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INSERTION THEOREMS FOR SOME SPACES BY MAPS
TO ORDERED TOPOLOGICAL VECTOR SPACES

ER-GUANG YANG

Abstract. In this paper, we present characterizations of some
spaces such as stratifiable spaces, perfectly normal spaces, k-semi-
stratifiable spaces with maps to ordered topological vector spaces.
The results obtained generalize real valued functions in some known
results to maps to ordered topological vector spaces. Some of them
improve the corresponding results in [9].

1. Introduction

Real-valued functions are closely related to the characterizations of
topological spaces. It turned out that many classes of topological spaces
such as normal spaces, monotonically normal spaces, stratifiable spaces,
monotonically countably paracompact spaces can be characterized with
real-valued functions satisfying certain conditions. For example.

Theorem 1.1. For a space X, the following are equivalent.
(a) X is stratifiable.
(b) [11] There exists an operator ϕ assigning to each lower semi-continu-

ous function h : X → [0,∞), a continuous function ϕ(h) : X → [0,∞)
with ϕ(h) ≤ h such that 0 < ϕ(h)(x) < h(x) whenever h(x) > 0 and
ϕ(h) ≤ ϕ(h′) whenever h ≤ h′.

(c) [18] There exist operators ψ, ϕ assigning to each lower semi-continu-
ous function h : X → [0,∞), a lower semi-continuous function ψ(h) :
X → [0,∞) and an upper semi-continuous function ϕ(h) : X → [0,∞)
with ψ(h) ≤ ϕ(h) ≤ h such that 0 < ψ(h)(x) ≤ ϕ(h)(x) < h(x) whenever
h(x) > 0 and ψ(h) ≤ ψ(h′), ϕ(h) ≤ ϕ(h′) whenever h ≤ h′.
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Theorem 1.2. [12] A space X is k-semi-stratifiable if and only if there
exists an operator ϕ assigning to each lower semi-continuous function
h : X → [0,∞), an upper semi-continuous function ϕ(h) : X → [0,∞)
such that (1) ϕ(h) ≤ h, (2) 0 < ϕ(h)(x) < h(x) whenever h(x) > 0, (3)
ϕ(h) ≤ ϕ(h′) whenever h ≤ h′, (4) for each compact subset K of X, if
h(x) > 0 for each x ∈ K, then inf{ϕ(h)(x) : x ∈ K} > 0.

Theorem 1.3. [6, 19] For a space X, the following are equivalent.
(a) X is monotonically countably paracompact.
(b) There exist operators ϕ, ψ assigning to each upper semi-continuous

function h : X → [0,∞), a lower semi-continuous function ϕ(h) and an
upper semi-continuous function ψ(h) with h ≤ ϕ(h) ≤ ψ(h) such that
ϕ(h) ≤ ϕ(h′), ψ(h) ≤ ψ(h′) whenever h ≤ h′.

(c) There exist operators ψ, ϕ assigning to each lower semi-continuous
function h : X → (0,∞), a lower semi-continuous function ψ(h) : X →
(0,∞) and an upper semi-continuous function ϕ(h) : X → (0,∞) with
ψ(h) ≤ ϕ(h) ≤ h such that ψ(h) ≤ ψ(h′), ϕ(h) ≤ ϕ(h′) whenever h ≤ h′.

In [20], Yamazaki generalized real-valued functions in (b) of Theo-
rem 1.3 and some other insertion theorems to maps with values into or-
dered topological vector spaces. Characterizations of some spaces, such
as monotonically countably paracompact spaces, monotonically countably
metacompact spaces and cb-spaces were obtained. In [24], we obtained
some preliminary results for stratifiable spaces and k-semi-stratifiable
spaces. For example.

Proposition 1.4. [24] Let X be a topological space and Y an ordered
topological vector space with a positive interior point e of Y +. Then X
is stratifiable if and only if for each open subset U of X, there exists a
continuous map fU : X → [0, e] such that X \ U = f−1

U (0) and fU ≤ fV
whenever U ⊂ V .

In [21], Yamazaki presented some insertion theorems for some related
spaces such as normal and countably paracompact spaces, perfectly nor-
mal spaces with maps to extended ordered topological vector spaces. As
applications, some characterizations of perfectly normal spaces with maps
to ordered topological vector spaces were presented. Along the same line,
Jin et al [9] considered insertion of maps to ordered topological vector
spaces for some other spaces such as stratifiable spaces, semi-stratifiable
spaces, monotonically countably paracompact spaces. For example, the
following characterization of stratifiable spaces was obtained which ex-
tends (c) of Theorem 1.1.
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Theorem 1.5. [9] Let X be a topological space and Y an ordered topolog-
ical vector space with an interior point e of Y +. Then X is stratifiable if
and only if there exist operators Ψ,Φ assigning to each h ∈ L(X,Y ) satis-
fying h(x) ≫ 0 whenever h(x) ̸= 0, two maps Ψ(h) ∈ L(X,Y ) and Φ(h) ∈
U(X,Y ) with Ψ(h) ≤ Φ(h) ≤ h such that 0 ≪ Ψ(h)(x) ≤ Φ(h)(x) < h(x)
whenever h(x) ̸= 0 and Ψ(h) ≤ Ψ(h′), Φ(h) ≤ Φ(h′) whenever h ≤ h′.

Recall Theorem 1.1 and Theorem 1.2, a natural question is that whether
the real-valued functions in (b) of Theorem 1.1 and in Theorem 1.2 can
also be generalized to maps to ordered topological vector spaces. In this
paper, we shall give a positive answer to this question. The results ob-
tained improve some corresponding results in [9]. Moreover, we present
characterizations of some other spaces such as perfectly normal spaces,
k-perfect spaces with maps to ordered topological vector spaces.

2. Preliminaries

Throughout, all spaces are assumed to be T1 topological spaces. A
vector space always means a real vector space. The origin of a vector
space is denoted by 0. The set of all positive integers is denoted by N. τ
and τ c denote the topology of X and the family of all closed subsets of
X, respectively. For a space X and A ⊂ X, we use intA and A to denote
the interior and the closure of A in X, respectively. Also, we use χ

A
to

denote the characteristic function of A.
A vector space Y with a partial ordered ≤ is called an ordered vector

space if
(1) for each x, y, z ∈ Y , if x ≤ y then x+ z ≤ y + z,
(2) for each x, y ∈ Y and r ≥ 0, if x ≤ y then rx ≤ ry.
Let (Y,≤) be an ordered vector space. For y1, y2 ∈ Y , y1 ≤ y2 will be

sometimes written as y2 ≥ y1. y1 < y2 means that y1 ≤ y2 and y1 ̸= y2.
The set {y ∈ Y : y ≥ 0} is denoted by Y + and is called the positive cone
of Y .

A topological vector space Y is called an ordered topological vector space
if Y is an ordered vector space and the positive cone Y + is closed in Y .
In this paper, an ordered topological vector space is always non-trivial,
that is, Y ̸= {0}.

Let Y be an ordered topological vector space and e ∈ Y +. Then e is
called an interior point of Y + if e ∈ intY Y

+. e is called an order unit if
for each y ∈ Y , there exists λ > 0 such that y ≤ λe. It is clear that (see
[20]) that every interior point of Y + is an order unit. It is also clear that
if e is an interior point of Y + then for each r > 0, both −re + Y + and
re − Y + are 0-neighborhoods. Note that if Y is non-trivial and e is an
order unit of Y or an interior point of Y +, then e > 0.
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The following notation was introduced in [21]. For an ordered topo-
logical vector space Y and y1, y2 ∈ Y , we write y1 ≪ y2 if y2 − y1 is
an interior point of Y +. As a generalization, we introduce the following
notation. We write y1 l y2 if y2 − y1 is an order unit. y1 ≪ y2 (y1 l y2)
will be sometimes written as y2 ≫ y1 (y2 m y1). Note that y ≫ 0 (y m 0)
simply implies that y is an interior point of Y + (an order unit).

Recall that a real-valued function f on a space X is called lower (upper)
semi-continuous if for any real number r, the set {x ∈ X : f(x) > r}
({x ∈ X : f(x) < r}) is open. We write L(X) (U(X)) for the set of
all lower (upper) semi-continuous functions from X into the unit interval
[0, 1]. C(X) is the set of all continuous functions from X into [0, 1].

Borwein and Théra [3] generalized the notion of real-valued semi-con-
tinuous functions to semi-continuous maps with values into ordered topo-
logical vector spaces as follows. Let X be a topological space and Y an
ordered topological vector space. A map f : X → Y is called lower semi-
continuous if the set-valued mapping φ : X → 2Y , defined by letting
φ(x) = f(x) − Y + for each x ∈ X, is lower semi-continuous. f is upper
semi-continuous if −f is lower semi-continuous. For a topological space
X and an ordered topological vector space Y , we use L(X,Y ) (U(X,Y ))
to denote the set of all lower (upper) semi-continuous maps from X to Y .
C(X,Y ) is the set of all continuous maps from X to Y .
Definition 2.1. [2] A space X is called stratifiable if there is a map
ρ : N× τ → τ such that

(1) U =
∪

n∈N ρ(n,U) =
∪

n∈N ρ(n,U) for each U ∈ τ ,
(2) if U, V ∈ τ and U ⊂ V , then ρ(n,U) ⊂ ρ(n, V ) for all n ∈ N.

Definition 2.2. A space X is called k-semi-stratifiable [13] if there is a
map ρ : N× τ → τ c, such that

(1) U =
∪

n∈N ρ(n,U) for each U ∈ τ ,
(2) if U, V ∈ τ and U ⊂ V , then ρ(n,U) ⊂ ρ(n, V ) for each n ∈ N.
(3) for each compact subset K of X and U ∈ τ with K ⊂ U , there is

n ∈ N such that K ⊂ ρ(n,U).
Note that, without loss of generality, we may assume that the map ρ

in the above definitions is increasing with respect to n.
As the end of this section, we list some preliminary lemmas which will

be used frequently in the sequel.
Lemma 2.3. [20] Let X be a topological space and Y an ordered topolog-
ical vector space. For a map f : X → Y , (1), (2) are equivalent and (1)
implies (3).

(1) f is lower (upper) semi-continuous.
(2) For each x ∈ X and each 0-neighborhood V , there exists a neighbor-

hood Ox of x such that f(Ox) ⊂ f(x)+V +Y + (f(Ox) ⊂ f(x)+V −Y +).
(3) f−1(y − Y +) (f−1(y + Y +)) is closed in X for each y ∈ Y .
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Lemma 2.4. [23] Let X be a topological space and Y an ordered topolog-
ical vector space and f a real-valued function on X. If f is continuous,
then for each y ∈ Y , the map g : X → Y defined by letting g(x) = f(x)y
for each x ∈ X is continuous. If f is lower (upper) semi-continuous, then
for each y ∈ Y +, the map g : X → Y defined by letting g(x) = f(x)y for
each x ∈ X is lower (upper) semi-continuous.

Lemma 2.5. Let Y be an ordered topological vector space. If y ≥ e≫ 0,
then y ≫ 0.

Proof. Since e≫ 0, we have that e ∈ intY Y
+. From y ≥ e it follows that

y ∈ e+ Y + ⊂ intY Y
+ + Y + ⊂ Y +. intY Y + + Y + = intY Y

+ is open in
Y and thus y ≫ 0. �
Remark 2.6. By Lemma 2.5, if a non-trivial ordered topological vector
space Y has an interior point of Y +, then for each y ∈ Y , y ≫ 0 if and
only if ym0. Indeed, let e be an interior point of Y +. If ym0, then there
exists r > 0 such that y ≥ re. Since re ≫ 0, it follows from Lemma 2.5
that y ≫ 0.

In this paper, for an ordered topological vector space having an interior
point of Y + and y ∈ Y , we shall always use the notation ym 0 instead of
y ≫ 0 although they are equivalent by Remark 2.6.

To abbreviate the expressions of our results, we use the following no-
tation.

(H) X is a topological space and Y is an ordered topological vector
space with an interior point e of Y +.

For undefined terminologies, we refer the readers to [4, 16].

3. Stratifiable spaces

In this section, we generalize real-valued functions in (b) of Theorems
1.1 to maps with values into ordered topological vector spaces. Moreover,
with similar methods, we present some characterizations of perfectly nor-
mal spaces in terms of maps to ordered topological vector spaces. The
results improve some corresponding results in [9]. To begin, we need the
following Lemma.

Lemma 3.1. [10] A space X is monotonically normal if and only if there
exists an operator Λ assigning to each pair (f, g) of real-valued functions
with f upper semi-continuous, g lower semi-continuous and f ≤ g, a
continuous function Λ(f, g) such that f ≤ Λ(f, g) ≤ g and Λ(f, g) ≤
Λ(f ′, g′) whenever f ≤ f ′, g ≤ g′.

Theorem 3.2. Assume (H). Then the following are equivalent.
(a) X is stratifiable.
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(b) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying
h(x)m 0 whenever h(x) ̸= 0, a map Φ(h) ∈ C(X,Y ) with Φ(h) ≤ h such
that 0 ≪ Φ(h)(x) < h(x) whenever h(x) ̸= 0 and Φ(h) ≤ Φ(h′) whenever
h ≤ h′.

(c) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying
h(x)m 0 whenever h(x) ̸= 0, a map Φ(h) ∈ C(X,Y ) with Φ(h) ≤ h such
that Φ(h)(x)m 0 whenever h(x) ̸= 0 and Φ(h) ≤ Φ(h′) whenever h ≤ h′.

Proof. (a) ⇒ (b) Let ρ be the map in Definition 2.1. Let h ∈ L(X,Y )
be such that h(x)m 0 whenever h(x) ̸= 0. For each n ∈ N, let U(n, h) =
int(h−1( 1

2n e+ Y +)). Then U(n, h) is an open subset of X. Let

α(n, h) =

∞∑
i=1

1

2i
χ

ρ(i,U(n,h))
, β(n, h) = χ

U(n,h)
.

Then α(n, h) ∈ U(X), β(n, h) ∈ L(X) and α(n, h) ≤ β(n, h) for each
n ∈ N. Since X is stratifiable, it is monotonically normal [2]. Let Λ
be the operator in Lemma 3.1 and φn(h) = Λ(α(n, h), β(n, h)) for each
n ∈ N. Then let

Φ(h) = (

∞∑
n=1

1

2n+2
φn(h))e.

By Lemma 2.4, Φ(h) ∈ C(X,Y ).
If h ≤ h′, then U(n, h) ⊂ U(n, h′) for each n ∈ N. It follows that

α(n, h) ≤ α(n, h′), β(n, h) ≤ β(n, h′) and so φn(h) ≤ φn(h
′) for each

n ∈ N. Thus Φ(h) ≤ Φ(h′).
Let x ∈ X. If h(x) = 0, then x /∈ U(n, h) for all n ∈ N. Thus

β(n, h)(x) = 0 from which it follows that φn(h)(x) = 0 and so Φ(h)(x) =
0. If h(x) ̸= 0, then h(x) m 0 which implies that h(x) is an order unit.
Then there exists m ∈ N such that h(x) ≥ 1

2m−1 e. Since h is lower semi-
continuous and − 1

2m e + Y + is a 0-neighborhood, by Lemma 2.3, there
exists a neighborhood Ox of x such that

h(Ox) ⊂ h(x)− 1

2m
e+ Y + + Y + ⊂ 1

2m
e+ Y +.

This implies that x ∈ int(h−1( 1
2m e + Y +)) = U(m,h). Then there ex-

ists i ≥ m such that x ∈ ρ(i, U(m,h)). It follows that φm(h)(x) ≥
α(m,h)(x) ≥ 1

2i . Thus Φ(h)(x) ≥ 1
2m+i+2 e ≫ 0. By Lemma 2.5,

Φ(h)(x) ≫ 0. Now, let k = min{n ∈ N : x ∈ U(n, h)}. Then x ∈ U(k, h)
and x /∈ U(n, h) for each n < k. Thus φn(h)(x) = 0 for each n < k and
so

Φ(h)(x) = (

∞∑
n=k

1

2n+2
φn(h)(x))e ≤ (

∞∑
n=k

1

2n+2
)e =

1

2k+1
e <

1

2k
e ≤ h(x).
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(b) ⇒ (c) is clear.
(c) ⇒ (a) For each open subset U of X, let h

U
= χ

U
e. Then h

U
∈

L(X,Y ) by Lemma 2.4 and if h
U
(x) ̸= 0 then h

U
(x) = e m 0. For each

n ∈ N, let

ρ(n,U) = int(Φ(h
U
)−1(

1

n
e+ Y +)), F (n,U) = Φ(h

U
)−1(

1

n
e+ Y +).

It is easy to see that if U, V are open subsets of X and U ⊂ V , then
ρ(n,U) ⊂ ρ(n, V ) for each n ∈ N. Since ρ(n,U) ⊂ F (n,U) and F (n,U)

is a closed subset of X, we have that ρ(n,U) ⊂ F (n,U).
For each n ∈ N, if x ∈ ρ(n,U) ⊂ F (n,U), then 1

ne ≤ Φ(h
U
)(x) ≤ h

U
(x)

from which it follows that χ
U
(x) ≥ 1

n and thus x ∈ U . This implies
that

∪
n∈N ρ(n,U) ⊂ U . Now, if x ∈ U , then h

U
(x) = e ̸= 0 and so

Φ(h
U
)(x) m 0 which implies that Φ(h

U
)(x) is an order unit. Then there

exists m ∈ N such that Φ(h
U
)(x) ≥ 2

me. Since Φ(h
U
) is continuous and

− 1
me+Y

+ is a 0-neighborhood, there exists an open neighborhood Ox of
x such that

Φ(h
U
)(Ox) ⊂ Φ(h

U
)(x)− 1

m
e+ Y + ⊂ 1

m
e+ Y +.

This implies that x ∈ int(Φ(h
U
)−1( 1

me + Y +)) = ρ(m,U). Thus U ⊂∪
n∈N ρ(n,U). By Definition 2.1, X is a stratifiable space. �

Corollary 3.3. Assume (H). Then the following are equivalent.
(a) X is stratifiable.
(b) [9] There exist operators Ψ,Φ assigning to each h ∈ L(X,Y ) satis-

fying h(x) ≫ 0 whenever h(x) ̸= 0, two maps Ψ(h) ∈ L(X,Y ) and Φ(h) ∈
U(X,Y ) with Ψ(h) ≤ Φ(h) ≤ h such that 0 ≪ Ψ(h)(x) ≤ Φ(h)(x) < h(x)
whenever h(x) ̸= 0 and Ψ(h) ≤ Ψ(h′), Φ(h) ≤ Φ(h′) whenever h ≤ h′.

(c) There exist operators Ψ,Φ assigning to each h ∈ L(X,Y ) satisfying
h(x) m 0 whenever h(x) ̸= 0, two maps Ψ(h) ∈ L(X,Y ) and Φ(h) ∈
U(X,Y ) with Ψ(h) ≤ Φ(h) ≤ h such that Ψ(h)(x)m0 whenever h(x) ̸= 0
and Ψ(h) ≤ Ψ(h′) whenever h ≤ h′.

Proof. (a) ⇒ (b) follows directly from (a) ⇒ (b) of Theorem 3.2, since a
continuous map is both lower semi-continuous and upper semi-continuous.

(b) ⇒ (c) is clear.
(c) ⇒ (a) For each open subset U of X, let h

U
= χ

U
e. Then for each

n ∈ N, let

ρ(n,U) = int(Ψ(h
U
)−1(

1

n
e+ Y +)), F (n,U) = Φ(h

U
)−1(

1

n
e+ Y +).

If U, V are open subsets of X and U ⊂ V , then ρ(n,U) ⊂ ρ(n, V ) for
each n ∈ N.
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From Ψ(h
U
) ≤ Φ(h

U
) it follows that ρ(n,U) ⊂ F (n,U). Since Φ(h

U
)

is upper semi-continuous, by Lemma 2.3, F (n,U) is a closed subset of X
and so ρ(n,U) ⊂ F (n,U).

Analogous to the proof of (c) ⇒ (a) of Theorem 3.2, we can show that∪
n∈N ρ(n,U) ⊂ U . Now, if x ∈ U , then h

U
(x) = e and so Ψ(h

U
)(x)m 0.

Then Ψ(h
U
)(x) ≥ 2

me for some m ∈ N. Since Ψ(h
U
) is lower semi-

continuous and − 1
me + Y + is a 0-neighborhood, by Lemma 2.3, there

exists a neighborhood Ox of x such that

Ψ(h
U
)(Ox) ⊂ Ψ(h

U
)(x)− 1

m
e+ Y + + Y + ⊂ 1

m
e+ Y +.

This implies that x ∈ ρ(m,U). Thus U ⊂
∪

n∈N ρ(n,U). By Definition
2.1, X is a stratifiable space. �

Corollary 3.4. Assume (H). Then the following are equivalent.
(a) X is stratifiable.
(b) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying

h(x)m 0 whenever h(x) ̸= 0, a map Φ(h) ∈ C(X,Y ) with Φ(h) ≤ h such
that Φ(h) ≤ Φ(h′) whenever h ≤ h′, and if h(x) ̸= 0 then there is an open
neighborhood Ox of x and r > 0 such that Φ(h)(Ox) ⊂ re+ Y +.

(c) There exist operators Ψ,Φ assigning to each h ∈ L(X,Y ) satisfying
h(x) m 0 whenever h(x) ̸= 0, two maps Ψ(h) ∈ L(X,Y ) and Φ(h) ∈
U(X,Y ) with Ψ(h) ≤ Φ(h) ≤ h such that Ψ(h) ≤ Ψ(h′), Φ(h) ≤ Φ(h′)
whenever h ≤ h′, and if h(x) ̸= 0 then there is an open neighborhood Ox

of x and r > 0 such that Ψ(h)(Ox) ⊂ re+ Y +.
(d) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying

h(x)m 0 whenever h(x) ̸= 0, a map Φ(h) ∈ U(X,Y ) with Φ(h) ≤ h such
that Φ(h) ≤ Φ(h′) whenever h ≤ h′, and if h(x) ̸= 0 then there is an open
neighborhood Ox of x and r > 0 such that Φ(h)(Ox) ⊂ re+ Y +.

Proof. (a) ⇒ (b) Let Φ(h) ∈ C(X,Y ) be the map in (b) of Theorem 3.2.
If h(x) ̸= 0, then Φ(h)(x) ≫ 0 which implies that Φ(h)(x) ∈ intY Y

+.
Then Φ(h)(x)− intY Y

+ is an open 0-neighborhood and thus there exists
m ∈ N such that 1

me ∈ Φ(h)(x) − intY Y
+. It follows that Φ(h)(x) ∈

1
me + intY Y

+ = intY (
1
me + Y +). Since Φ(h) is continuous, we have

that x ∈ Φ(h)−1(intY (
1
me + Y +)) ⊂ int(Φ(h)−1( 1

me + Y +)). Set Ox =

int(Φ(h)−1( 1
me + Y +)). Then Ox is an open neighborhood of x and

Φ(h)(Ox) ⊂ 1
me+ Y +.

(b) ⇒ (c) and (c) ⇒ (d) are clear.
(d) ⇒ (a) For each open subset U of X, let h

U
= χ

U
e. Then for each

n ∈ N, let

ρ(n,U) = int(Φ(h
U
)−1(

1

n
e+ Y +)), F (n,U) = Φ(h

U
)−1(

1

n
e+ Y +).
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Since ρ(n,U) ⊂ F (n,U) and F (n,U) is a closed subset of X, we have
that ρ(n,U) ⊂ F (n,U). By the proof of (c) ⇒ (a) of Theorem 3.2, we
only need show that U ⊂

∪
n∈N ρ(n,U). Let x ∈ U . Then h

U
(x) = e ̸= 0.

By (d), there exists an open neighborhood Ox of x and m ∈ N such that
Φ(h

U
)(Ox) ⊂ 1

me+Y
+. This implies that x ∈ int(Φ(h

U
)−1( 1

me+Y
+)) =

ρ(m,U). Thus U ⊂
∪

n∈N ρ(n,U). By Definition 2.1, X is a stratifiable
space. �
Lemma 3.5. A space X is perfectly normal if and only if there is a map
ρ : N×τ → τ such that U =

∪
n∈N ρ(n,U) =

∪
n∈N ρ(n,U) for each U ∈ τ .

Lemma 3.5 is easy to be shown and we believe that it is known, but
we can not find a reference.

Lemma 3.6. [17] A space X is normal if and only if there exists an
operator Λ assigning to each pair (f, g) of functions with f upper semi-
continuous, g lower semi-continuous and f ≤ g, a continuous function
Λ(f, g) such that f ≤ Λ(f, g) ≤ g.

With a similar argument to that in the proof of Theorem 3.2, we can
prove the following analogous result for perfectly normal spaces.

Theorem 3.7. Assume (H). Then the following are equivalent.
(a) X is perfectly normal.
(b) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying

h(x)m 0 whenever h(x) ̸= 0, a map Φ(h) ∈ C(X,Y ) with Φ(h) ≤ h such
that 0 ≪ Φ(h)(x) < h(x) whenever h(x) ̸= 0.

(c) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying
h(x)m 0 whenever h(x) ̸= 0, a map Φ(h) ∈ C(X,Y ) with Φ(h) ≤ h such
that Φ(h)(x)m 0 whenever h(x) ̸= 0.

Proof. (a) ⇒ (b) is similar to the proof of (a) ⇒ (b) of Theorem 3.2 by
using Lemma 3.5 and Lemma 3.6.

(b) ⇒ (c) is clear.
(c) ⇒ (a) is similar to the proof of (c) ⇒ (a) of Theorem 3.2 by using

Lemma 3.5. �
Corollary 3.8. Assume (H). Then the following are equivalent.

(a) X is perfectly normal.
(b) [9] There exist operators Ψ,Φ assigning to each h ∈ L(X,Y ) satis-

fying h(x) ≫ 0 whenever h(x) ̸= 0, two maps Ψ(h) ∈ L(X,Y ) and Φ(h) ∈
U(X,Y ) with Ψ(h) ≤ Φ(h) ≤ h such that 0 ≪ Ψ(h)(x) ≤ Φ(h)(x) < h(x)
whenever h(x) ̸= 0.

(c) There exist operators Ψ,Φ assigning to each h ∈ L(X,Y ) satisfying
h(x) m 0 whenever h(x) ̸= 0, two maps Ψ(h) ∈ L(X,Y ) and Φ(h) ∈
U(X,Y ) with Ψ(h) ≤ Φ(h) ≤ h such that Ψ(h)(x)m0 whenever h(x) ̸= 0.
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Proof. (a) ⇒ (b) follows from (a) ⇒ (b) of Theorem 3.7.
(b) ⇒ (c) is clear.
(c) ⇒ (a) is similar to the proof of (c) ⇒ (a) of Corollary 3.3. �

Analogous to Corollary 3.4, we have the following.

Corollary 3.9. Assume (H). Then the following are equivalent.
(a) X is perfectly normal.
(b) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying

h(x)m 0 whenever h(x) ̸= 0, a map Φ(h) ∈ C(X,Y ) with Φ(h) ≤ h such
that if h(x) ̸= 0 then there is an open neighborhood Ox of x and r > 0
such that Φ(h)(Ox) ⊂ re+ Y +.

(c) There exist operators Φ,Ψ assigning to each h ∈ L(X,Y ) satisfying
h(x) m 0 whenever h(x) ̸= 0, two maps Φ(h) ∈ U(X,Y ) and Ψ(h) ∈
L(X,Y ) with Ψ(h) ≤ Φ(h) ≤ h such that if h(x) ̸= 0 then there is an
open neighborhood Ox of x and r > 0 such that Ψ(h)(Ox) ⊂ re+ Y +.

(d) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying
h(x)m 0 whenever h(x) ̸= 0, a map Φ(h) ∈ U(X,Y ) with Φ(h) ≤ h such
that if h(x) ̸= 0 then there is an open neighborhood Ox of x and r > 0
such that Φ(h)(Ox) ⊂ re+ Y +.

4. k-semi-stratifiable spaces

In this section, we generalize real-valued functions in Theorems 1.2 to
maps to ordered topological vector spaces. Moreover, we give a similar
result for k-perfect spaces.

Theorem 4.1. Assume (H). Then the following are equivalent.
(a) X is k-semi-stratifiable.
(b) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying

h(x)m0 whenever h(x) ̸= 0, a map Φ(h) ∈ U(X,Y ) such that (1) Φ(h) ≤
h, (2) 0lΦ(h)(x) < h(x) whenever h(x) ̸= 0, (3) Φ(h) ≤ Φ(h′) whenever
h ≤ h′, (4) for each compact subset K of X, if h(x) ̸= 0 for each x ∈ K,
then Φ(h)(K) ⊂ re+ Y + for some r > 0.

(c) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying
h(x)m0 whenever h(x) ̸= 0, a map Φ(h) ∈ U(X,Y ) such that (1) Φ(h) ≤
h, (2) Φ(h) ≤ Φ(h′) whenever h ≤ h′, (3) for each compact subset K of
X, if h(x) ̸= 0 for each x ∈ K, then Φ(h)(K) ⊂ re+ Y + for some r > 0.

(d) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying
h(x)m0 whenever h(x) ̸= 0, a map Φ(h) ∈ U(X,Y ) such that (1) Φ(h) ≤
h, (2) Φ(h) ≤ Φ(h′) whenever h ≤ h′, (3) for each compact subset K of
X, if h(K) ⊂ re+Y + for some r > 0, then Φ(h)(K) ⊂ se+Y + for some
s > 0.
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Proof. (a) ⇒ (b) Let ρ be the map in Definition 2.2 which is increasing
with respect to n. For each n ∈ N and each h ∈ L(X,Y ) satisfying
h(x)m 0 whenever h(x) ̸= 0, let U(n, h) = int(h−1( 1

2n e+ Y +)) and

Φ(h) = (

∞∑
n=1

1

2n+2
χ

ρ(n,U(n,h))
)e.

Then Φ(h) ∈ U(X,Y ). It is clear that if h ≤ h′ then Φ(h) ≤ Φ(h′).
Let x ∈ X. If h(x) = 0, then x /∈ U(n, h) and so x /∈ ρ(n,U(n, h))

for all n ∈ N from which it follows that Φ(h)(x) = 0. If h(x) ̸= 0, then
x ∈ U(n, h) for some n ∈ N. Let k = min{n ∈ N : x ∈ U(n, h)}. Then
x ∈ U(k, h) and x /∈ U(n, h) ⊃ ρ(n,U(n, h)) for each n < k. Thus

Φ(h)(x) = (

∞∑
n=k

1

2n+2
χ

ρ(n,U(n,h))
(x))e ≤ (

∞∑
n=k

1

2n+2
)e =

1

2k+1
e <

1

2k
e ≤ h(x).

To prove (4), let K be a compact subset of X and h(x) ̸= 0 for each
x ∈ K. Then for each x ∈ K, there exists nx ∈ N such that x ∈ U(nx, h).
Since {U(nx, h) : x ∈ K} is an open cover of K, there exists a finite subset
A of K such that {U(nx, h) : x ∈ A} covers K. Let n = max{nx : x ∈ A}.
Then K ⊂ U(n, h). By (3) of Definition 2.2, K ⊂ ρ(m,U(n, h)) for some
m ∈ N. Let i = max{m,n}. Then K ⊂ ρ(i, U(i, h)). Thus for each
x ∈ K, Φ(h)(x) ≥ 1

2i+2 e.
From (4) it follows that Φ(h)(x) ≫ 0 whenever h(x) ̸= 0.
(b) ⇒ (c) and (c) ⇒ (d) are clear.
(d) ⇒ (a) For each open subset U of X, let h

U
= χ

U
e. Then for each

n ∈ N, let ρ(n,U) = Φ(h
U
)−1( 1ne + Y +). Since Φ(h

U
) is upper semi-

continuous, by Lemma 2.3, ρ(n,U) is closed in X. It is easy to verify that
if U, V are open subsets of X and U ⊂ V , then ρ(n,U) ⊂ ρ(n, V ) for each
n ∈ N.

If x ∈ ρ(n,U) for some n ∈ N, then 1
ne ≤ Φ(h

U
)(x) ≤ h

U
(x) from

which it follows that χ
U
(x) ≥ 1

n and thus x ∈ U . This implies that∪
n∈N ρ(n,U) ⊂ U .
Now, let K be a compact subset of X and U ∈ τ with K ⊂ U . Then

h
U
(x) = e for each x ∈ K. By (3) of (d), there exists n ∈ N such that

K ⊂ Φ(h
U
)−1( 1ne + Y +) = ρ(n,U). By Definition 2.2, X is a k-semi-

stratifiable space. �

Definition 4.2. [22] A space X is called k-perfect if there is a map
ρ : N × τ → τ c, such that (1) U =

∪
n∈N ρ(n,U) for each U ∈ τ , (2)

for each compact subset K of X and U ∈ τ with K ⊂ U , there is n ∈ N
such that K ⊂ ρ(n,U).

With a similar argument to that in the proof of Theorem 4.1, we can
prove the following result for k-perfect spaces.
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Proposition 4.3. Assume (H). Then the following are equivalent.
(a) X is k-perfect.
(b) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying

h(x)m0 whenever h(x) ̸= 0, a map Φ(h) ∈ U(X,Y ) such that (1) Φ(h) ≤
h, (2) 0lΦ(h)(x) < h(x) whenever h(x) ̸= 0, (3) for each compact subset
K of X, if h(x) ̸= 0 for each x ∈ K, then Φ(h)(K) ⊂ re+ Y + for some
r > 0.

(c) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying
h(x)m0 whenever h(x) ̸= 0, a map Φ(h) ∈ U(X,Y ) such that (1) Φ(h) ≤
h, (2) for each compact subset K of X, if h(x) ̸= 0 for each x ∈ K, then
Φ(h)(K) ⊂ re+ Y + for some r > 0.

(d) There exists an operator Φ assigning to each h ∈ L(X,Y ) satisfying
h(x)m0 whenever h(x) ̸= 0, a map Φ(h) ∈ U(X,Y ) such that (1) Φ(h) ≤
h, (2) for each compact subset K of X, if h(K) ⊂ re+Y + for some r > 0,
then Φ(h)(K) ⊂ se+ Y + for some s > 0.

Proof. (a) ⇒ (b) Let ρ be the map in Definition 4.2. For each n ∈ N and
each h ∈ L(X,Y ) satisfying h(x) m 0 whenever h(x) ̸= 0, let U(n, h) =
int(h−1( 1

2n e+ Y +)). Then let

Φ(h) = (

∞∑
n=1

1

2n+2

∞∑
i=1

1

2i
χ

ρ(i,U(n,h))
)e.

Then Φ(h) ∈ U(X,Y ).
Let x ∈ X. If h(x) = 0, then x /∈ U(n, h) for all n ∈ N. Thus

x /∈ ρ(i, U(n, h)) for all i, n ∈ N and so Φ(h)(x) = 0. If h(x) ̸= 0, then
x ∈ U(m,h) for some m ∈ N. Let k = min{n ∈ N : x ∈ U(n, h)}. Then
x ∈ U(k, h) and x /∈ U(n, h) for each n < k. Hence

Φ(h)(x) = (
∞∑

n=k

1
2n+2

∞∑
i=1

1
2iχρ(i,U(n,h))

(x))e

≤ (
∞∑

n=k

1
2n+2 )e =

1
2k+1 e <

1
2k
e ≤ h(x).

Now, let K be a compact subset of X and h(x) ̸= 0 for each x ∈ K.
With a similar argument as that in the proof of (a) ⇒ (b) of Theorem
4.1, we can show that K ⊂ U(m,h) for some m ∈ N. By (2) of Definition
4.2, K ⊂ ρ(i, U(m,h)) for some i ∈ N. Thus for each x ∈ K, Φ(h)(x) ≥

1
2m+i+2 e.

From (3) it follows that Φ(h)(x) ≫ 0 whenever h(x) ̸= 0.
(b) ⇒ (c) and (c) ⇒ (d) are clear.
(d) ⇒ (a) is similar to the proof of (d) ⇒ (a) of Theorem 4.1. �
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5. Some other spaces

For two sequences ⟨Aj⟩ and ⟨Bj⟩ of subsets of a space X, we write
⟨Aj⟩ ≼ ⟨Bj⟩ if An ⊂ Bn for each n ∈ N.

Definition 5.1. [5] A spaceX is called monotonically countably paracom-
pact (abbr., MCP) if there is an operator O assigning to each decreasing
sequence ⟨Fj⟩ of closed subsets of X with empty intersection, a sequence
of open sets {O(n, ⟨Fj⟩) : n ∈ N} such that

(1) Fn ⊂ O(n, ⟨Fj⟩) for each n ∈ N,
(2) if ⟨Fj⟩ ≼ ⟨Gj⟩, then O(n, ⟨Fj⟩) ⊂ O(n, ⟨Gj⟩) for all n ∈ N,
(3)

∩
n∈NO(n, ⟨Fj⟩) = ∅.

Note that, without loss of generality, we may assume that {O(n, ⟨Fj⟩) :
n ∈ N} is decreasing with respect to n in the above definition.

In [9], the following characterization of MCP spaces was obtained which
extends (c) of Theorem 1.3.

Theorem 5.2. [9] Assume (H). Then X is an MCP space if and only if
there exist operators Ψ,Φ assigning to each h ∈ L(X,Y ) with hm 0, two
maps Ψ(h) ∈ L(X,Y ) and Φ(h) ∈ U(X,Y ) with 0 ≪ Ψ(h) ≤ Φ(h) < h
(≤ h) such that Ψ(h) ≤ Ψ(h′), Φ(h) ≤ Φ(h′) whenever h ≤ h′.

As a corollary, we have the following.

Corollary 5.3. Assume (H). Then X is an MCP space if and only if
there exists an operator Φ assigning to each h ∈ L(X,Y ) with hm0, a map
Φ(h) ∈ U(X,Y ) with Φ(h) < h (≤ h) such that Φ(h) ≤ Φ(h′) whenever
h ≤ h′ and for each x ∈ X there exists an open neighborhood Ox of x and
r > 0 such that Φ(h)(Ox) ⊂ re+ Y +.

Proof. Let Ψ(h),Φ(h) be the maps in Theorem 5.2. We shall show that for
each x ∈ X there exists an open neighborhood Ox of x and r > 0 such that
Φ(h)(Ox) ⊂ re + Y +. For each x ∈ X, since Ψ(h)(x) ≫ 0, there exists
m ∈ N such that Ψ(h)(x) ≥ 2

me. Since − 1
me + Y + is a 0-neighborhood

and Ψ(h) is lower semi-continuous, there exists an open neighborhood Ox

of x such that Ψ(h)(Ox) ⊂ 2
me + Y + − 1

me + Y + + Y + = 1
me + Y +.

For each x′ ∈ Ox, Φ(h)(x′) ≥ Ψ(h)(x′) ≥ 1
me + Y + which implies that

Φ(h)(Ox) ⊂ 1
me+ Y +.

Conversely, assume the condition. Let h ∈ L(X,Y ) be such that hm 0
and x ∈ X. Then there exists an open neighborhood Ox of x and m ∈ N
such that Φ(h)(Ox) ⊂ 1

me + Y +. It follows that x ∈ int(Φ(h)−1( 1
me +

Y +)). Let nx(h) = min{n ∈ N : x ∈ int(Φ(h)−1( 1ne + Y +))} and
Ψ(h)(x) = 1

nx(h)
e. Then Ψ(h)(x) ≫ 0 and Φ(h)(x) ≥ 1

nx(h)
e = Ψ(h)(x).

This implies that 0 ≪ Ψ(h) ≤ Φ(h).
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To show that Ψ(h) is lower semi-continuous. Let x ∈ X and V a 0-
neighborhood. Let Ox = int(Φ(h)−1( 1

nx(h)
e+ Y +)). Then Ox is an open

neighborhood of x. For each x′ ∈ Ox, we have that nx′(h) ≤ nx(h) and
thus Ψ(h)(x′) ≥ Ψ(h)(x). It follows that Ψ(h)(x′) ∈ Ψ(h)(x) + Y + ⊂
Ψ(h)(x) + V + Y +. This implies that Ψ(h) is lower semi-continuous.

Now, suppose that h ≤ h′. Then Φ(h) ≤ Φ(h′) and thus Φ(h)−1( 1ne+

Y +) ⊂ Φ(h′)−1( 1ne + Y +) for each n ∈ N. Hence for each x ∈ X, x ∈
int(Φ(h)−1( 1

nx(h)
e + Y +)) ⊂ int(Φ(h′)−1( 1

nx(h)
e + Y +)). It follows that

nx(h
′) ≤ nx(h) and thus Ψ(h)(x) ≤ Ψ(h′)(x). This implies that Ψ(h) ≤

Ψ(h′).
By Theorem 5.2, X is an MCP space. �

Recall that a space X is called a cb-space [8] if for each locally bounded
function f on X there is a continuous function g on X such that |f | ≤ g.
In [20], Yamazaki showed that X is a cb-space if and only if for each
upper semi-continuous map f : X → Y ,there exists a continuous map
Φ(f) : X → Y such that f ≤ Φ(f). In [14], it was shown that X is
a cb-space if and only if there exists an operator ϕ assigning to each
lower semi-continuous function f : X → (0,∞), a continuous function
ϕ(f) : X → (0,∞) such that ϕ(f) < f . In view of Theorem 5.2, a natural
question is that whether there is a similar result for cb-spaces. We have
the following partial answer.

Proposition 5.4. Assume (H). If X is a cb-space, then there exists an
operator Φ assigning to each h ∈ L(X,Y ) with h m 0, a map Φ(h) ∈
C(X,Y ) such that 0l Φ(h) < h.

To prove Proposition 5.4, we need the following lemma.

Lemma 5.5. [15] A space X is a cb-space if and only if for every de-
creasing sequence {fn ∈ U(X) : n ∈ N} of functions such that fn → 0,
there is a sequence {gn ∈ C(X) : n ∈ N} of functions such that fn ≤ gn
for each n ∈ N and gn → 0.

Proof of Proposition 5.4. For each n ∈ N and each h ∈ L(X,Y ) with
h m 0, let F (n, h) = X \ int(h−1( 1

2n−1 e + Y +)). Then {F (n, h) : n ∈ N}
is a decreasing sequence of closed subsets of X with empty intersection.

For each n ∈ N, let f(n, h) = χ
F (n,h)

, then {f(n, h) ∈ U(X) : n ∈ N}
is decreasing and f(n, h) → 0. By Lemma 5.5, there exists a sequence
{g(n, h) ∈ C(X) : n ∈ N} of functions such that f(n, h) ≤ g(n, h) for each
n ∈ N and g(n, h) → 0. Let

Φ(h) = (
1

2
−

∞∑
n=1

1

2n+1
g(n, h))e.
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Then Φ(h) ∈ C(X,Y ). For each x ∈ X, since g(n, h)(x) → 0, there is
m ∈ N such that g(m,h)(x) < 1. Hence

1

2
−

∞∑
n=1

1

2n+1
g(n, h)(x) > 0

from which it follows that Φ(h)(x) m 0. Since
∩

n∈N F (n, h) = ∅, x /∈
F (n, h) for some n ∈ N. Let k = min{n ∈ N : x /∈ F (n, h)}, then
x /∈ F (n, h) for all n ≥ k while x ∈ F (n, h) for each n < k. Thus

Φ(h)(x) = (
1

2
−

∞∑
n=1

1

2n+1
g(n, h)(x))e ≤ (

1

2
−

∞∑
n=1

1

2n
f(n, h)(x))e

= (
1

2
−

k−1∑
n=1

1

2n+1
)e =

1

2k
e <

1

2k−1
e ≤ h(x).

Question 5.6. Is the condition in Proposition 5.4 also sufficient?

The referee reminded the author that in a recent paper [K. Yamazaki,
A method of returning vector-valued maps to real-valued functions on
mono-tone operators, Top. Appl., 246 (2018), 69-82], Yamazaki gave a
characterization of cb-spaces which answers positively Question 5.6.

Acknowledgment. The author would like to thank the referee for the
valuable comments which have greatly improved the original manuscript.
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