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ON H-CLOSED AND MINIMAL HAUSDORFF SPACES
AND THE BOOLEAN PRIME IDEAL THEOREM

ELEFTHERIOS TACHTSIS

Abstract. In ZF (i.e., Zermelo–Fraenkel set theory without the
Axiom of Choice (AC)), we establish that the Boolean Prime Ideal
Theorem (BPI) is equivalent to each one of the following state-
ments:

(1) A Hausdorff space is H-closed if and only if every open ul-
trafilter on the space converges;

(2) Products of H-closed Hausdorff spaces are H-closed;
(3) Products of minimal Hausdorff spaces are minimal;
(4) For every Hausdorff space X, the Katětov space κX is an

H-closed extension of X;
(5) Every Hausdorff space has a (unique up to homeomorphism)

projectively largest Katětov H-closed extension.
We also establish the following implications: BPI ⇒ “products of

non-empty H-closed Hausdorff spaces are non-empty” ⇒ “products
of non-empty minimal Hausdorff spaces are non-empty” ⇒ ACfin

(i.e., “every family of non-empty finite sets has a choice function”).

1. Introduction

An extension of a topological space X is a space which contains X as
a dense subspace. The construction of extensions such as compactifica-
tions, realcompactifications and H-closed extensions has been an area of
intense research in general topology for a long time. For a systematic and
deep study of extensions (and absolutes) of Hausdorff spaces the reader
is referred to the book of Porter and Woods [20].
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256 ELEFTHERIOS TACHTSIS

Let X be a Hausdorff space. X is called Hausdorff-closed or simply H-
closed if X is closed in every Hausdorff space in which X can be embedded.
The notion of H-closed space was introduced in 1924 by Alexandroff and
Urysohn [1]. In [1], it was shown that a Hausdorff space is H-closed iff
every open cover has a finite subfamily with dense union; an H-closed
Hausdorff space is compact iff it is regular; there exists (in ZF) an H-
closed, Urysohn space (i.e., any two distinct elements of the underlying
set have respectively two open neighborhoods whose closures are disjoint)
which is not compact.

A Hausdorff space (X, T ) is called minimal if there is no Hausdorff
topology T ′ on X such that T ′ ( T ; in other words, X is minimal if T is
a minimal element of the lattice Haus(X) of all Hausdorff topologies on
X partially ordered by ⊆. (Note that if X is finite, then Haus(X) is a
singleton, and thus Haus(X) has a minimum element; hence the notion of
minimal Hausdorff space becomes interesting when X is infinite. Further-
more, since compact Hausdorff spaces are minimal, and there are compact
Hausdorff topologies on any set X, it follows that Haus(X) always has
minimal elements.) It was a question of Alexandroff and Urysohn in [1]
that triggered off the study of minimal Hausdorff spaces, namely whether
a Hausdorff space has an H-closed extension. The answer to the above
question was shown to be in the affirmative by Stone in 1937, Katětov
in 1940, Fomin in 1941, A. D. Alexandroff in 1942 and Šanin in 1943
(detailed historical notes and references can be found by the interested
reader in [3] and [20]). It should be noted here that it was Tychonoff [23]
in 1930 who first gave a partial answer to Alexandroff and Urysohn’s in-
quiry, namely that every Hausdorff space can be embedded in an H-closed
space. In 1992, Porter [18] proved that Tychonoff was close in providing
a complete answer; in particular, Porter established that the closure of
Tychonoff’s embedding is H-closed.

Katětov [13] showed that there is a strong connection between minimal
Hausdorff spaces and H-closed Hausdorff spaces. In particular, he showed
that a minimal Hausdorff space is H-closed, and that a Hausdorff space is
minimal iff it is H-closed and semiregular (where a Hausdorff space (X, T )
is semiregular if the complete Boolean algebra of the regular open sets of
X is a base for T ).

Katětov’s H-closed extension space of a given Hausdorff space has prop-
erties similar to the Stone–Čech compactification of a Tychonoff space,
i.e., T1 and completely regular space (we will explicitly mention those
properties in the sequel – see Proposition 3.7 and Theorem 3.8 of Section
3). Furthermore, we recall that BPI (the Boolean Prime Ideal Theorem)
is equivalent to the Stone-Čech compactification theorem for a Tychonoff
space (see Form [14L] in [10]), and is also equivalent to the Tychonoff
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product theorem restricted to compact Hausdorff spaces (i.e., “Products of
compact Hausdorff spaces are compact”, and Form [14J] in [10]) – the lat-
ter two results were established by Rubin and Scott [22] in 1954, whereas
the above restricted product theorem was in fact proved earlier by Łoś
and Ryll-Nardzewski [17] in 1951; see also Howard and Rubin [10] for a
list of equivalents of BPI. In the realm of H-closed and minimal Hausdorff
spaces, it is known that products of H-closed (minimal) Hausdorff spaces
are H-closed (resp. minimal); see [6] (resp. [11]). The above facts provide
a first implicit suggestion that BPI may possess a prominent role in the
theory of H-closed and minimal Hausdorff spaces.

A second fact which strongly points at this direction is, on one hand,
the (ZFC, i.e., ZF+ AC) result by Bourbaki [5] in 1961 which characterizes
H-closed Hausdorff spaces, namely that a Hausdorff space is H-closed iff
every open ultrafilter on the space converges, and on the other hand,
the fairly recent result by Rhineghost [21] in 2002 that BPI is equivalent
to each one of “For each non-empty topological space, its lattice of open
sets contains an ultrafilter ” and “For topological spaces, each open filter
can be extended to an open ultrafilter ”. The latter two equivalences have
been established independently by Keremedis and Tachtsis [16], and Zisis
[24]. (We would like to point out here that each one of “For each non-
empty topological space, its lattice of closed sets contains an ultrafilter”
and “For topological spaces, each closed filter can be extended to a closed
ultrafilter” is equivalent to the full AC in ZFA set theory, i.e., in ZF with the
Axiom of Extensionality modified in order to allow the existence of atoms.
The first equivalence was established by Herrlich [8] and the second one by
Keremedis and Tachtsis [15]. The question of whether the above principle
restricted to the class of T1 spaces or Hausdorff spaces is equivalent to
AC is still an open problem.)

It is exactly the chief purpose of this note to justify the above implicit
suggestions and in particular to prove that BPI is equivalent to some of the
most fundamental results in the area of H-closed and minimal Hausdorff
spaces. We would like to stress the fact that the axiomatic system in which
most of the theory of H-closed and minimal Hausdorff spaces has been
developed is ZFC, and to the best of our knowledge, there is no published
work in the literature which discusses the set-theoretic strength of results of
this area in comparison with AC or weak forms of AC. (We also note that
there is no mention of results related to H-closed and minimal Hausdorff
spaces in the list of forms (i.e., of consequences of AC) of the encyclopedic
book of Howard and Rubin [10].) We thus consider it important that
the relative strength of fundamental results of this area of general topol-
ogy be clarified since this will provide a deeper insight and understand-
ing of the theory as well as a comprehension of its possible limitations.



258 ELEFTHERIOS TACHTSIS

The study in this note is motivated by the above considerations and one
of its goals is to initiate the investigation in this important part of general
topology from the set-theoretic viewpoint.

2. Terminology and known results in ZF

All topological spaces considered in this paper are assumed to be Haus-
dorff unless it is explicitly stated otherwise. Therefore, the word “space”
shall henceforth mean “Hausdorff topological space”. In only a couple of
cases, we shall remind the reader of this assumption for emphasis.
Definition 2.1. Let (X, T ) be a space. (Often, the short term “X” shall
be used for (X, T ).)

(1) A space Y is called an extension of X if X is a dense subspace of
Y . (Equivalently, Y is an extension of X if X can be densely embedded
in Y .)

(2) X is called compact if every open cover of X has a finite subcover.
(3) X is called H-closed if X is closed in every Hausdorff space in which

X can be embedded.
(4) X is called minimal if there is no Hausdorff topology T ′ on X such

that T ′ ( T .
(5) X is called semiregular if the regular open sets of X form a base

for the topology T on X.

Definition 2.2. Let (X, T ) be any (not necessarily Hausdorff) space.
(1) A subset F ⊆ T is called an open filter on X if F satisfies:

(a) F ̸= ∅, and for all F ∈ F , F ̸= ∅;
(b) if F1, F2 ∈ F , then F1 ∩ F2 ∈ F ;
(c) if F1 ∈ F and F1 ⊆ F2 ∈ T , then F2 ∈ F .

(2) An open filter F on X is called an open ultrafilter on X if F is a
maximal element in the set of all open filters on X when partially ordered
by inclusion.

(3) Let F be an open filter on X. The set
∩
{clX(F ) : F ∈ F} (where

clX(F ) is the closure of F in X) is called the adherence of F and it is
denoted by a(F). Every element of a(F) is called an adherent point (or
a cluster point) of F . If a(F) ̸= ∅, then the open filter F is called fixed ;
otherwise, F is called free. The open filter F is said to converge to a point
x ∈ X if every open neighborhood of x belongs to F .

(4) An open filter F on X is called prime if whenever A ∈ T and
B ∈ T are such that A ∪B ∈ F , then A ∈ F or B ∈ F .

(5) If X is a discrete space, i.e., T = ℘(X) (the power set of X), then
an open filter on X is called a filter on X and an open ultrafilter on X is
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called an ultrafilter on X. Note that in this case (that is, T = ℘(X)), a
filter on X is an ultrafilter iff it is prime.

Definition 2.3. The Boolean Prime Ideal Theorem (BPI, and Form 14
in [10]) is the principle: Every non-trivial Boolean algebra has a prime
ideal.

ACfin (Form 62 in [10]) is the principle: Every family of non-empty
finite sets has a choice function.

The following result is well-known (see for example Herrlich [9, Lemma
4.35]).

Proposition 2.4. (ZF) Let (X, T ) be any (not necessarily Hausdorff)
space and let F be an open filter on X. Then F is an open ultrafilter on
X iff for every O ∈ T , either O ∈ F or intX(X \O) ∈ F .

(For a subset Y ⊆ X, intX(Y ) denotes the interior of Y in X.)
For clarity and the reader’s convenience and complete understanding,

we shall list some known central results whose proofs are choice free,
and most of which will play a key role in the establishment of the main
results. Their ZF-proofs can be found by the interested reader in Porter
and Woods [20]. Some bibliographic references shall be attached to the
subsequent results, but the totality of references can be located in [3] and
[20].

Theorem 2.5. (ZF) A compact space is minimal, and a minimal space
is H-closed. None of the converses is in general true.

Theorem 2.6. (ZF) Let X be a space. Then the following are equivalent:
(1) X is H-closed;
(2) ([1]) Every open cover of X has a finite subfamily whose union is

dense in X;
(3) ([4], [6]) Every open filter on X has non-empty adherence.

The subsequent result follows easily from Theorem 2.6 and the ob-
servation that in ZF, every compact space is normal (and recall that by
“space” we mean a Hausdorff space), and thus regular (see [10] for the
latter observation).

Theorem 2.7. (ZF) The following hold:
(1) An H-closed space is compact iff it is regular.
(2) A continuous image of an H-closed space is H-closed.
(3) Every open ultrafilter on an H-closed space converges.
(4) If X is H-closed and W ⊆ X is open, then clX(W ) is H-closed.
(5) If a product of spaces is H-closed, then each coordinate space is

H-closed.
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Theorem 2.8. (ZF) The following hold:
(1) ([4]) A space is minimal iff every open filter on the space with a

unique adherent point converges to this point.
(2) ([13]) A space is minimal iff it is H-closed and semiregular.
(3) ([2]) If a product of spaces is minimal, then each coordinate space

is minimal.
Theorem 2.9. ([9], [12], [16], [17], [21], [22], [24]) In ZF, the following
are equivalent:

(1) BPI;
(2) Every filter on an infinite set can be extended to an ultrafilter;
(3) Products of compact spaces are compact;
(4) Every non-empty (and not necessarily Hausdorff) space has an open

ultrafilter;
(5) Every open filter on a space can be extended to an open ultrafilter.

Proof. (Sketch of (2) ⇔ (4) ⇔ (5).)
(2) ⇒ (4) Let (X, T ) be a non-empty (not necessarily Hausdorff) space.

Let F = {U ∈ T : clX(U) = X}; then F is an open filter on X. It follows
that G = {A : A ∈ ℘(X) and A ⊇ F for some F ∈ F} is a filter on X.
By (2), there exists an ultrafilter H on X which extends F . It is easy to
see that U = H ∩ T is a prime open filter on X which extends F . Since
for any W ∈ T , we have W ∪ intX(X \W ) is dense in X, it follows that
W ∪ intX(X \ W ) belongs to F , and hence to U . Since U is prime, we
conclude that for every W ∈ T , either W ∈ U or intX(X \W ) ∈ U . Thus,
U is an open ultrafilter on X.

(4) ⇒ (5) Let (X, T ) be a space and also let F be an open filter on X.
Let Y = {G : G is an open filter on X which extends F}. Let T ′ = {W :
W ∈ ℘(Y ) such that for every U ∈ W and for every V ∈ Y , if U ⊆ V, then
V ∈ W}. Then T ′ is a topology on Y ; hence by (4), there exists an open
ultrafilter M on Y . For every O ∈ T , let U(O) = {W ∈ Y : O ∈ W}.
Let H = {O : O ∈ T , U(O) ∈ M}. Then H is an open ultrafilter on X,
which extends F .

(5) ⇒ (2) Apply (5) to any infinite discrete space. �
A well-known ZF-result, which shall be useful for the proof of the forth-

coming Theorem 3.1 of Section 3, is the product invariance of semiregu-
larity.
Proposition 2.10. (ZF) Products of semiregular spaces are semiregular.
Proof. Let X be a product of semiregular spaces Xi (i ∈ I), and let
V =

∩
j∈J π−1

j [Vj ] be a basic neighborhood of a point x ∈ X, with Vj

regular open neighborhoods of xj in Xj (j ∈ J ⊆ I, J finite). Then V is
regular open, too, by the rules for interior and closure operators. Hence,
X is semiregular. �
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Concluding this section, we would like to draw the reader’s attention
to a related recent paper by Erné [7] (though the results therein are not
needed explicitly in the present conclusions) on the equivalence of certain
lattice-theoretical and topological statements to BPI; furthermore, the
rich source of references in [7] is an excellent guide to the interested reader
towards a deep study of the role of BPI and other choice principles in set
theory, topology, lattice theory, and category theory.

3. Main results

Our first result in this section is the equivalence of BPI to each of
“a space is H-closed iff every open ultrafilter on the space converges”,
“products of H-closed spaces are H-closed”, and “products of minimal
spaces are minimal”.

The statement “products of H-closed spaces are H-closed” was estab-
lished in 1941 by Chevalley and Frink [6], who initially presented another
proof of the Tychonoff product theorem for arbitrary (not necessarily
Hausdorff) compact spaces (which is equivalent to the full AC in ZFA
as shown by Kelley [14]) – which is the one that is commonly used –
and then applied the same method to prove their result on products of
H-closed spaces by simply replacing sets by open sets throughout their
proof. It should be pointed out that in [6], the full power of AC is used in
the disguise of Zorn’s Lemma (or equivalently of the Teichmüller–Tukey
Lemma—for the equivalence of AC to each of those lemmas, see for ex-
ample Herrlich [9, Theorem 2.2]).

Furthermore, the authors in [6] establish that a space is H-closed iff
every open filter on the space has non-empty adherence (Theorem 2.6 of
Section 2). However, their proof uses Zorn’s Lemma; in fact, by Theorem
2.9, the proof employs BPI in its equivalent form “every open filter on a
space can be extended to an open ultrafilter”. The use of AC, or of BPI,
in the particular proof is redundant, as the reader may easily verify. (We
also note that, in [6], the term “absolutely closed” is used for H-closed.)
Theorem 3.1. The following are equivalent:

(1) BPI;
(2) A space is H-closed iff every open ultrafilter on the space converges;
(3) Products of H-closed spaces are H-closed;
(4) Products of minimal spaces are minimal;
(5) Products of compact spaces are compact.

Proof. (1) ⇒ (2) By Theorem 2.7(3), every open ultrafilter on an H-closed
space converges (without invoking any choice principle). Conversely, let X
be a space on which every open ultrafilter converges. By BPI, any open
filter F on X extends to an open ultrafilter (see Theorem 2.9), which
converges to some point x, whence x ∈ a(F). Thus, X is H-closed (see
Theorem 2.6).
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(2) ⇒ (3) Let X be a product of H-closed spaces (Xi, Ti) (i ∈ I), and let
F be an open ultrafilter on X. Then for each i ∈ I, Fi = {πi[F ] : F ∈ F}
(where πi is the canonical projection of X onto Xi) is an open ultrafilter on
Xi, which converges to a unique point xi. (Since F is an open filter, and
for each i ∈ I, πi is open, continuous and onto, it easily follows that for
each i ∈ I, Fi is an open filter on Xi and Fi = {F : F ∈ Ti, π−1

i [F ] ∈ F}.
Now, for any i ∈ I, let O ∈ Ti such that Fi∪{O} has the finite intersection
property; then π−1

i [O] ∩ F ̸= ∅ for all F ∈ F , and thus π−1
i [O] ∈ F since

F is an open ultrafilter. Hence, O = πi[π
−1
i [O]] ∈ Fi, and thus Fi is an

open ultrafilter on Xi.)
Then F converges to x = (xi)i∈I . (Let V = π−1

i1
[Vi1 ] ∩ π−1

i2
[Vi2 ] ∩ · · · ∩

π−1
in

[Vin ] be a basic neighborhood of x, with Vij ∈ Tij for all j ∈ {1, . . . , n}.
Since for each j ∈ {1, . . . , n}, Fij converges to xij , we have Vij ∈ Fij for
all j ∈ {1, . . . , n}; hence π−1

ij
[Vij ] ∈ F for all j ∈ {1, . . . , n}, and thus

V ∈ F since F is an open filter.) By (2), this entails that X is H-closed.
(3) ⇒ (4) This follows from Theorem 2.8(2) and Proposition 2.10.
(4) ⇒ (5) This follows from Theorems 2.5, 2.7(1), and the product

invariance of regularity.
(5) ⇒ (1) This was shown by Łoś and Ryll-Nardzewski [17], and by

Rubin and Scott [22]. �

We recall here that the statement “products of minimal spaces are
minimal” has been established by Ikenaga [11]. Our corresponding proof
above is considerably simpler than the original one in [11]. The proof in
[11] is based on the ZF-result that a space is minimal iff every open filter
on the space with a unique adherent point converges to this point (see
Theorem 2.8(1)), but inevitably uses BPI (as established in Theorem 3.1)
in its equivalent form “products of H-closed spaces are H-closed”; we refer
the interested reader to [11] in order to verify this.

Two statements which are relevant to the context of this paper, are the
following ones:

(a) products of non-empty H-closed spaces are non-empty, and
(b) products of non-empty minimal spaces are non-empty.
(Note that, by Theorem 2.5 (or by Theorem 2.8(2)), (a) ⇒ (b).) We

show next that (a) and (b) lie in strength between BPI and ACfin.

Theorem 3.2. Each of the following statements implies the one beneath
it:

(1) BPI;
(2) Products of non-empty H-closed spaces are non-empty;
(3) Products of non-empty minimal spaces are non-empty;
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(4) Products of non-empty compact spaces are non-empty;
(5) ACfin.

(We note that (4) is Form 343 in [10], and that (4) does not imply BPI
in ZF, see [10]; it is an open problem whether or not (5) implies (4).)

Proof. (1) ⇒ (2) Let (Xi)i∈I be a family of non-empty H-closed spaces.
For each i ∈ I, add a new element ∞ to Xi, and consider

Yi = Xi ∪ {∞}

as the disjoint union topological space. Then for each i ∈ I, Yi is Hausdorff
(since Xi is Hausdorff and ∞ is an isolated point of Yi) and H-closed.
Indeed, fix an i ∈ I, and let F be an open filter on Yi. We will show
that a(F) ̸= ∅. If ∞ ∈ a(F), then the conclusion is straightforward, so
we assume without loss of generality that ∞ /∈ a(F); then {∞} /∈ F . Let
G = {F ∩Xi : F ∈ F}. Note that G ̸= ∅ for all G ∈ G. Furthermore, G is
an open filter on Xi, and thus has an adherent point x ∈ Xi. Clearly x is
an adherent point of F in Yi, and thus Yi is H-closed (Theorem 2.6).

By Theorem 3.1, the product space Y =
∏

i∈I Yi is H-closed. Let G
be the open filter on Y , which is generated by the family H = {π−1

i [Xi] :
i ∈ I} (which consists of non-empty open sets in Y , and has the finite
intersection property—since Xi ̸= ∅ for all i ∈ I), i.e., G = {G : G is open
in Y and G ⊇

∩
Q for some non-empty finite subset Q of H}. Since Y is

H-closed, it follows (by Theorem 2.6) that G has an adherent point y ∈ Y .
Then y(i) ∈ Xi for all i ∈ I. (If for some i0 ∈ I, y(i0) = ∞, then the open
neighborhood π−1

i0
[{∞}] of y does not meet π−1

i0
[Xi0 ], which belongs to

H ⊆ G; this contradicts the fact that y ∈ a(G).) Therefore,
∏

i∈I Xi ̸= ∅
as required.

(2) ⇒ (3) This follows from Theorem 2.5 (or Theorem 2.8(2)).
(3) ⇒ (4) This follows from Theorem 2.5.
(4) ⇒ (5) This is well-known (see [9, Exercise E 9, p. 94], or [10]). �

Except for “BPI ⇒ products of non-empty compact spaces are non-
empty”, which is known to be non-reversible in ZF (see [10]), we do not
know whether any of the other implications of Theorem 3.2 is reversible
in ZF, or in ZFA.

Now we turn our attention to the Katětov H-closed extension of a
space. Firstly, we need the following definition due to Katětov [13].

Definition 3.3. Let (X, T ) be a space and let

κX = X ∪ {F : F is a free open ultrafilter on X}.
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(We note that X ∪ {F : F is a free open ultrafilter on X} is a disjoint
union. Also, we recall that an open filter F is free if a(F) = ∅, i.e., if F
has no adherent points.) We let

BX = T ∪ {W ∪ {F} : W ∈ F ,F ∈ κX \X}.

Proposition 3.4. (ZF) Let (X, T ), κX, and BX be as in Definition 3.3.
Then BX is a base for a Hausdorff topology QX on κX, and X is open
in κX.

Proof. We only show that (κX,QX) is Hausdorff. Let x, y ∈ κX with
x ̸= y. If x, y ∈ X, then since X is Hausdorff and T ⊆ QX , there exist
two disjoint QX -open neighborhoods of x and y, respectively.

If x ∈ X and y = F ∈ κX \ X, then since a(F) = ∅, it follows that
x is not an adherent point of F ; hence there exist R,S ∈ T such that
x ∈ R, S ∈ F and R ∩ S = ∅. Then R and S ∪ {F} are disjoint QX -
open neighborhoods of x and y, respectively. Similarly, one finds disjoint
QX -open neighborhoods of x and y, in case x ∈ κX \X and y ∈ X.

If x = U ∈ κX \X and y = V ∈ κX \X, then since U ̸= V and U ,V
are open ultrafilters on X, it follows that U * V, and thus we may let
U ∈ U \ V. Then there exists an element V ∈ V such that U ∩ V = ∅.
(Otherwise, V ∪{U} has the finite intersection property, and thus V could
be properly extended to an open filter on X, contrary to V’s being an
open ultrafilter on X.) It follows that U ∪ {U} and V ∪ {V} are disjoint
QX -open neighborhoods of x and y, respectively. Hence, κX is Hausdorff
as required. �

Given a space X, the space (κX,QX) is called Katětov extension of X.
Theorem 3.5 below justifies the term “extension” (this does not require
any choice form); furthermore, κX is H-closed – assuming that BPI is
true. The result about κX was established by Katětov [13], with the full
power of AC (in the disguise of Zorn’s Lemma) being used in the proof
(for the existence of free open ultrafilters on a given non-H-closed space
X); see also 1.16 (“Every space can be densely embedded in an H-closed
space”) of Porter and Stephenson [19].

Theorem 3.5. The following are equivalent:
(1) BPI;
(2) For every non-empty space X, κX is an H-closed extension of X.

Proof. (1) ⇒ (2) Let (X, T ) be a space (with X ̸= ∅), and also let
(κX,QX) be the space (by virtue of Proposition 3.4) associated with
X. If X is H-closed, then κX = X (since, by Theorem 2.6, every open
filter on X has non-empty adherence), and thus κX is H-closed. So we
assume that X is not H-closed, which means that there exists an open
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filter F on X such that a(F) = ∅. By BPI, there is an open ultrafilter G
on X such that F ⊆ G (recall Theorem 2.9). Since a(F) = ∅, it follows
that a(G) = ∅; hence κX \X ̸= ∅.

X is dense in κX. Indeed, let O ∈ BX \ {∅}. If O ∈ T , then O ∩X =
O ̸= ∅. Assume that O = W ∪ {F} for some F ∈ κX \X and W ∈ F .
Then X ∩ (W ∪ {F}) = W ̸= ∅ (since F is an open filter, it follows that
none of its elements are empty).

κX is H-closed. By Theorem 3.1, it suffices to show that every open
ultrafilter on κX converges. Let H be an open ultrafilter on κX. By
way of contradiction, assume that H is not convergent in κX; hence H is
free. Since X ∈ QX and X is dense in κX, it follows that X meets every
element of H non-trivially, and since H is an open ultrafilter, we have
X ∈ H. Let R be the trace of H on X, that is, R = {Z ∩X : Z ∈ H}.
It is fairly straightforward to see that R is an open ultrafilter on X and
R ⊆ H. Furthermore, since H is free, so is R; hence R ∈ κX \X. Now for
every R ∈ R, we have R ⊆ R∪{R}, and thus R∪{R} ∈ H, for all R ∈ R.
Hence H converges to R, contrary to H’s being free. Consequently, κX
is H-closed.

(2) ⇒ (1) By Theorem 3.1, it suffices to show that if every open ultrafil-
ter on a space X converges, then X is H-closed. (Recall that “H-closed ⇒
every open ultrafilter converges” is provable in ZF.) To this end, let X be
a space such that every open ultrafilter on X converges. Then κX = X,
and hence (by (2)) X is H-closed. �

Definition 3.6. Let X be a space. Two extensions Y1 and Y2 of X are
called equivalent if there is a topological homeomorphism f : Y1 → Y2

such that f � X = idX (the identity function on X). In this case, we
write Y1 ≡X Y2. (It is easy to see that the binary relation ≡X on the
proper class of extensions of X is an equivalence relation.)

If Y, Z are two extensions of X, then Y is said to be projectively larger
than Z, denoted by Y ≥ Z (or Z ≤ Y ), if there is a continuous function
f : Y → Z such that f � X = idX . (The binary relation ≤ is a partial
order on the quotient class E(X) = {[Y ]≡X

: Y is an extension of X}; see
Proposition 4.1(g) of [20].)

Let Q be a non-empty set of extensions of X. An extension Y of X is
a projective maximum in Q if Y ∈ Q and Y ≥ Z for all Z ∈ Q.

For the proof of the subsequent proposition, the reader is referred to
[20, Theorem 4.8(n), Proposition 4.8(p)]. We note that the use of BPI in
that proof is exactly as in the proof of ‘(1) ⇒ (2)’ of Theorem 3.5, i.e., in
the assumption that κX \ X ̸= ∅ if X is not H-closed, and in this case,
κX is H-closed.
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Proposition 3.7. Assume that BPI is true. Let X be a space. Then the
following hold:

(1) If Y is an H-closed extension of X, then there is a unique contin-
uous function f : κX → Y such that f � X = idX , i.e., κX ≥ Y .

(2) If Z is an H-closed extension of X and Z ≥ Y for all H-closed
extensions Y of X, then κX ≡X Z; in particular, κX is a projective
maximum in the set of all H-closed extensions of X, which is unique up
to homeomorphism.

(3) If K is a compact space and f : X → K is a continuous function,
then there exists a unique continuous function F : κX → K such that
F � X = f .
Theorem 3.8. The following are equivalent:

(1) BPI;
(2) Every space X has a (unique up to homeomorphism) projectively

largest H-closed extension κX which satisfies (3) of Proposition 3.7.
Proof. (1) ⇒ (2) This follows from Theorem 3.5 and Proposition 3.7.

(2) ⇒ (1) We will prove that products of compact spaces are compact
(see Theorem 3.1). To this end, let X be a product of compact spaces
Xi (i ∈ I). We assume that Xi ̸= ∅ for all i ∈ I, and also that X ̸= ∅
(otherwise the conclusion is straightforward). Clearly, X is regular (being
a product of compact (Hausdorff), and hence regular, spaces).

By (2), X has an H-closed extension κX, which satisfies (3) of Propo-
sition 3.7. For each i ∈ I, let πi be the canonical projection of X onto Xi.
By Proposition 3.7(3), let Eπi : κX → Xi be the unique continuous ex-
tension of (the continuous function) πi. We define a function Φ : κX → X
by requiring

Φ(x)(i) = Eπi(x), for all x ∈ κX and i ∈ I.

Φ is continuous since for each i ∈ I, the coordinate function Eπi
is con-

tinuous. Furthermore, Φ is onto. Indeed, let x = (xi)i∈I ∈ X (recall that
X ̸= ∅). Since X ⊆ κX, we have x ∈ κX, so for each i ∈ I, we have

Φ(x)(i) = Eπi
(x) = πi(x) = xi,

and thus Φ(x) = x. Hence X is a continuous image of the H-closed
space κX; thus, by Theorem 2.7(2), X is H-closed. Since X is regular
and H-closed, we conclude (by Theorem 2.7(1)) that X is compact as
required. �
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