http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Some topological games, D-spaces and covering properties of hyperspaces

 $\mathbf{b}\mathbf{y}$

LIANG-XUE PENG, YUAN SUN AND SHANG-ZHI WANG

Electronically published on January 23, 2019

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SOME TOPOLOGICAL GAMES, *D*-SPACES AND COVERING PROPERTIES OF HYPERSPACES

LIANG-XUE PENG*, YUAN SUN, AND SHANG-ZHI WANG

ABSTRACT. We study topological games, *D*-spaces and covering properties of hyperspaces with the upper (lower) Vietoris topology $V^+(V^-)$. Let **C** be the class of all compact spaces. Let **W** be the class of all countable spaces. Let **1** denote the class of all one point spaces and empty set. We get the following conclusions:

If X is a 1-like T_1 -space, then the hyperspace $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a 1-like space. If X is a nc-W-like T_1 -space, then $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a nc-W-like space. If X is a D1-like T_1 -space, then $(2^X, V^-)$ $((\mathcal{C}(X), V^-))$ is a D1-like space. If X is a T_1 -space and $(\mathcal{C}(X), V^+)$ is nc-1-like, then X is C-like. If X is a T_1 -space and $(\mathcal{C}(X), V^-)$ is nc-1-like, then X is C-like. If X is a hemicompact Hausdorff space, then $(\mathcal{C}(X), V^+)$ is a nc-1-like space. We finally show that if X is a Hausdorff topological space such that every closed compact subset of X is a G_{δ} -set of X, then $(\mathcal{C}(X), V^+)$ is a nc-1-like space if and only if X is a hemicompact space. We point out that there exists a σ -compact (1-like) T_2 -space X such that the hyperspace $(\mathcal{C}(X), V^+)$ is not a nc-1-like space.

If X is a T_1 D-space, then $(2^X, V^-)$ is a D-space. If X is a T_1 space, then X is a D-space if and only if $(\mathcal{C}(X), V^-)$ is a D-space. If X is a T_1 -space and $(2^X, V^-)$ is a bD-space, then X is a bD-space. If X is a paracompact space, then $(2^X, V^-)$ is metacompact. If X_n is a T_1 -space for each $n \in \mathbb{N}$ such that $\prod_{i=1}^{N} (\mathcal{C}(X_n), V_n^+)$ is Lindelöf,

then $\prod_{n \in \mathbb{N}} X_n$ is Lindelöf.

219

²⁰¹⁰ Mathematics Subject Classification. Primary 54D99; Secondary 54A35. Key words and phrases. Topological games, C-like, 1-like, W-like, D-space, metacompact, hemicompact, hyperspace.

Research supported by Beijing Natural Science Foundation (Grant No. 1162001) and supported by the National Science Foundation of China (Grant No.11771029). *Corresponding author.

^{©2019} Topology Proceedings.

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.