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INVERSE LIMITS WITH SET-VALUED FUNCTIONS
HAVING GRAPHS THAT ARE SINUSOIDS

W. T. INGRAM

Abstract. Sinusoids are subcontinua of the unit square similar
to the standard sin(1/x)-curve. We show that inverse limits with
a sequence of set-valued functions having graphs that are sinusoids
are chainable continua. In the process we prove that if M and N
are continua and f : M � N is a monotone mapping such that
point inverses under f are C-sets with property P and the contin-
uum N has property P then M has property P where P is any one
of the properties: (1) atriodic, (2) hereditarily decomposable, (3)
hereditarily unicoherent, and (4) hereditarily decomposable chain-
able.

1. Introduction

In 1955 A. D. Wallace introduced the notion of a C-set and explored
C-sets in the context of topological semigroups. In 1982 the author [4]
investigated C-sets and their role in continuum theory. In the present
article, we make use of C-sets to obtain results about inverse limits with
upper semi-continuous bonding functions. Specifically, we show in Theo-
rem 4.3 that inverse limits on [0, 1] with upper semi-continuous set-valued
bonding functions having graphs that are sinusoids are chainable con-
tinua. In an earlier paper, [6, Example 5.4], we showed that the inverse
limit on [0, 1] with an upper semi-continuous bonding function whose
graph is a piecewise linear version of a “standard” sin(1/x)-curve is a
chainable continuum. Soon thereafter James P. Kelly, [11], extended
that result to inverse limits on [0, 1] with a single upper semi-continuous
function having a graph that is what he calls an irreducible function.
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Here our approach returns to some of the original ideas of [6]. Initially, we
tried mimicking that argument but the results obtained were not as gen-
eral as the techniques employed here actually produce. We rely on Bing’s
characterization of chainability in hereditarily decomposable continua as
continua that are atriodic and hereditarily unicoherent, and it allows us
to permit sequences of bonding functions that do not have to be constant.
This required an investigation found in Section 3 of monotone mappings
having point inverses that are C-sets. Over the years, there has been
considerable interest in monotone maps on continua where the image is a
chainable continuum. Notably, such a question appeared in the Houston
Problem Book couched in the language of upper semi-continuous decom-
positions, see [2, Problem 105]. For monotone mappings it amounts to
asking if an atriodic 1-dimensional continuum is chainable if its image un-
der a monotone mapping with chainable point-inverses is chainable. This
question was answered in the negative in a paper by James F. Davis and
the author, [3]. The example in that paper is a nonchainable indecom-
posable continuum with a monotone mapping to a chainable continuum
having only one nondegenerate point-inverse and it is an arc. Interest-
ingly, that point-inverse is not a C-set in the nonchainable continuum. In
this light, perhaps the following question is of interest.

Question 1.1. If M is a 1-dimensional atriodic continuum and f is a
monotone mapping of M onto a chainable continuum N such that point-
inverses are chainable C-sets in M , is M chainable?

Theorem 3.8 yields that the answer is “yes” in case N as well as all point
inverses are hereditarily decomposable chainable continua even without
assuming M is atriodic and 1-dimensional.

2. Definitions and Notation

A compactum is a compact metric space; a continuum is a connected
compactum. By a mapping we mean a continuous function. If X is
a compactum, 2X denotes the collection of all compact subsets of X.
If each of X and Y is a compactum, a function f : X → 2Y , herein
denoted f : X ↗ Y , is said to be upper semi-continuous at the point
x of X provided that if V is an open subset of Y that contains f(x)
then there is an open subset U of X containing x such that if t is a
point of U then f(t) ⊆ V . A function f : X ↗ Y is called upper semi-
continuous provided it is upper semi-continuous at each point of X. If
f : X ↗ Y is a set-valued function, by the graph of f , denoted G(f), we
mean {(x, y) ∈ X × Y | y ∈ f(x)}; if f : X ↗ Y and g : Y ↗ Z, then
g ◦ f : X ↗ Z denotes the function given by z ∈ g ◦ f(x) if and only if
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there is a point y of Y such that y ∈ f(x) and z ∈ g(y). It is known that
if X and Y are compacta and M is a subset of X × Y such that X is the
projection of M to its set of first coordinates then M is closed if and only
if M is the graph of an upper semi-continuous function [10, Theorem 2.1]
or [5, Theorem 1.2, p. 3]. If s = s1, s2, s3, . . . is a sequence, we normally
denote the sequence in boldface type and its terms in italics. Suppose
X is a sequence of compacta and fn : Xn+1 ↗ Xn is an upper semi-
continuous function for each n ∈ N. By the inverse limit of f , denoted
lim←−f , we mean {x ∈

∏
i>0Xi | xi ∈ fi(xi+1) for each positive integer i}.

If {Xa | a ∈ D} is a collection of sets and A is a subset of D, we denote by
πA the natural projection of

∏
a∈DXa onto

∏
a∈AXa. If a and b are two

numbers, we denote the interval with endpoints a and b by [a, b] whether
or not a is smaller. A continuum M is hereditarily unicoherent provided
if A and B are subcontinua of M with a point in common then A ∩B is
connected. A continuum M is a triod provided there is a subcontinuum
H of M such that M −H has three components; a continuum is atriodic
provided it does not contain a triod. A continuum homeomorphic to an
inverse limit on intervals with mappings is called a chainable continuum.

A subset K of a continuum M is a C-set in M provided it is true
that if H is a subcontinuum of M containing a point of K and a point
of M − K then K ⊆ H. A subcontinuum C of a continuum M is said
to be terminal in M provided if H and K are subcontinua of M each
intersecting C then H ⊆ K ∪ C or K ⊆ H ∪ C. In these definitions we
have attempted to remain true to the original usage of the terms C-set
and terminal continuum. However, the reader should be advised that
elsewhere in the literature C-sets have been called terminal continua, and
terminal continua as we have defined them have been called end continua.

The following theorems with proofs or citations to original sources may
be found in [6].

Theorem 2.1. If A and B are chainable continua and A ∩ B is a con-
tinuum that is terminal and a C-set in both A and B, then A ∪ B is
chainable. Moreover, A ∩B is a C-set in A ∪B.

Theorem 2.2. Suppose H is a subcontinuum of the continuum M and K
is a C-set in H. If there is an open subset U of M such that K ⊆ U ⊆ H,
then K is a C-set in M .

In [1], R. H. Bing proved the following theorem characterizing chain-
ability among hereditarily decomposable continua.

Theorem 2.3. (Bing) An hereditarily decomposable continuum is chain-
able if and only if it is atriodic and hereditarily unicoherent.
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A set traditionally used in the proof that lim←−f is nonempty and com-
pact is {x ∈

∏
k>0Xk | xi ∈ fi(xi+1) for 1 ≤ i ≤ n}. Because this set

was originally denoted Gn, we adopt and use throughout this article the
notation G′n = {x ∈

∏n+1
k=1 Xk | xi ∈ fi(xi+1) for 1 ≤ i ≤ n} for the

projection of Gn into the product of the first n + 1 factor spaces, i.e.,
G′n = π{1,2,...,n+1}(Gn). These sets G′n are precisely the “approximations”
whose connectedness characterizes the connectedness of the inverse limit.
In the literature G′n has been denoted by G′(f1, f2, . . . , fn).

Finally, in Section 4 we make use of the following theorem from [6,
Corollary 4.3]. Theorem 2.4 also follows from [7, Corollary 4.2] and the
fact that an inverse limit on chainable continua with bonding functions
that are mappings is chainable.

Theorem 2.4. Suppose X is a sequence of continua and fn : Xn+1 ↗ Xn

is an upper semi-continuous function for each positive integer n. If G′n is
a chainable continuum for each positive integer n then lim←−f is a chainable
continuum.

3. C-sets and monotone maps

In this section we develop some results about monotone mappings that
have point inverses that are C-sets and use them to prove Theorem 3.8. If
these results are in the literature the author is not aware of it. However,
they are simple to prove and we include them for completeness. We make
use of these lemmas and theorems in the next section of this paper. To
denote that f is a surjective mapping of a continuumM onto a continuum
N , we use the notation f :M � N .
Lemma 3.1. Suppose each of M and N is a continuum and f :M � N
is a mapping. If x is a point of N such that f−1(x) is a C-set in M and
H is a subcontinuum of M containing a point of f−1(x) such that f(H)
is nondegenerate then f−1(x) is a subset of H.
Proof. Because f(H) is nondegenerate there is a point ofH not in f−1(x).
Thus H is a subcontinuum of M contining a point of f−1(x) and a point
not in f−1(x). Because f−1(x) is a C-set in M , H contains it. �

Lemma 3.2. Suppose each of M and N is a continuum and f :M � N
is a monotone mapping such that f−1(x) is a C-set in M for each x
in N . If H is a subcontinuum of M and f(H) is nondegenerate, then
f−1(f(H)) = H.
Proof. We only need to show that each point of f−1(f(H)) is in H.
If x ∈ f−1(f(H)) then f(x) ∈ f(H) so there is a point y of H such
that f(y) = f(x). Then, y is a point of f−1(x). Because H contains a
point of f−1(f(x)) and f(H) is nondegenerate, by Lemma 3.1 H contains
f−1(f(x)) so x ∈ H. �
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Our next theorem will be useful in the next section of this article.

Theorem 3.3. Suppose a and b are numbers with a < b, M is a con-
tinuum and f : M � [a, b] is a monotone mapping such that f−1(t) is a
C-set in M for each t in [a, b]. Then, f−1(a) and f−1(b) are terminal in
M .

Proof. Because f is monotone, f−1(a) is a continuum. Suppose H and
K are subcontinua of M each intersecting f−1(a). We may assume that
neither is a subset of f−1(a). By Lemma 3.1 f−1(a) is a subset of H ∩K.
There exist c and d such that f(H) = [a, c] and f(K) = [a, d]. We may
assume that c ≤ d. Then, f−1([a, c]) ⊆ f−1([a, d]). But H = f−1([a, c])
and K = f−1([a, d]), so H ⊆ K. Then, H ∪ f−1(a) ⊆ K ∪ f−1(a), so
f−1(a) is terminal in M . Similarly, f−1(b) is terminal in M . �

Theorem 3.4. Suppose M and N are continua, N is hereditarily decom-
posable, and f : M � N is a monotone mapping such that f−1(x) is a
C-set in M for each x in N . If H is a subcontinuum of M such that
f(H) is nondegenerate, then H is decomposable.

Proof. Suppose f(H) = A∪B where A and B are proper subcontinua of
f(H). Because f is monotone, f−1(A) and f−1(B) are subcontinua ofM .
By Lemma 3.2, H = f−1(f(H)). Because f−1(A∪B) = f−1(A)∪f−1(B),
we see that H = f−1(A) ∪ f−1(B). Because A contains a point not in
B , f−1(A) contains a point not in f−1(B). Because B contains a point
not in A, f−1(B) contains a point not in f−1(A). Thus, H is the union
of two proper subcontinua. �

Theorem 3.5. Suppose M and N are continua, N is hereditarily de-
composable, and f : M � N is a monotone mapping such that f−1(x)
is an hereditarily decomposable C-set in M for each x in N . Then, M is
hereditarily decomposable.

Proof. Suppose H is a subcontinuum of M . If f(H) is nondegenerate,
by Theorem 3.4, H is decomposable. If f(H) = {x}, then H is a sub-
set of f−1(x) which is hereditarily decomposable by hypothesis, so H is
decomposable. �

Theorem 3.6. Suppose M and N are continua, N is atriodic, and f :
M � N is a monotone mapping such that f−1(x) is an atriodic C-set in
M for each x in N . Then, M is atriodic.

Proof. Suppose M contains a triod T . Let A be a subcontinuum of T
such that T − A has three components, T1, T2, and T3. Let H = T1 ∪ A,
K = T2 ∪ A, L = T3 ∪ A, and let p be a point of A. Then, H, K, and
L are three subcontinua of M all containing the point p. If f(H), f(K),
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and f(L) are degenerate then H,K, and L are subcontinua of the atriodic
continuum f−1(f(p)) contradicting the fact that T is a triod. Suppose
f(H) is degenerate and one of f(K) and f(L), say f(K), is nondegenerate.
Then, by Lemma 3.1, f−1(f(p)) is a subset of K. But, H is a subset of
f−1(f(p)), so H is a subset of K, again contradicting the fact that T is a
triod.

If f(H), f(K), and f(L) are all nondegenerate, then, because all
three contain f(p) and N is atriodic, one of them is a subset of the
union of the other two. Suppose f(H) ⊆ f(K) ∪ f(L). By Lemma
3.2, H = f−1(f(H)), K = f−1(f(K)), and L = f−1(f(L)). But,
f−1(f(H)) ⊆ f−1(f(K) ∪ f(L)) = f−1(f(K)) ∪ f−1(f(L)) = K ∪ L.
This is a contradiction, so M does not contain a triod. �

Theorem 3.7. Suppose M and N are continua, N is hereditarily uni-
coherent, and f : M � N is a monotone mapping such that f−1(x) is
an hereditarily unicoherent C-set in M for each x in N . Then, M is
hereditarily unicoherent.

Proof. Suppose H and K are subcontinua of M with a common point,
p. If f(H) and f(K) are degenerate, then H and K are subcontinua of
the hereditarily unicoherent subcontinuum f−1(f(p)) of M , so H ∩K is
connected. If f(H) is nondegenerate, by Lemma 3.1, f−1(f(p)) is a subset
of H. If f(K) is degenerate, K ⊆ f−1(f(p)), so H∩K = K. If both f(H)
and f(K) are nondegenerate, then, because N is hereditarily unicoherent,
f(H) ∩ f(K) is connected. Because f is monotone, f−1(f(H) ∩ f(K))
is connected. But, f−1(f(H) ∩ f(K)) = f−1(f(H)) ∩ f−1(f(K)) = H ∩
K. �

Using Bing’s theorem (Theorem 2.3) and Theorems 3.5, 3.6, and 3.7
from this section, we have the following theorem.

Theorem 3.8. Suppose M is a continuum, N is an hereditarily decom-
posable chainable continuum, and f : M � N is a monotone mapping
such that f−1(x) is an hereditarily decomposable chainable C-set in M
for each x in N . Then, M is chainable.

4. Sinusoids

In this section we define a sin(1/x)-type structure we call a sinusoid.
Sinusoids include a traditional sin(1/x)-curve and the curve shown by
Dorothy Sherling [12] not to be homeomorphic to an inverse limit on in-
tervals with a single mapping. Here we show that an inverse limit with a
sequence of sinusoids is a chainable continuum generalizing the result in
[6, Example 5.4]. This investigation was prompted by a question asked
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by Rob Roe in private correspondence with the author. Specifically, in
the framework established below, Roe asked if the sinusoid determined
by the sequence 1, 0, 1/2, 0, 1, 0, 1/2, 0, 1, . . . produces a chainable contin-
uum in the inverse limit. The result herein answers this question in the
affirmative. We begin with a lemma.

Lemma 4.1. Suppose X is a sequence of continua and f is a sequence
of upper semi-continuous functions such that fi : Xi+1 → C(Xi) for each
positive integer i. Then, for each positive integer n, πn+1|G′n is monotone.

Proof. We proceed by induction. Let x be a point of X2. Then, {(y, x) ∈
G′1 | y ∈ f1(x)} = f1(x)×{x}. Because f1(x) is connected, f1(x)×{x} =
π−12 (x) ∩G′1 = (π2|G′1)−1(x) is connected.

Suppose k is a positive integer such that πk+1|G′k is monotone and
let x be a point of Xk+2. Then, fk+1(x) is a subcontinuum of Xk+1;
consequently, (πk+1|G′k+1)

−1(fk+1(x)) is a continuum. However, this
set is homeomorphic to {(x1, x2, . . . , xk+2) ∈ G′k+1 | xk+2 = x}, but
{(x1, x2, . . . , xk+2) ∈ G′k+1 | xk+2 = x} = (πk+2|G′k+1)

−1(x). Thus,
πk+2|G′k+1 is monotone. �

Suppose z0, z1, z2, . . . is a sequence of numbers from [0, 1] such that
(1) z0 = 1
(2) zi+1 > zi if i is odd and zi+1 < zi otherwise
(3) some subsequence of z converges to 0 and another subsequence

of z converges to 1.
Let f : [0, 1]↗ [0, 1] be the upper semi-continuous function defined as

follows:
(1) f(0) = [0, 1]
(2) f(1/2i) = zi for i = 0, 1, 2, . . .
(3) f is a homeomorphism on [1/2i, 1/2i−1] for each i.

We call G(f) the sinusoid determined by z, or, simply, a sinusoid. The
condition that z contains subsequences converging to 0 and 1 ensures that
{0}× [0, 1] is a C-set in G(f). The condition that z0 = 1 is artificial, but
we assume it for convenience. It is only necessary that z0 be positive.

Theorem 4.2. Suppose f is a sequence of upper semi-continuous func-
tions such that, for each positive integer i, fi : [0, 1] ↗ [0, 1] has a graph
that is a sinusoid. Then, for each positive integer n,G′n is an hereditarily
decomposable chainable continuum.

Proof. Observe that, for each positive integer i, fi : [0, 1] → C([0, 1]) so,
by Lemma 4.1, πn+1|G′n is monotone for each positive integer n.
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We proceed by induction. Note that if 0 ≤ a < b ≤ 1, then {(x1, x2) ∈
G′1 | a ≤ x2 ≤ b} is an hereditarily decomposable chainable continuum
such that

(1) if a ≤ t ≤ b then {(x1, x2) ∈ G′1 | x2 = t} is a point or an interval
that is a C-set in {(x1, x2) ∈ G′1 | a ≤ x2 ≤ b} and

(2) {(x1, x2) ∈ G′1 | x2 = a} and {(x1, x2) ∈ G′1 | x2 = b} are
terminal in {(x1, x2) ∈ G′1 | a ≤ x2 ≤ b}.

Suppose k is a positive integer such that if 0 ≤ a < b ≤ 1 then {x ∈
G′k | a ≤ x ≤ b} is an hereditarily decomposable chainable continuum
such that

(1) if a ≤ t ≤ b then {x ∈ G′k | xk+1 = t} is a continuum that is a
C-set in {x ∈ G′k | a ≤ xk+1 ≤ b} and

(2) {x ∈ G′k | xk+1 = a} and {x ∈ G′k | xk+1 = b} are terminal in
{x ∈ G′k | a ≤ xk+1 ≤ b}.

Denote fk+1 by f and suppose z is the sequence such that G(f) is the
sinusoid determined by z. Let ϕ0 : [0, 1] → [0, 1] be the mapping given
by ϕ0(t) = 0 for each t. For each positive integer i, let ϕi : [zi−1, zi] �
[1/2i, 1/2i−1] be the surjective homeomorphism that is the inverse of the
restriction of f to [1/2i, 1/2i−1]. Note that ϕi(zi) = 1/2i for each i ≥ 0
and G(f−1) = ϕ0 ∪ ϕ1 ∪ ϕ2 ∪ · · · . Define Φ0 : G′k → G′k+1 by Φ0(x) =
(x1, x2, . . . , xk+1, ϕ0(xk+1)). For i ≥ 1, define Φi : {x ∈ G′k | xk+1 ∈
[zi−1, zi]} → G′k+1 by Φi(x) = (x1, x2, . . . , xk+1, ϕi(xk+1)). Let L0 =
Φ0(G

′
k). For i ≥ 1 let Li = Φi({x ∈ G′k | xk+1 ∈ [zi−1, zi]}). Because

ϕi is a mapping for each i ≥ 0, Φi is a homeomorphism, so each Li is
an hereditarily decomposable chainable continuum. Furthermore, Li ∩
Li+1 = {x ∈ G′k+1 | xk+2 = ϕi(zi)}, Li ∩ Lj 6= ∅ if and only if i, j ∈ N
and |i− j| ≤ 1, and G′k+1 = L0 ∪ L1 ∪ L2 ∪ · · · . As a consequence of the
fact that the sequence z contains subsequences converging to both 0 and
1, L0 = cl(L1 ∪ L2 ∪ L3 ∪ · · · )− (L1 ∪ L2 ∪ L3 ∪ · · · ).

Because πk+2|G′k+1 is a monotone map from G′k+1 onto [0, 1], if 0 ≤
a < b ≤ 1, then {x ∈ G′k+1 | a ≤ xk+2 ≤ b} is a continuum.

We now show that if 0 ≤ a ≤ t ≤ b ≤ 1 then {x ∈ G′k+1 | xk+2 = t} is
a C-set in {x ∈ G′k+1 | a ≤ xk+2 ≤ b}. We consider cases:

(1) t = 1,
(2) t ∈ [1/2j , 1/2j−1] for some positive integer j, and
(3) t = 0.
Because {x ∈ G′k+1 | xk+2 = 1} is degenerate, it is a C-set in any

continuum containing it. If 1/2j < t < 1/2j−1 there exist c, d with
1/2j < c < t < d < 1/2j−1 such that the segment (c, d) is a subset of the
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segment (a, b). By the inductive hypothesis, {x ∈ G′k | xk+1 = ϕ−1j (t)}
is a C-set in {x ∈ G′k | ϕ

−1
j (c) ≤ xk+1 ≤ ϕ−1j (d)}. Because Φj is a

homeomorphism, {x ∈ G′k+1 | xk+2 = t} is a C-set in {x ∈ G′k+1 | c ≤
x ≤ d}; because it lies in the open set {x ∈ G′k+1 | c < xk+2 < d} lying in
the subcontinuum {x ∈ G′k+1 | c ≤ x ≤ d} of {x ∈ G′k+1 | a ≤ x ≤ b},
by Theorem 2.2 it is a C-set in {x ∈ G′k+1 | a ≤ x ≤ b}. In case t is
one of the endpoints of [1/2j , 1/2j−1], say t = 1/2j , choose c and d so
that 1/2j+1 < c < 1/2j < d < 1/2j−1 while keeping the segment (c, d)
a subset of the segment (a, b). Because {x ∈ G′k | f(c) ≤ xk+1 ≤ zj}
is a chainable continuum having {x ∈ G′k | xk+1 = zj} as a terminal
subcontinuum and Φj−1 is a homeomorphism, it follows that {x ∈ G′k+1 |
c ≤ xk+2 ≤ 1/2j} is a chainable continuum having {x ∈ G′k+1 | xk+2 =

1/2j} as a terminal subcontinuum. Similarly, {x ∈ G′k+1 | 1/2j ≤ xk+2 ≤
d} is a chainable continuum having {x ∈ G′k+1 | xk+2 = 1/2j} as a
terminal subcontinuum. Thus, {x ∈ G′k+1 | c ≤ xk+2 ≤ 1/2j} and
{x ∈ G′k+1 | 1/2j ≤ xk+2 ≤ d} are chainable continua intersecting in a
common terminal continuum, {x ∈ G′k+1 | xk+2 = 1/2j}. By Theorem
2.1, {x ∈ G′k+1 | xk+2 = 1/2j} is a C-set in {x ∈ G′k+1 | c ≤ xk+2 ≤ d}.
Because this C-set lies in the open set {x ∈ G′k+1 | c < xk+2 < d} lying
in the continuum {x ∈ G′k+1 | a ≤ xk+2 ≤ b}, it is a C-set in {x ∈
G′k+1 | a ≤ xk+2 ≤ b}. Finally, in case t = 0, let H be a subcontinuum
of {x ∈ G′k+1 | 0 ≤ xk+2 ≤ b} that contains a point of L0 and a point
not in L0. Then, H contains a point p such that pk+2 > 0. There is a
positive integer N such that 1/2i < pk+2 for i ≥ N . Then, for each i ≥ N ,
H contains π−1k+2(t) for t ∈ [1/2i+1, 1/2i], a C-set in {x ∈ G′k+1 | a ≤
xk+2 ≤ b}. So Li ⊆ H for i ≥ N+1. Therefore, H contains L0 = π−1k+2(0)

so we have π−1k+2(0) is a C-set in {x ∈ G′k+1 | a ≤ xk+2 ≤ b}.

That {x ∈ G′k | xk+1 = a} and {x ∈ G′k | xk+1 = b} are terminal in
{x ∈ G′k | a ≤ xk+1 ≤ b} is a consequence of Theorem 3.3.

Thus we have that πk+2|G′k+1 is a monotone map of Gk+1 onto [0, 1]

such that (π−1k+2|G′k+1)
−1(t) is an hereditarily decomposable chainable C-

set in G′k+1 for each t in [0, 1]. By Theorem 3.8, G′k+1 is chainable and
the induction is complete. �

Using Theorem 4.2 along with Theorem 2.4 we have the following the-
orem.

Theorem 4.3. Suppose f is a sequence of upper semi-continuous func-
tions such that, for each positive integer i, fi : [0, 1] ↗ [0, 1] has a graph
that is a sinusoid. Then lim←−f is chainable.
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(1,0)(1/2,0)

(1/4,1)

(1/8,0)

(1,1)

(0,0)

...

Figure 1. The graph of the bonding function in Exam-
ple 4.5

There are several natural conditions to impose on upper semi-continu-
ous set-valued functions on [0, 1] that could be considered generalizations
of mappings. These include those whose graphs are arcs as well as interval-
valued functions. One condition that may have been overlooked is requir-
ing the function to have values that are C-sets in its graph. With that in
mind we pose the following problem.

Problem 4.4. Suppose f is a sequence of upper semi-continuous func-
tions such that, for each positive integer i, fi : [0, 1]→ C([0, 1]) and f(t) is
a C-set in G(f) for each t ∈ [0, 1]. If lim←−f is treelike, is lim←−f chainable?

In Problem 4.4, some condition restricting the behavior of “flat spots”
on the graphs is needed. We conclude with an example that illustrates
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this. We imposed the condition that lim←−f be treelike because treelikeness
of is well understood due to Marsh’s characterization as found in [14].

Example 4.5. Let f be the upper semi-continuous set-valued function on
[0, 1] obtained by replacing the homeomorphism on [1/2, 1] in the sinusoid
determined by the sequence 1, 0, 1, 0, . . . with the map that has value 0 for
each point of [1/2, 1]. Then lim←−f contains a copy of the Hilbert cube,
[1/2, 1] × {0} × [1/2, 1] × {0} × · · · , and so is infinite dimensional. See
Figure 1 for G(f).

A closer examination of Example 4.5 shows that, even though f(t) is
a C-set in G(f) for each t ∈ [0, 1] and π3|G′2 is monotone, (π3|G′2)−1(t) is
not a C-set in G′2 for any t ∈ [1/2, 1] precisely because of the “flat spot” on
G(f). Difficulties regarding dimension and treelikeness of inverse limits
on [0, 1] with set-valued functions that are caused by “flat spots” on the
graphs of the bonding functions are discussed in articles like [8], [13], and
[14].
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