed.

For a class K and a topological space (X, T ), let B be a base of T . For
each x ∈ X, let B∗(x) be a subfamily of B(x) = {B ∈ B : x ∈ B} such
that B∗(x) is a base of neighborhoods of the point x in X.

Let WGnc(K, X) (WG∗
nc(K, X)) be the following positional game with

perfect information. There are two players, player ONE and player TWO.
They choose alternatively consecutive terms of a sequence (En : n ∈ ω)
of subsets of X, so that each player knows K, E0, E1, . . . , En when he is
choosing En+1.

A sequence (En : n ∈ ω) of subsets of X is a play of WGnc(K, X)
(WG∗

nc(K, X)), if E0 = X and if for each n ∈ ω
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(1) En+1 is the choice of player ONE;
(2) E2n+2 is the choice of player TWO;
(3) E2n+1 ∈ K;
(4) E2n ∈ 2X ∪ {∅};
(5) E2n+1 ⊂ E2n;
(6) For each x ∈ E2n+1, player TWO chooses a member U(x) ∈ B(x)

(U(x) ∈ B∗(x)), and E2n+2 = E2n \
∪
{U(x) : x ∈ E2n+1}.

If
∩
{E2n : n ∈ ω} = ∅, then the player ONE wins the play (En : n ∈

ω).
A finite sequence (Em : m ≤ n) of subsets of X is admissible for

WGnc(K, X) (WG∗
nc(K, X)) if the sequence (E0, E1, . . . , En, ∅, . . . , ∅, . . .)

is a play of WGnc(K, X) (WG∗
nc(K, X)). A function s is a strategy for

player ONE in WGnc(K, X) (WG∗
nc(K, X)) if the domain consists of

admissible sequences (E0, . . . , En) with n even, such that s(E0, . . . , En) =
En+1 and (E0, . . . , En, En+1) is admissible for WGnc(K, X)
(WG∗

nc(K, X)).
A strategy s is said to be winning for player ONE in WGnc(K, X)

(WG∗
nc(K, X)), if player ONE wins each play of WGnc(K, X)

(WG∗
nc(K, X)) by s. If there is a strategy s which is winning for player

ONE in WGnc(K, X) (WG∗
nc(K, X)), then X is called a weak nc-K-like

(∗nc-K-like) space. If B = T and X is weak nc-K-like with respect to B,
then X is a nc-K-like space.

Similar to [10, Theorem 1], we have:

Lemma 3. A space X is a nc-K-like space if and only if X is a weak
nc-K-like space.

Lemma 4. A space X is a nc-K-like space if and only if X is a ∗nc-K-
like space.

Proposition 5. If X is a T1-space, then {{x}} is closed in (C(X), V −)
((2X , V −)) for each x ∈ X.

Proof. We just prove the case of (C(X), V −). The proof of the case of
(2X , V −) is similar. Let x ∈ X and let C ∈ C(X) such that C ̸= {x}.
Then there exists some y ∈ C \ {x}. Since X is a T1-space, the set {x} is
closed in X. So V = X \ {x} is open in X. Since y ∈ C \ {x}, the point
y ∈ C ∩ V . Thus C ∈ V − and V − ∩ {{x}} = ∅. So {{x}} is closed in
(C(X), V −). �

If X = R with the usual topology, then {0} ∈ C(X) and [−1, 1] ∈ C(X).
Since every open neighborhood of [−1, 1] in (C(X), V +) contains {0}, the
set {{0}} is not closed in (C(X), V +).

If A is a countable subset of a T1-space X, then {{x} : x ∈ A} is a
countable subset of (2X , V −).
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Theorem 6. Let (X, T ) be a T1-space and K be a class of sets such that
if E ⊂ X is in K, then the set {{x} : x ∈ E} ⊂ 2X is in K. If X is a
K-like space, then the space (2X , V −) (C(X), V −) is nc-K-like.

Proof. We just prove that (2X , V −) is a nc-K-like space. The proof of
the case of (C(X), V −) is similar. Let B be a base of (2X , V −), which is
generated by φ = {W− :W ∈ T \ {∅}}. Since X is a T1-space, {x} ∈ 2X

for each x ∈ X. For each x ∈ X, let B∗({x}) = {V − : x ∈ V and V ∈ T }.
It is obvious that B∗({x}) is a base of neighborhoods of the point {x} in
(2X , V −) and B∗({x}) ⊂ B({x}) = {B ∈ B : {x} ∈ B} for each x ∈ X. To
prove (2X , V −) is a nc-K-like space, we just need to prove that (2X , V −)
is a ∗nc-K-like space by Lemma 4.

Let s be a winning strategy for player ONE in G(K, X). Let E0 = X
and let A0 = 2X . In what follows, we define a winning strategy for player
ONE in WG∗

nc(K, 2
X).

Let E1 = s(E0). Thus E1 ∈ K. So {{x} : x ∈ E1} ∈ K and {{x} :
x ∈ E1} ⊂ 2X . Define t(A0) = A1 = {{x} : x ∈ E1}. For each x ∈ E1,
let V −

x be any element of B∗({x}). If A2 = 2X \
∪
{V −

x : x ∈ E1}, then
A2 is closed in 2X . If y ∈ X \

∪
{Vx : x ∈ E1}, then {y} ∈ A2. If E2 =

X \
∪
{Vx : x ∈ E1}, then E2 is closed in X. So (E0, E1, E2) is admissiable

for G(K,X) and (A0, A1, A2) is admissiable for WG∗
nc(K, 2

X).
Let n ∈ ω (n ≥ 1). Assume that we have an admissiable sequence

(E0, · · · , E2n) for G(K, X) and an admissiable sequence (A0, . . . , A2n)
for WG∗

nc(K, 2
X) with the following properties for each k < n:

(1) E2k+1 = s(E0, . . . , E2k);
(2) A2k+1 = t(A0, . . . , A2k) = {{x} : x ∈ E2k+1};
(3) For each x ∈ E2k+1, V −

x ∈ B∗({x}) and A2k+2 = A2k \
∪
{V −

x :
x ∈ E2k+1};

(4) E2k+2 = E2k \
∪
{Vx : x ∈ E2k+1};

(5) If x ∈ E2k+2, then {x} ∈ A2k+2.

If E2n+1 = s(E0, . . . , E2n), then E2n+1 ∈ K and {{x} : x ∈ E2n+1} ∈
K. Since E2n+1 ⊂ E2n, the set {{x} : x ∈ E2n+1} ⊂ A2n by (5). If
A2n+1 = t(A0, . . . , A2n) = {{x} : x ∈ E2n+1}, then A2n+1 ∈ K and
A2n+1 ⊂ A2n. For each x ∈ E2n+1, let V −

x be any element of B∗({x}).
Thus x ∈ Vx and Vx is open in X for each x ∈ E2n+1. If E2n+2 =
E2n \ (

∪
{Vx : x ∈ E2n+1}), then E2n+2 is closed in X. If A2n+2 =

A2n \
∪
{V −

x : x ∈ E2n+1}, then A2n+2 is a closed subset of 2X such that
A2n+2 ⊂ A2n and A2n+2 ∩A2n+1 = ∅. Thus (A0, . . . , A2n) is admissiable
for WG∗

nc(K, 2
X) and (E0, . . . , E2n) is admissiable for G(K, X).

If y ∈ E2n+2, then y ∈ E2n. Thus {y} ∈ A2n. Since y ∈ E2n+2, the
point y /∈ Vx for each x ∈ E2n+1. Thus {y} ∈ A2n\

∪
{V −

x : x ∈ E2n+1} =
A2n+2.
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So we get a play (E0, . . . , E2n, E2n+1, . . .) of G(K, X) and a play
(A0, . . . , A2n, A2n+1, . . .) of WG∗

nc(K, 2
X) with the following properties:

(1) E2n+1 = s(E0, . . . , E2n);
(2) A2n+1 = t(A0, . . . , A2n) = {{x} : x ∈ E2n+1};
(3) V −

x ∈ B∗({x}) for each x ∈ E2n+1;
(4) E2n+2 = E2n \

∪
{Vx : x ∈ E2n+1};

(5) A2n+2 = A2n \
∪
{V −

x : x ∈ E2n+1};
(6) If x ∈ E2n, then {x} ∈ A2n.

Since s is a winning strategy for player ONE in G(K, X), the set∩
n∈ω

E2n = ∅. So X =
∪
{
∪
{Vx : x ∈ E2n+1} : n ∈ ω}. For any E ∈ 2X ,

there exists some n ∈ ω such that E ∩ (
∪
{Vx : x ∈ E2n+1}) ̸= ∅. Thus

E ∈ V −
x for some x ∈ E2n+1. So

∩
n∈ω

A2n = ∅. Thus t is a winning

strategy for player ONE in WG∗
nc(K, 2

X), Thus (2X , V −) is a ∗nc-K-like
space. So X is a nc-K-like space by Lemma 4. �

Similar to Theorem 6, we have the following Theorems 7 and 8:

Theorem 7. Let (X, T ) be a T1-space and K be a class of sets such
that if E ⊂ X is in K then {{x} : x ∈ E} ⊂ 2X is in K and closed in
(2X , V −) ((C(X), V −)). If X is a K-like space, then the space (2X , V −)
((C(X), V −)) is K-like.

Theorem 8. Let (X, T ) be a T1-space and K be a class of sets such that
if E ⊂ X is in K, then {{x} : x ∈ E} ⊂ 2X is in K. If X is a nc-K-like
space, then the space (2X , V −) ((C(X), V −)) is nc-K-like.

Then by Proposition 5 and Theorem 7, we have:

Corollary 9. If X is a 1-like T1-space, then the hyperspace (2X , V −)
((C(X), V −)) is a 1-like space.

By Theorem 8, we have:

Corollary 10. If (X, T ) is a nc-W-like T1 space, then the hyperspace
(2X , V −) ((C(X), V −)) is a nc-W-like space.

It is obvious that (2X , V +) is a 1-like space for any space X. Proposi-
tion 31 in this article shows that there exists a 1-like Hausdorff space X
such that (C(X), V +) is not a nc-1-like space.

Lemma 11. Let X be a T1-space. Then D ⊂ X is a closed discrete
subspace of X if and only if D∗ = {{d} : d ∈ D} is a closed discrete
subspace of (2X , V −) ((C(X), V −)).

Proof. We just prove the case (2X , V −), the proof of the other case is
similar.
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Assume that D ⊂ X is a closed discrete subspace of X. Since X is a
T1-space, the set D∗ = {{d} : d ∈ D} ⊂ 2X . To show that D∗ is closed
discrete in (2X , V −), it is sufficient to show that any subset F of D∗ is
closed in (2X , V −). Let F be any subset of D∗. Then F = {{d} : d ∈ F}
for some subset F of D. If |F | = 1, then F = {p} for some p ∈ D.
Thus F = {{p}} and F is closed in (2X , V −) by Proposition 5. In what
follows, we assume that |F | > 1. Let A be any point of 2X \ F . Then A
is a nonempty closed subset of X.

Case 1. A ̸⊂ F . Let a ∈ A\F . Since F ⊂ D and D is a closed discrete
subspace of X, the set F is closed in X. If Oa = X \ F , then Oa is an
open neighborhood of a in X. Thus O−

a is an open neighborhood of the
point A in (2X , V −) such that O−

a ∩ F = ∅.
Case 2. Now we assume that A ⊂ F . Since A ̸∈ F and A ⊂ F , we know

that |A| ≥ 2. Let x, y be any distinct points of A. If Ox = X \ (F \ {x})
and Oy = X \ (F \ {y}), then Ox and Oy are open neighborhoods of x
and y in X, respectively. Thus OA = O−

x ∩O−
y is an open neighborhood

of the point A in (2X , V −). Since Ox ∩ F = {x} and Oy ∩ F = {y}, the
set OA ∩ F = ∅. Thus F is closed in (2X , V −).

So D∗ is a closed discrete subspace of (2X , V −).
Now we prove the sufficiency. Assume that D∗ = {{d} : d ∈ D} is

closed discrete in (2X , V −). Let F be any subset of D and let x be any
point of X \ F . Since {{y} : y ∈ F} is closed discrete in (2X , V −) and
{x} /∈ {{y} : y ∈ F}, there exists an open neighborhood Vx of x in X
such that V −

x ∩ {{y} : y ∈ F} = ∅. So Vx ∩ F = ∅. Thus F is closed in
X. So D is closed discrete in X. �

Let D1 be the class of discrete spaces. By Theorem 7 and Lemma 11,
we have;

Corollary 12. If X is a D1-like T1-space, then (2X , V −) (C(X), V −) is
a D1-like space.

Proposition 13. Let X be a T1-space. If i : X → 2X is a mapping such
that i(x) = {x} for each x ∈ X and the topology of 2X is V −, then the
mapping i is an embedding.

Proposition 14. Let X be a T1-space. If i : X → 2X is a mapping such
that i(x) = {x} for each x ∈ X and the topology of 2X is V +, then the
mapping i is an embedding and i(X) is dense in 2X .

Proposition 15. If X is a Hausdorff space, then X is homeomorphic to
a closed subspace of (2X , V −).

Proof. Let i : X → (2X , V −) be a mapping such that i(x) = {x} for each
x ∈ X. Then X is homeomorphic to i(X) by Proposition 13. In what
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follows we show that i(X) = {{x} : x ∈ X} is closed in (2X , V −) if X
is a Hausdorff space. Let E ∈ 2X \ i(X). Then |E| ≥ 2. Let p, q ∈ E
and p ̸= q. Since X is a Hausdorff space, there are disjoint open subsets
U , V of X such that p ∈ U and q ∈ V . If U = U− ∩ V −, then U is an
open neighborhood of E in (2X , V −) such that U ∩ i(X) = ∅. Thus i(X)
is closed in (2X , V −). �

Corollary 16. Let P be a topological property which is hereditary with
respect to closed subsets. If X is a Hausdorff topological space such that
(2X , V −) has property P, then X has property P.

In [11, Lemma 21], it is proved that if α is an ordinal then α+ 1 with
the order topology is a 1-like space. Thus ω1 + 1 is a 1-like space. If
X = {α : α < ω1}, then X is a subspace of ω1 + 1. Since X is not a
Lindelöf space, X is not 1-like. This shows that a subspace of a 1-like
space cannot be 1-like. To study K-like properties of a space X by its
hyperspace 2X , we firstly study separation axioms of hyperspaces.

Proposition 17. If (X, T ) is a T1-space, then (2X , V +) and (C(X), V +)
are T0-spaces.

Proof. We just prove that (2X , V +) is a T0-space. The proof of the other
case is similar. Let A and B be any distinct points of (2X , V +). Then
A ̸= B and A,B are closed subsets of X. Thus there is some point
x ∈ A \ B or there is some point y ∈ B \ A. If there is some point
x ∈ A\B, then let UB = X \ {x}. Thus B ∈ U+

B and U+
B is open in

(2X , V +) such that A /∈ U+
B . If there is some point y ∈ B \ A. Then let

UA = X \ {y}. Thus U+
A is an open neighborhood of A in (2X , V +) and

B /∈ U+
A . Thus (2X , V +) is a T0-space. �

Proposition 18. If (X, T ) is a topological space, then (2X , V −) and
(C(X), V −) are T0-spaces.

Proof. If A,B ∈ 2X and A ̸= B, then A\B ̸= ∅ or B\A ̸= ∅. If A\B ̸= ∅,
then U = X \ B is an open subset of X and U ∩ A ̸= ∅. Thus A ∈ U−

and B /∈ U−. If B \A ̸= ∅, then V = X \A is open in X and V ∩B ̸= ∅.
Thus B ∈ V − and A /∈ V −. So (2X , V −) is a T0-space. Similarly, we can
show that (C(X), V −) is a T0-space. �

The spaces (2X , V +) and (C(X), V +) are not T1-spaces. The reason is
that if A,B ∈ 2X (C(X)) and A ⊂ B with A ̸= B then every open set U
in (2X , V +) ((C(X), V +)) which contains B must contain A. Similarly,
the spaces (2X , V −) and (C(X), V −) are not T1-spaces.

Theorem 19. Let (X, T ) be a T1-space. If (C(X), V +) is a nc-1-like
space, then X is a C-like space.
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Proof. Since (C(X), V +) is a nc-1-like space, let s be a winning strategy
for player ONE in Gnc(1, C(X)). Let E0 = C(X) and let A0 = X. In
what follows we define a winning strategy t for player ONE in G(C, X).
Let E1 = s(E0) = {B1}, where B1 ∈ C(X). Thus B1 is a compact closed
subset of X. Define t(A0) = A1 = B1. Let A2 be any closed subset of X
such that A2 ∩A1 = ∅. Let E2 = C(X) \ (X \A2)

+, Then (E0, E1, E2) is
admissible for Gnc(1, C(X)) and (A0, A1, A2) is admissible for G(C, X).

Let n ∈ N. Assume that we have an admissible sequence (A0, · · · , A2n)
for G(C, X) and an admissible sequence (E0, · · · , E2n) for Gnc(1, C(X))
with the following properties for each k < n:

(1) E2k+1 = s(E0, · · · , E2k) = {B2k+1}, where B2k+1 ∈ C(X);
(2) A2k+1 = t(A0, · · · , A2k) = B2k+1 ∩A2k ̸= ∅;
(3) U2k+1 = X \A2k+2;
(4) B2k+1 ∈ U+

2k+1;
(5) E2k+2 = E2k \ U+

2k+1.

Let E2n+1 = s(E0, · · · , E2n) = {B2n+1}, where B2n+1 ∈ C(X). So
E2n+1 ⊂ E2n and hence B2n+1 ∈ E2n. Since E2n = E2n−2 \ U+

2n−1 =
E2n−2 \ (X \ A2n)

+, the point B2n+1 /∈ (X \ A2n)
+. So the set B2n+1 ̸⊂

X \A2n. Thus B2n+1 ∩A2n ̸= ∅. Since A2n is closed in X and B2n+1 is a
closed compact subset ofX, the set B2n+1∩A2n is a closed compact subset
of X. Define A2n+1 = B2n+1 ∩ A2n = t(A0, · · · , A2n). Let A2n+2 be any
closed subset of X such that A2n+2 ⊂ A2n and A2n+2 ∩A2n+1 = ∅. Then
(A0, · · · , A2n, A2n+1, A2n+2) is admissible for G(C, X). Let U2n+1 = X \
A2n+2. Thus U2n+1 is an open subset of X such that A2n+1 ⊂ U2n+1 and
B2n+1 ⊂ U2n+1. So B2n+1 ∈ U+

2n+1. If E2n+2 = E2n \U+
2n+1, then E2n+2

is closed in C(X) such that E2n+2 ⊂ E2n and E2n+2 ∩ E2n+1 = ∅. Thus
(E0, · · · , E2n, E2n+1, E2n+2) is admissible for Gnc(1, C(X)).

So we get a play (E0, · · · , E2n, E2n+1, · · · ) of Gnc(1, C(X)) and a play
(A0, · · · , A2n, A2n+1, · · · ) of G(C, X) with the following properties for
each n ∈ ω:

(1) E2n+1 = s(E0, · · · , E2n) = {B2n+1}, where B2n+1 ∈ C(X);
(2) A2n+1 = t(A0, · · · , A2n) = B2n+1 ∩A2n ̸= ∅;
(3) U2n+1 = X \A2n+2;
(4) B2n+1 ∈ U+

2n+1;
(5) E2n+2 = E2n \ U+

2n+1.

Since s is a winning strategy for player ONE in Gnc(1, C(X)). The
set

∩
n∈ω

E2n = ∅. For any x ∈ X, the set {x} is closed in X following

T1-property of X. Thus {x} ∈ C(X). Let m = min{n ∈ ω : {x} ̸∈ E2n}.
Thus m ∈ N and {x} ∈ E2m−2 \ E2m. Since E2m = E2m−2 \ U+

2m−1,
the point {x} ∈ U+

2m−1. Thus x ∈ U2m−1. So x ̸∈ X \ U2m−1 = A2m.
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Thus
∩
{A2n : n ∈ ω} = ∅. So t is a winning strategy for player ONE in

G(C, X). Thus X is a C-like space. �

Theorem 20. Let X be a T1-space. If (C(X), V −) is a nc-1-like space,
then X is a C-like space.

Proof. Since (C(X), V −) is a nc-1-like space, let s be a winning strategy
for player ONE in Gnc(1, C(X)). In what follows, we define a winning
strategy t for player ONE in G(C, X). Let E0 = C(X) and let A0 = X.
Let E1 = s(E0) = {B1} for some B1 ∈ C(X). Thus B1 is a closed compact
subset of X. Define t(A0) = A1 = B1. Let A2 be any closed subset of
X such that A2 ∩ A1 = ∅. If V1 = X \ A2, then V1 is an open subset of
X such that A1 ⊂ V1. Since A1 = B1, B1 ∈ V −

1 . If E2 = C(X) \ V −
1 ,

then E2 is a closed subset of C(X) and E2 ∩E1 = ∅. Thus (A0, A1, A2) is
admissible for G(C, X) and (E0, E1, E2) is admissible for Gnc(1, C(X)).

Let n ∈ N. Assume that we have an admissible sequence (E0, · · · , E2n)
in Gnc(1, C(X)) and an admissible sequence (A0, · · · , A2n) in G(C, X)
with the following properties for each k < n:

(1) E2k+1 = s(E0, · · · , E2k) = {B2k+1}, where B2k+1 ∈ C(X);
(2) A2k+1 = t(A0, · · · , A2k) = B2k+1;
(3) V2k+1 = X \A2k+2;
(4) E2k+2 = E2k \ V −

2k+1;
(5) If C ∈ E2k+2, then C ⊂ A2k+2.

Let E2n+1 = s(E0, · · · , E2n) = {B2n+1}. Thus B2n+1 is a closed
compact subset of X and B2n+1 ∈ E2n. Thus B2n+1 ⊂ A2n. Define
A2n+1 = t(A0, · · · , A2n) = B2n+1. Let A2n+2 be any closed subset
of X such that A2n+2 ⊂ A2n and A2n+2 ∩ A2n+1 = ∅. Let V2n+1 =
X \ A2n+2. Thus A2n+1 ⊂ V2n+1. Since B2n+1 = A2n+1, B2n+1 ∈ V −

2n+1.
If E2n+2 = E2n \ V −

2n+1, then E2n+2 ⊂ E2n is a closed subset of C(X)
such that E2n+2 ∩E2n+1 = ∅. Thus (E0, · · · , E2n+1, E2n+2) is admissible
for Gnc(1, C(X)) and (A0, · · · , A2n+1, A2n+2) is admissible for G(C, X)
and has the following property: If C ∈ E2n+2, then C ∩ V2n+1 = ∅ and
C ⊂ A2n+2.

So we get a play (E0, · · · , E2n, E2n+1, · · · ) of Gnc(1, C(X)) and a play
(A0, · · · , A2n, A2n+1, · · · ) of G(C, X) with the following properties for
each n ∈ ω:

(1) E2n+1 = s(E0, · · · , E2n) = {B2n+1}, where B2n+1 ∈ C(X);
(2) A2n+1 = t(A0, · · · , A2n) = B2n+1;
(3) V2n+1 = X \A2n+2;
(4) E2n+2 = E2n \ V −

2n+1;
(5) If C ∈ E2n+2, then C ⊂ A2n+2.



SOME TOPOLOGICAL GAMES, D-SPACES AND COVERING... 231

Since s is a winning strategy for player ONE in Gnc(1, C(X)), the set∩
n∈N

E2n = ∅. Let x be any element of X and let nx = min{m ∈ ω : {x} /∈

E2m}. Thus nx > 0. So {x} ∈ E2(nx−1) \ E2nx
.

Since E2nx
= E2(nx−1) \ V −

2nx−1, the point {x} ∈ V −
2nx−1. Thus x ∈

V2nx−1. Since V2nx−1 = X \A2nx
, the point x /∈ A2nx

. Thus
∩

n∈ω
A2n = ∅.

So the strategy t is a winning strategy for player ONE in G(C, X). Thus
X is a C-like space. �

In what follows, we study the nc-1-like property of the hyperspace
(C(X), V +) of a C-like space X.

Recall that a space X is hemicompact if in the family of all compact
subsets of X ordered by ⊂ there exists a countable cofinal subfamily.

Theorem 21. If X is hemicompact Hausdorff space, then (C(X), V +) is
a nc-1-like space.

Proof. By Lemma 3, we just need to prove that (C(X), V +) is a weak
nc-1-like space with respect to a base B = {U+ : U is open in X} of
(C(X), V +).

Since X is Hausdorff, C(X) is the family of all nonempty compact
subsets of X. Since X is hemicompact, there exists a countable subfamily
A = {An : n ∈ ω} of C(X) such that for each C ∈ C(X) there exists some
m ∈ ω such that C ⊂ Am, we can assume that An ⊂ An+1 for each n ∈ ω.

We define a winning strategy s for player ONE in WGnc(1, C(X)). Let
E0 = C(X) and let E1 = s(E0) = {A0} and let m1 = 0. Let V1 be any
open subset of X such that A0 ⊂ V1. Thus Am1

∈ V +
1 and V +

1 ∈ B. If
E2 = E0 \ V +

1 , then E2 is a closed subset of C(X) and E2 ∩ E1 = ∅. Let
m3 = min{n ∈ ω : An ̸⊂ V1}. Thus Am3

̸∈ V +
1 .

Let n ∈ ω. Assume that we have an admissible sequence
(E0, E1, · · · , E2n) for WGnc(1, C(X)) with the following properties for
each k < n:

(1) m2k+1 = min{n ∈ ω : An ̸⊂ V2k−1};
(2) E2k+1 = s(E0, · · · , E2n) = {Am2k+1

};
(3) V2k+1 is any open subset of X such that E2k+1 ⊂ V +

2k+1;
(4) E2k+2 = E2k \ V +

2k+1;
(5) If i < j < n, then m2i+1 < m2j+1.

Thus E2n−1 = {Am2n−1
} and Am2n−1

⊂ V2n−1.
Let m2n+1 = min{k ∈ ω : Ak ̸⊂ V2n−1}. Thus Am2n+1 ̸∈ V +

2n−1

and m2n+1 > m2n−1. So if k < n then m2k+1 < m2n+1. Thus
Am2n+1 ̸⊂ V2k+1 for each k < n. Thus Am2n+1 ∈ E2k+2 for each k < n.
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So Am2n+1 /∈ V +
2k+1 for each k < n. Thus Am2n+1 ∈ E2n \ V +

2n−1. Define
s(E0, · · · , E2n) = E2n+1 = {Am2n+1

}. Let V2n+1 be any open subset of
X such that Am2n+1 ∈ V +

2n+1. Thus E2n+2 = E2n \ V +
2n+1 is a closed

subset of (C(X), V +) such that E2n+2 ⊂ E2n and E2n+2 ∩E2n+1 = ∅. So
(E0, E1, · · · , E2n, E2n+1, E2n+2) is admissible for WGnc(1, C(X)). In this
way, we get a play (E0, · · · , E2n, E2n+1, · · · ) of WGnc(1, C(X)) with the
following properties for each n ∈ ω:

(1) E2n+1 = s(E0, · · · , E2n) = {Am2n+1
};

(2) V2n+1 is any open subset of X such that E2n+1 ⊂ V +
2n+1;

(3) E2n+2 = E2n \ V +
2n+1;

(4) m2n+1 = min{k ∈ ω : Ak ̸⊂ V2n−1};
(5) If i < j, then m2i+1 < m2j+1.

Thus {m2n+1 : n ∈ ω} is a strict increasing sequence of N. Thus
{Am2n+1

: n ∈ ω} is an increasing sequence of A. So for any C ∈ C(X)
there exists some n ∈ ω such that C ⊂ Am2n+1

. Since Am2n+1
⊂ V2n+1,

the set C ⊂ V2n+1. So C ∈ V +
2n+1. Thus C(X) =

∪
{V +

2n+1 : n ∈ ω}.
Since E2n+2 = E2n \ V +

2n+1 for each n ∈ ω, the set
∩

n∈ω
E2n = ∅. Thus s

is a winning strategy for player ONE in WGnc(1, C(X)). So (C(X), V +)
is a weak nc-1-like space. So (C(X), V +) is a nc-1-like space by Lemma
3. �

Since a C-like space is Lindelöf and every Lindelöf locally compact
Hausdorff space is hemicompact, we have:
Corollary 22. If X is a C-like locally compact Hausdorff space, then
(C(X), V +) is a nc-1-like space.

Let n ∈ N and let R be the set of reals with usual topology. By
Theorem 21, we know that (C(Rn), V +) is a nc-1-like space.

In what follows, we study the following questions:
Suppose that X is a σ-compact T1-space. Is (C(X), V +) is a nc-1-like

space?
Suppose that X is a T1 C-like space. Is (C(X), V +) ((C(X), V −) a

nc-1-like space?
The following example shows that the converse of Theorem 20 does not

hold.
Example 23. Let X = [0, 3] be a space with the standary topology.
Then X is C-like, but (C(X), V −) is not nc-1-like.
Proof. Since X is compact, it is obvious that X is C-like. Suppose
that (C(X), V −) is a nc-1-like. Then let s be a winning strategy for
player ONE in Gnc(1, C(X)). Let E0 = C(X) and E1 = s(E0). So
E1 = {B1} for some compact subset B1 of X. Let x1 ∈ B1 and let
V1 = {y ∈ X : |y − x1| < 1

2}. Then V1 is an open subset of X and
B1 ∈ V −

1 . Thus E2 = C(X) \ V −
1 is closed in C(X) and (E0, E1, E2) is
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an admissiable sequence in Gnc(1, C(X)). Let n ∈ ω. Assume that we
have an admissiable sequence (E0, E1, . . . , E2n) of Gnc(1, C(X)) with the
following properties for each k < n:

(1) E2k+1 = s(E0, . . . , E2k);
(2) E2k+1 = {B2k+1} for some compact subset B2k+1 of X;
(3) x2k+1 ∈ B2k+1 and V2k+1 = {y ∈ X : |y − x2k+1| < 1

22k+1 };
(4) E2k+2 = E2k \ V −

2k+1.
Let E2n+1 = s(E0, . . . , E2n). Then there exists some compact subset

B2n+1 of X such that E2n+1 = {B2n+1}. Let x2n+1 be any point of B2n+1

and let V2n+1 = {y ∈ X : |y − x2n+1| < 1
22n+1 }. Thus B2n+1 ∈ V −

2n+1.
Denote E2n+2 = E2n \ V −

2n+1.
So we can get a play (E0, . . . , E2n, E2n+1, . . .) such that E2n+1 =

s(E0, . . . , E2n) and E2n+2 = E2n \ V −
2n+1, where E2n+1 = {B2n+1} for

some compact subset B2n+1 of X, a point x2n+1 ∈ B2n+1 and V2n+1 =
{y ∈ X : |y − x2n+1| < 1

22n+1 }. Since s is a winning strategy for player
ONE in Gnc(1, C(X)). The set

∩
n∈ω

E2n = ∅. But
∪
{V2n+1 : n ∈ ω} ̸= X.

If a ∈ X\
∪
{V2n+1 : n ∈ ω}, then {a} ∈ C(X) and {a} ∈ C(X)\

∪
{V −

2n+1 :
n ∈ ω} =

∩
n∈ω

E2n. This contradicts that
∩

n∈ω
E2n = ∅. Thus (C(X), V −)

is not a nc-1-like space. �

The following example shows that there exists a T1 C-like space X such
that player ONE has a winning strategy s and there exists a sequence
{V2n+1 : n ∈ ω} of open subsets of X with the following properties:

(1) E1 = s(E0) ⊂ V1, where E0 = X;
(2) E2n = X \

∪
{V2k+1 : k < n} for each n ∈ N;

(3) E2n+1 = s(E0, E1, . . . , E2n) ⊂ V2n+1 for each n ∈ ω;
(4) X =

∪
{V2n+1 : n ∈ ω};

(5) C(X) ̸=
∪
{V +

2n+1 : n ∈ ω}.

Example 24. Let X = Q be the set of rational numbers with the stan-
dard topology. The space X has the above properties.

Proof. Assume X = {qn : n ∈ N}. Let E0 = X, s(E0) = {q1} = E1.
Denote n1 = 1 and V1 = {x ∈ X : |x − q1| < 1}. Let E2 = X \ V1 and
let n3 = min{l ∈ N : ql ∈ E2}. Denote s(E0, E1, E2) = {qn3} and let
V3 = {x ∈ X : |x − qn3 | < 1

3}. Let n ∈ N and assume that we have a
finite sequence {Ei : i ≤ 2n} of closed subsets of X with the following
properties for each k < n:

(1) E0 = X, E1 = s(E0) = {q1};
(2) E2k+1 = s(E0, . . . , E2n) = {qm2k+1

};
(3) V2k+1 = {x ∈ X : |x− qm2k+1

| < 1
2k+1};
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(4) E2k+2 = E2k \ V2k+1;
(5) m2k+1 = min{l ∈ N : ql ∈ E2k}

Let m2n+1 = min{l ∈ N : ql ∈ E2n} and let s(E0, . . . , E2n) = E2n+1 =
{qm2n+1

}, V2n+1 = {x ∈ X : |x − qm2n+1
| < 1

2n+1}. Thus we have a play
(E0, . . . , E2n, E2n+1, . . .) of G(1, X). We know that

∩
n∈ω

E2n = ∅. Thus s

is a winning strategy for player ONE in G(1, X). So X=
∪
{V2n+1 :n∈ω}.

If A = {an : n ∈ ω}, where a0 = 5, a1 = 100, an = 5 − 1
n for each

n ≥ 2. Thus A ∈ C(X). But A /∈ V +
2n+1 for each n ∈ ω. �

Now we study the question that whether (C(Q), V +) a nc-1-like space.

Lemma 25. Let X be a topological space. Let A be a closed compact
subset of X such that A =

∩
{Un : n ∈ N}, where Un is open in X for

each n ∈ N. Then for any F ∈ C(X) the set F \ A ̸= ∅ if and only if
F /∈ U+

m for some m ∈ N.

Proof. Let F ∈ C(X). If F \ A ̸= ∅, then let b ∈ F \ A. Since
A =

∩
{Un : n ∈ N}, there exists some m ∈ N such that b /∈ Um. So

F /∈ U+
m. Now we assume that F /∈ U+

m for some m ∈ N. Thus F ̸⊂ Um.
Since A ⊂ Um, the set F \A ̸= ∅. �

Theorem 26. Let X be a Hausdorff space. If (C(X), V +) is a nc-1-
like space and every compact subset of X is a Gδ-set of X, then X is
hemicompact.

Proof. Since X is a Hausdorff space, every compact subset of X is
closed in X. Let s be a winning strategy for player ONE in Gnc(1, C(X)).
Let E0 = C(X). Then E1 = s(E0) = {B1} for some B1 ∈ C(X).
Denote B1 = B1(m0). Since every compact subset of X is a Gδ-set
of X, there exists a sequence {Um2

: m2 ∈ N} of open subsets of X
such that B1 =

∩
{Um2

: m2 ∈ N}. For each m2 ∈ N, let E2(m2) =
C(X) \ U+

m2
. Then (E0, E1, E2(m2)) is an admissible sequence for

Gnc(1, C(X)). Let n ∈ ω and for each k < n we have admissible sequences
(E0, E1, . . . , E2k(m2, . . . ,m2k)) with the following properties:

(1) E2k+1(m2, . . . ,m2k) = s(E0, E1, E2(m2), . . . , E2k(m2, . . . ,m2k))
= {B2k+1(m2, . . . ,m2k)};

(2) E2k(m2, . . . ,m2k) \ {C ∈ C(X) : C ⊂ B2k+1(m2, . . . ,m2k)}
=

∪
{E2k+2(m2, . . . ,m2k,m2k+2) : m2k+2 ∈ N},

where E2k+2(m2, . . . ,m2k,m2k+2) is closed in (C(X), V +) and
(E0, E1, . . . , E2k(m2, . . . ,m2k), E2k+2(m2, . . . ,m2k,m2k+2)) is ad-
missible for Gnc(1, C(X)).

Thus (E0, E1, . . . , E2n(m2, . . . ,m2n)) is admissible for Gnc(1, C(X)).
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So there exists some B2n+1(m2, . . . ,m2n) ∈ C(X) such that
s(E0, E1, . . . , E2n(m2, . . . ,m2n))
= E2n+1(m2, . . . ,m2n)
= {B2n+1(m2, . . . ,m2n+1)}.

Since B2n+1(m2, . . . ,m2n) is a Gδ-set of X, there exists a sequence
{U2n+1(m2, . . . ,m2n,m2n+2) : m2n+2 ∈ N} of open subsets of X such
that
B2n+1(m2, . . . ,m2n)
=

∩
{U2n+1(m2, . . . ,m2n,m2n+2) : m2n+2 ∈ N}.

Denote
E2n+2(m2, . . . ,m2n,m2n+2)
= E2n(m2, . . . ,m2n) \ U+

2n+1(m2, . . . ,m2n,m2n+2) for each m2n+2 ∈ N.
Thus
E2n(m2, . . . ,m2n) \ {C ∈ C(X) : C ⊂ B2n+1(m2, . . . ,m2n)}
=

∪
{E2n+2(m2, . . . ,m2n,m2n+2) : m2n+2 ∈ N}.

Thus
(E0, E1, E2(m2), . . . , E2n+1(m2, . . . ,m2n), E2n+2(m2, . . . ,m2n+2)) is ad-
missible for Gnc(1, C(X)) and
E2n(m1, . . . ,m2n) \ {C ∈ C(X) : C ⊂ B2n+1(m2, . . . ,m2n)}
=

∪
{E2n+2(m2, . . . ,m2n,m2n+2) : m2n+2 ∈ N}.

Thus we get plays
(E0, E1, E2(m2), . . . , E2n+1(m2, . . . ,m2n), E2n+2(m2, . . . ,m2n+2), . . .)
such that
E2n+1(m2, . . . ,m2n)
= s(E0, E1, . . . , E2n(m2, . . . ,m2n))
= {B2n+1(m2, . . . ,m2n)}.

So
∩

n∈ω
E2n(m2, . . . ,m2n) = ∅. In what follows, we show that X =∪

{B2n+1(m2, . . . ,m2n) : n ∈ ω} and for every C ∈ C(X) there exists
some n ∈ ω such that C ⊂ B2n+1(m2, . . . ,m2n). Let C be any element of
C(X). Suppose that C ̸⊂ B2n+1(m2, . . . ,m2n) for each n ∈ ω.

Since C ̸⊂ B1 and there exists a sequence {Um2 : m2 ∈ N} of open
subsets of X such that B1 =

∩
{Um2

: m2 ∈ N}, there exists some m2 ∈ N
such that C /∈ U+

m2
by Lemma 25. Since E2(m2) = C(X) \U+

m2
, the point

C ∈ E2(m2).
Let n ∈ N. Assume that there exists an admissible sequence

(E0, E1, E2(m2), . . . , E2n(m2, . . . ,m2n)) of Gnc(1, C(X)) such that
C ∈

∩
{E2k(m2, . . . ,m2k) : 1 ≤ k ≤ n}.

Thus
E2n+1(m2, . . . ,m2n)
= s(E0, . . . , E2n(m2, . . . ,m2n))
= {B2n+1(m2, . . . ,m2n)} for some closed compact subset

B2n+1(m2, . . . ,m2n).
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Since C ̸⊂ B2n+1(m2, . . . ,m2n) and there exists a sequence
{U2n+1(m2, . . . ,m2n,m2n+2) : m2n+2 ∈ N} of open subsets of X such
that
B2n+1(m2, . . . ,m2n)
=

∩
{U2n+1(m2, . . . ,m2n,m2n+2) :m2n+2∈N}, there exists some m2n+2∈

N such that C /∈ U+
2n+1(m2, . . . ,m2n,m2n+2) by Lemma 25.

Thus
C ∈ E2n(m2, . . . ,m2n) \ U+

2n+1(m2, . . . ,m2n,m2n+2)
= E2n+2(m2, . . . ,m2n,m2n+2).

Then we can get a play
(E0, E1, E2(m2), . . . , E2n(m2, . . . ,m2n), E2n+1(m2, . . . ,m2n), . . .) of
Gnc(1, C(X)) such that
C ∈

∩
{E2n(m2, . . . ,m2n) : n ∈ ω}. A contradiction.

Thus for every C ∈ C(X) there exists some n ∈ ω such that C ⊂
B2n+1(m2, . . . ,m2n). So X =

∪
{B2n+1(m2, . . . ,m2n) : m ∈ ω} and X is

a hemicompact space. �

By Theorems 21 and 26, we have:

Corollary 27. If X is a Hausdorff topological space such that every com-
pact subset of X is a Gδ-set of X, then (C(X), V +) is a nc-1-like space if
and only if X is hemicompact.

The space P of the irrationals is identified with ωω. Given p, q ∈ P we
denote by p ≤ q the fact that p(n) ≤ q(n) for any n ∈ ω. A cover of a
space X is compact if its elements are compact. A compact cover K of
the space X is called P-ordered if K = {Kp : p ∈ P} and, for any p, q ∈ P
with p ≤ q we have Kp ⊂ Kq [14].

A space X is called strongly P-dominated if it has a P-ordered compact
cover {Kp : p ∈ P} which swallows all compact subsets of X in the sense
that, for any compact K ⊂ X there is p ∈ P such that K ⊂ Kp [14].

Let (X, ρ) be a metric space and let {xi}i∈N be a sequence of points of
X. The sequence {xi}i∈N is called a Cauchy sequence in (X, ρ) if for every
ε > 0 there exists a natural number k such that ρ(xi, xk) ≤ ε whenever
i ≥ k. A metric space (X, ρ) is complete if every Cauchy sequence in
(X, ρ) is convergent to a point of X [6].

Theorem 28. ([4, Theorem 3.3]) A second countable space is strongly
P-dominated if and only if it is completely metrizable.

The above conclusion is also cited in [14, Theorem 3.1].

Lemma 29. ([14, Proposition 3.3(a)]) Any hemicompact space is strongly
P-dominated.
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Let X = Q be the set of rational numbers with the standary topology.
Let xn ∈ Q such that |xn − π| < 1

n for each n ∈ N. Thus the sequence
{xn}n∈N is a Cauchy sequence in Q. But {xn}n∈N does not converges to
any point of Q. Thus the space Q is not a complete metric space.

Thus we have:
Proposition 30. If X = Q, then X is not hemicompact.
Proof. Since X is a second countable metric space and X is not complete,
X is not P-dominated by Theorem 28. Thus X is not hemicompact by
Lemma 29. �
Proposition 31. If X = Q, then X is a 1-like space but (C(X), V +) is
not a nc-1-like space.
Proof. As proved in Example 24, the space X is a 1-like space. By Corol-
lary 27, a metric space Y is hemicompact if and only if (C(Y ), V +) is
a nc-1-like space. Since X is not hemicompact by Proposition 30, the
hyperspace (C(X), V +) is not a nc-1-like space by Corollary 27. �

Thus we have:
Suppose that X is a σ-compact T2-space. The hyperspace (C(X), V +)

cannot be a nc-1-like space. Thus the converse of Theorem 19 does not
hold.

In what follows, we study the D-property and covering properties of
hyperspaces of a space X.

A neighborhood assignment for a space X is a function ϕ from X to the
topology of the space X such that x ∈ ϕ(x) for any x ∈ X [5]. A space
X is called a D-space if for any neighborhood assignment ϕ for X there
exists a closed discrete subspace D of X such that X =

∪
{ϕ(d) : d ∈ D}

[5]. In what follows, we study some duality in connection with D-spaces
and covering properties.
Theorem 32. If X is a T1 D-space, then (2X , V −) ((C(X), V −)) is a
D-space.
Proof. Let ϕ be any neighborhood assignment for (2X , V −). Since X
is a T1-space, {x} ∈ 2X for each x ∈ X. Thus there exists an open
neighborhood ψ(x) of x in X such that ψ(x)− ⊂ ϕ({x}) for each x ∈ X.
Thus {ψ(x) : x ∈ X} is a neighborhood assignment for X. Since X
is a D-space, there exists a closed discrete subspace D of X such that
X =

∪
{ψ(d) : d ∈ D}. Let D∗ = {{d} : d ∈ D}. Then D∗ ⊂ 2X

and D∗ is a closed discrete subspace of (2X , V −) by Lemma 11. Thus
D∗ ⊂ 2X and D∗ is a closed discrete subspace of (2X , V −) such that
2X =

∪
{ϕ(p) : p ∈ D∗}. Thus (2X , V −) is a D-space.

Similarly, we can show that (C(X), V −) is a D-space if X is a T1 D-
space. �
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Theorem 33. Let X be a T1-space. Then (C(X), V −) is a D-space if
and only if X is a D-space.

Proof. If X is a T1 D-space, then (C(X), V −) is a D-space by Theorem
32.

Now assume that (C(X), V −) is a D-space. Let ϕ be any neighborhood
assignment for X. For each A ∈ C(X), A is a compact closed subset of
X. Thus there exists a finite subset DA ⊂ A such that A ⊂

∪
{ϕ(d) :

d ∈ DA} = OA. If ψ(A) = O−
A for each A ∈ C(X), then {ψ(A) : A ∈

C(X)} is a neighborhood assignment for (C(X), V −). Since (C(X), V −)
is a D-space, there exists a closed discrete subspace F of C(X) such that
C(X) =

∪
{ψ(A) : A ∈ F}. Let D =

∪
{DA : A ∈ F}. Since X is a

T1-space, {x} ∈ C(X) for each x ∈ X. Let x ∈ X. Thus there exists some
A ∈ F such that {x} ∈ ψ(A). Thus there exists some d ∈ DA such that
x ∈ ϕ(d). Thus X =

∪
{ϕ(d) : d ∈ D}.

In what follows we show that D is a closed discrete subspace of X. Let
x be any point of X. If {x} /∈ F , then there exists an open neighborhood
Ox of x in X such that O−

x ∩F = ∅. Thus Ox ∩D = ∅. Now assume that
{x} ∈ F . Thus x ∈ D. Since F is discrete in (C(X), V −), there exists an
open neighborhood Wx of x in X such that W−

x ∩ (F \ {x}) = ∅. Thus
Wx ∩ (D \ {x}) = ∅.

So D is a closed discrete subspace of X and X =
∪
{ϕ(d) : d ∈ D}.

Thus X is a D-space. �

A space X is a bD-space if for each open cover U of X there exist a
locally finite subset A ofX and a mapping ϕ of A into U such that a ∈ ϕ(a)
for each a ∈ A and {ϕ(a) : a ∈ A} covers X [1]. It was observed by Borges
and Wehrly in [3] that all subparacompact spaces are bD-spaces.

Theorem 34. Let X be a T1-space. If (2X , V −) is a bD-space, then X
is a bD-space.

Proof. Let U be any open cover of X. Then U− = {U− : U ∈ U} is
an open cover of (2X , V −). Since (2X , V −) is a bD-space, there exists a
locally finite subset F ⊂ 2X and a mapping φ of F into U− such that
F ∈ φ(F ) for each F ∈ F and 2X =

∪
{φ(F ) : F ∈ F}. Since X is a

T1-space, {x} ∈ 2X for each x ∈ X. Since F is locally finite in (2X , V −),
for each x ∈ X there exists an open neighborhood Vx of x in X such that
{F ∈ F : F ∈ V −

x } is finite. So |{F ∈ F : F ∩ Vx ̸= ∅}| < ω. Thus the
family F is locally finite in X. For each F ∈ F , the set φ(F ) = U−

F for
some UF of U and UF ∩ F ̸= ∅. Let dF ∈ UF ∩ F for each F ∈ F and
let D = {dF : F ∈ F}. Define a mapping ϕ from D into U such that
ϕ(dF ) = UF for each F ∈ F . Thus {dF : F ∈ F} is a locally finite subset
of X and X =

∪
{ϕ(dF ) : F ∈ F}. So X is a bD-space. �
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Since every D-space is a bD-space, we have:

Corollary 35. Let X be a T1-space. If (2X , V −) is a D-space, then X
is a bD-space.

Since every closed subspace of a D-space is a D-space, by Proposition
15 we have:

Theorem 36. Let X be a Hausdorff space. If (2X , V −) is a D-space,
then X is a D-space.

Recall that a space X is countably compact if every countable open
cover U of X there exists a finite subfamily V of U such that X =

∪
V.

Proposition 37. Let X be a T1-space. If (2X , V −) is countably compact,
then X is countably compact.

Since a bD countably compact T1-space is compact, by Theorem 34,
we have:

Corollary 38. If X is a countably compact T1-space and (2X , V −) is a
bD-space, then X is compact.

Corollary 39. If X = ω1 with the order topology, then (2X , V −) is not
a bD-space.

In what follows, we discuss some covering properties of (C(X), V −) and
(C(X), V +).

Recall that a space X is mesocompact if for every open cover U of X
there exists an open refinement V such that for every compact subset C
of X, the set {V ∈ V : V ∩ C ̸= ∅} is finite [2].

Theorem 40. If X is a mesocompact T1-space, then (C(X), V −) is a
metacompact space.

Proof. Let U be any open cover of (C(X), V −). Since X is a T1-space,
{x} ∈ C(X) for each x ∈ X. For each x ∈ X, there exists some Ux ∈ U
such that {x} ∈ Ux. Thus there exists an open neighborhood Vx of x in X
such that {x} ∈ V −

x ⊂ Ux. So {Vx : x ∈ X} is an open cover of X. Since
X is mesocompat, {Vx : x ∈ X} has a compact-finite open refinement V.
If V− = {W− : W ∈ V}, then V− is point-finite in C(X) and is an open
refinement of U . Thus (C(X), V −) is a metacompact space. �

Since every paracompact space is mesocompact, we have:

Corollary 41. If X is a paracompact space, then (C(X), V −) is meta-
compact.
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Theorem 42. Let Xn be a T1-space for each n ∈ N. If
∏
n∈N

(C(Xn), V
+
n )

is a Lindelöf space, then
∏
n∈N

Xn is a Lindelöf space.

Proof. Let U be any open cover of
∏
n∈ω

Xn. Let x⋆ be any element of∏
n∈N

C(Xn). Then x⋆ =
∏
n∈N

Ax⋆

n , where Ax⋆

n is a closed compact subset of

Xn for each n ∈ N. So there exists a finite subfamily Ux⋆ of U such that
x⋆ ⊂

∪
Ux⋆ . By [6, Theorem 3.2.10], there exist open sets Ux⋆

n ⊂ Xn such
that Ux⋆

n ̸= Xn for finitely many n ∈ N and
∏
n∈N

Ax⋆

n ⊂
∏
n∈N

Ux⋆

n ⊂
∪

Ux⋆ .

Thus x⋆ ∈
∏
n∈N

(Ux⋆

n )+. So {
∏
n∈N

(Ux⋆

n )+ : x⋆ ∈
∏
n∈N

C(Xn)} is an open

cover of
∏
n∈N

C(Xn). Since
∏
n∈N

C(Xn) is Lindelöf, there exists some x⋆i ∈∏
n∈N

C(Xn) for each i ∈ N such that
∏
n∈N

C(Xn) =
∪
{
∏
n∈N

(U
x⋆
i

n )+ : i ∈ N}.

For any x ∈
∏
n∈N

Xn, we let x = (xn : n ∈ N). Define x⋆ =
∏
n∈N

{xn}.

Thus x⋆ ∈
∏
n∈N

C(Xn). So there is some i ∈ N such that x⋆ ∈
∏
n∈N

(U
x⋆
i

n )+.

Thus xn ∈ U
x⋆
i

n for each n ∈ N and hence x ∈
∏
n∈N

U
x⋆
i

n ⊂
∪
Ux⋆

i
. If

V =
∪
{Ux⋆

i
: i ∈ N}, then V ⊂ U , |V| ≤ ω and

∏
n∈N

Xn =
∪

V. Thus∏
n∈N

Xn is a Lindelöf space. �

By Proposition 15, we have:

Theorem 43. Let Xn be a Hausdorff space for each n ∈ N. If∏
n∈N

(2Xn , V −) has property P and P is hereditary with respects to closed

sets, then
∏
n∈N

Xn has property P.

Proposition 44. If X is a compact space, then (C(X), V +) is compact.

Proof. Let T be the topology of the space X. Then B = {W+ : W ∈
T \ {∅}} is a base of (C(X), V +). Let W ⊂ B be any subfamily of B such
that C(X) =

∪
W. So for each C ∈ C(X), there exists some VC ∈ W

such that C ∈ VC . Since X is compact, X ∈ C(X). So X ∈ VX . Since
VX ∈ B, there exists some W ∈ T such that VX = W+. Since X ∈ W+,
the set W = X. Thus for each C ∈ C(X) the point C ∈ W+ = VX . So
C(X) = VX . Thus (C(X), V +) is compact. �

Corollary 45. Let X be a T1-space. If Y ⊂ X is a closed compact subset
of X, then (C(Y ), V +

Y ) = (C(Y ), V +|Y ) is compact.
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Recall that a space X is locally compact if every point x ∈ X has a
neighborhood which is compact.

Theorem 46. If X is a locally compact Hausdorff space, then (C(X), V +)
is locally compact.

Proof. Let F be any element of C(X). Then F is a compact closed subset
of X. Since X is locally compact, for each x ∈ X there exists a compact
neighborhood Vx of X. Thus there exist nF ∈ N and xi ∈ F for each
i ≤ nF such that F ⊂

∪
{V ◦

xi
: i ≤ nF } = W ⊂

∪
{Vxi

: i ≤ nF } = Y .
If W+ = {C ∈ C(X) : C ⊂ W} and Y + = {C ∈ C(X) : C ⊂ Y }, then
F ∈ W+ ⊂ Y +. Since X is a Hausdorff space and Y is compact, the
set Y is closed in X. So Y + = C(Y ) is compact by Corollary 45. Thus
(C(X), V +) is locally compact. �

Theorem 47. Let X be a T1-space. Then X has a countable base if and
only if (2X , V −) has a countable base.

Proof. Assume that X has a countable base B. Let B∗ = {
∩
i≤n

B−
i : Bi ∈

B, i ≤ n, n ∈ N}. Then |B∗| ≤ ω. Let F ∈ 2X be any element of 2X and
let V be any open neighborhood of F in (2X , V −).

There exist some n ∈ N and an open subset Ui for each i ≤ n such
that F ∈

∩
i≤n

U−
i ⊂ V. For each i ≤ n there exists some xi ∈ F ∩ Ui.

Since B is a base of X, for each i ≤ n there exists some Bi ∈ B such that
xi ∈ Bi ⊂ Ui. Thus F ∈

∩
i≤n

B−
i ⊂

∩
i≤n

U−
i ⊂ V and

∩
i≤n

B−
i ∈ B∗. So B∗

is a countable base of (2X , V −).
The inverse implication follows from Proposition 13. �

Theorem 48. Let X be a T1-space. Then X has a countable base if and
only if (C(X), V +) has a countable base.

Proof. Let B be a countable base of X. If B∗ = {(
∪
V)+ : V ⊂ B and

|V| < ω}, then B∗ is a countable family of open subsets of (C(X), V +).
Let F be any element of C(X). If U is an open neighborhood of F in
(C(X), V +), then there is an open subset U of X such that F ∈ U+ ⊂ U .
Thus there exists a finite family V ⊂ B such that F ⊂

∪
V ⊂ U . So

F ∈ (
∪
V)+ ⊂ U+ ⊂ U and (

∪
V)+ ∈ B∗. Thus B∗ is a countable base of

(C(X), V +).
Now we prove the inverse implication. By Proposition 14, the space X

is homeomorphic to a subspace of (C(X), V +). Thus X has a countable
base if (C(X), V +) has a countable base. �

Similar to Theorem 47, we have:
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Proposition 49. Let X be a T1-space. Then X has a countable network
if and only if (2X , V −) has a countable network.
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