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NORMALITY CONDITIONS OF STRUCTURES IN
COARSE GEOMETRY AND AN ALTERNATIVE

DESCRIPTION OF COARSE PROXIMITIES

PAWEL GRZEGRZOLKA AND JEREMY SIEGERT

Abstract. We introduce an alternative description of coarse prox-
imities. We define a coarse normality condition for connected
coarse spaces and show that this definition agrees with large scale
normality defined in [6] and asymptotic normality defined in [10].
We utilize the alternative definition of coarse proximities to show
that a connected coarse space naturally induces a coarse proxim-
ity if and only if the connected coarse space is coarsely normal.
We conclude with showing that every connected asymptotic resem-
blance space induces a coarse proximity if and only if the connected
asymptotic resemblance space is asymptotically normal.

1. Introduction

Coarse topology (i.e., large-scale geometry) studies large-scale prop-
erties of spaces (e.g., asymptotic dimension, property A, exactness). It
emerged as a counterpart to classical topology, which is usually concerned
with small-scale properties of spaces (e.g., continuity, compactness). Tools
and techniques developed by coarse topologists are often useful in other
branches of mathematics, including geometric group theory (see [8]), in-
dex theory (see [12]), and dimension theory (see [9]). Coarse topology
is also closely related to well-known conjectures, including the Novikov
conjecture (see [14]) and the coarse Baum-Connes conjecture (see [3] or
[1]).
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Recently in [7] coarse proximities were introduced as a large-scale coun-
terpart to (small-scale) proximities. Coarse proximities capture the intu-
itive notion of two sets being “close” at infinity. The motivation for these
structures comes in part from the utility of small-scale proximity relations
in classical topology. More specifically, compatible proximity relations on
a Tychonoff topological space classify the compactifications of that space.
One can hope to port some of this utility to the large-scale context with
coarse proximities. Another reason to work on coarse proximity spaces,
aside from the linguistic one just mentioned, is the presence of proximity
ideas in extant coarse geometry literature. In [4], Dranishnikov introduced
the notion of subsets of a metric space being asymptotically disjoint, and
in [5] he introduced the notion of asymptotic neighbourhoods of subsets
of metric spaces. In [4], the relation of asymptotic disjointness was used
to define a dimensional coarse invariant of proper metric spaces, the as-
ymptotic inductive dimension. It has been shown that for proper metric
spaces of positive but finite asymptotic dimension the asymptotic induc-
tive dimension and the asymptotic dimension agree (see [4]). In [2], Bell
and Dranishnikov used the notion of asymptotic disjointness to define
another coarse dimensional invariant, the asymptotic Brouwer inductive
dimension. In [7], it was shown that the relation of being asymptotically
disjoint is equivalent to the negation of the metric coarse proximity rela-
tion. Likewise, in [7] it was shown that the asymptotic neighbourhoods
of Dranishnikov are equivalent to coarse neighbourhoods in the metric
coarse proximity structure. Aside from its utility in defining the afore-
mentioned coarse invariants, coarse proximity notions were used in [7] to
define the “proximity space at infinity:” a (small-scale) proximity space
that corresponds to the coarse proximity structure induced by an un-
bounded metric space. The construction of the proximity space at infinity
extensively utilizes the coarse neighbourhoods of the metric coarse prox-
imity structure. The proximity space at infinity is shown to comprise a
functor from the category of unbounded metric spaces whose morphisms
are closeness classes of coarse proximity maps (or coarse maps) to the
category of proximity spaces whose morphisms are proximity maps. Con-
sequently, the proximity isomorphism type of the proximity at infinity of
an unbounded metric space X is a coarse invariant of X.

The focus of this paper is to characterize part of the relationship coarse
spaces (for an introduction to coarse spaces, see [13]) have with coarse
proximities. In the small-scale context, every uniform structure (defined
via entourages or uniform covers) induces a proximity relation that is com-
patible with the topology of the original uniform structure. It is natural
to ask whether or not the large-scale analog of uniform structures, coarse
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spaces, have a similar relationship with coarse proximities. To aid in an-
swering this question, we provide an alternative characterization of coarse
proximity spaces in terms of coarse neighbourhoods in section 2. In sec-
tion 3, coarse normality of coarse spaces is introduced. We show that our
definition of coarse normality is equivalent to the large scale normality of
Dydak and Weighill as introduced in [6]. We also show that a coarse space
being coarsely normal is equivalent to its induced asymptotic resemblance
structure being asymptotically normal, as defined in [10]. Our alternative
characterization of coarse proximities reveals its utility in section 4, where
it is used to answer our original question. Specifically, it is used to show
that a coarse space naturally induces a coarse proximity if and only if the
coarse space is coarsely connected and coarsely normal. By “natural” we
mean that the proximity space induced by that coarse structure agrees
with the metric coarse proximity when the underlying space is a metric
space and the coarse structure is induced by that metric. In other words,
this result generalizes the result from [7], where it is shown that every
metric space induces a coarse proximity structure. As a corollary, we also
obtain that an asymptotic resemblance (for an introduction to asymp-
totic resemblances, see [10]) induces a coarse proximity if and only if it is
asymptotically connected and asymptotically normal. We conclude with
three equivalent characterizations of the coarse proximity induced by a
coarsely connected and coarsely normal coarse space.

2. An Alternative Definition of Coarse Proximities

In this section, we introduce a definition of a coarse proximity in terms
of coarse neighborhoods. Recall the following three definitions from [7]:

Definition 2.1. A bornology B on a set X is a family of subsets of X
satisfying:

(i) {x} ∈ B for all x ∈ X,
(ii) A ∈ B and B ⊆ A implies B ∈ B,
(iii) If A,B ∈ B, then A ∪B ∈ B.
Elements of B are called bounded and subsets of X not in B are called
unbounded.

Definition 2.2. Let X be a set equipped with a bornology B. A coarse
proximity on a set X is a relation b on the power set of X satisfying
the following axioms for all A,B,C ⊆ X :

(i) AbB implies BbA,
(ii) AbB implies A /∈ B and B /∈ B,
(iii) A ∩B /∈ B implies AbB,
(iv) (A ∪B)bC if and only if AbC or BbC,
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(v) Ab̄B implies that there exists a subset E such that Ab̄E and (X \
E)b̄B,

where Ab̄B means “AbB is not true.” If AbB, then we say that A is
coarsely close to (or coarsely near) B. Axiom (iv) will be called the
union axiom and axiom (v) will be called the strong axiom. A triple
(X,B,b) where X is a set, B is a bornology on X, and b is a coarse
proximity relation on X, is called a coarse proximity space.

Definition 2.3. Let (X,B,b) be a coarse proximity space. Given subsets
A,B ⊆ X, we say that B is a b-coarse neighborhood (or just coarse
neighborhood if the proximity relation is clear) of A, denoted A ≪ B,
if Ab̄(X \B).

Theorem 2.4. Given a coarse proximity space (X,B,b), the relation ≪
satisfies the following properties:

(1) X ≪ (X \D) for all D ∈ B,
(2) A ≪ B implies that A ⊆ B up to some bounded set D, i.e., there

exists D ∈ B such that A \D ⊆ B,
(3) A ⊆ B ≪ C ⊆ D implies A ≪ D,
(4) A ≪ B1 and A ≪ B2 if and only if A ≪ (B1 ∩B2),
(5) A ≪ B if and only if (X \B) ≪ (X \A),
(6) A ≪ B implies that there exists C ⊆ X such that A ≪ C ≪ B.

Proof. Axiom (ii) of a proximity space implies that bounded sets are not
related to any sets. Thus, Xb̄D for any D ∈ B. This is the same as
saying Xb̄(X \ (X \ D)) for any D ∈ B, or equivalently X ≪ (X \ D)
for any D ∈ B, which is the statement of (1). To show (2), notice that if
A ∩ (X \ B) /∈ B, then Ab(X \ B), a contradiction to A ≪ B. To show
(3), for contradiction assume that A ̸≪ D, i.e., Ab(X \ D). The union
axiom implies then that Bb(X \D). Since (X \D) ⊆ (X \ C), again by
the union axiom we get Bb(X \ C), a contradiction to B ≪ C. To show
(4), notice that by the union axiom

A ≪ B1 and A ≪ B2 ⇐⇒ Ab̄(X \B1) and Ab̄(X \B2)

⇐⇒ Ab̄((X \B1) ∪ (X \B2))

⇐⇒ Ab̄(X \ (B1 ∩B2))

⇐⇒ A ≪ (B1 ∩B2).
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To show (5), notice that

A ≪ B ⇐⇒ Ab̄(X \B)

⇐⇒ (X \B)b̄A

⇐⇒ (X \B)b̄(X \ (X \A))

⇐⇒ (X \B) ≪ (X \A).

To show (6), assume A ≪ B, i.e., Ab̄(X \ B). The strong axiom implies
that there exists E ⊆ X such that Ab̄E and (X \ E)b̄(X \ B). In other
words, we have that Ab̄(X \ (X \ E)) and (X \ E)b̄(X \ B), i.e., A ≪
(X \ E) ≪ B. Setting C = (X \ E) gives the desired result. �

Theorem 2.5. Let X be a set with bornology B. Let ≪ be a binary relation
on the power set of X satisfying (1) through (6) of Theorem 2.4. Let b
be a relation on the power set of X defined by

Ab̄B if and only if A ≪ (X \B).

Then b is a coarse proximity on X. Also, B is a b-coarse neighborhood
of A if and only if A ≪ B.

Proof. To show axiom (i), assume Ab̄B. Then A ≪ (X \ B), which by
(5) implies that B ≪ (X \A), i.e., Bb̄A. To show axiom (ii), notice that
(1) and (3) imply that A ≪ (X \ B) for all B ∈ B, i.e., Ab̄B for all
B ∈ B. By symmetry proven in axiom (i), this implies axiom (ii). To
show axiom (iii), assume Ab̄B, i.e., A ≪ (X \B). By (2), this means that
there exists D ∈ B such that (A \D) ⊆ (X \B), which is the the same as
saying that (A \D) ∩B = ∅. Thus, A ∩B ⊆ D, showing that A ∩B ∈ B.
To show axiom (iv), first assume (A ∪ B)b̄C, i.e., (A ∪ B) ≪ (X \ C).
Property (3) implies that A ≪ (X \ C) and B ≪ (X \ C), i.e., Ab̄C
and Bb̄C. To prove the forward direction, assume (A ∪ B)bC, which by
symmetry gives us Cb(A∪B), i.e., C ̸≪ X \ (A∪B). This is the same as
saying C ̸≪ ((X \ A) ∩ (X \ B)) which by (4) implies that C ̸≪ (X \ A)
or C ̸≪ (X \ B), i.e. CbA or CbB. This again by symmetry implies
that AbC or BbC, proving (iv). To show the strong axiom, assume
Ab̄B, i.e., A ≪ (X \ B). Therefore, by (6), there exists C ⊆ X such
that A ≪ C ≪ (X \ B), or equivalentlyA ≪ (X \ (X \ C)) ≪ (X \ B).
This implies that Ab̄(X \ C) and Cb̄B. Let E = X \ C. Then Ab̄E and
(X \ E)b̄B. Finally, notice that

B is a b-coarse neighborhood of A ⇐⇒ Ab̄(X \B)

⇐⇒ A ≪ (X \ (X \B))

⇐⇒ A ≪ B. �
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The reader is encouraged to compare the above theorems with the
similar theorems for small-scale proximity spaces (see Theorem 3.9 and
Theorem 3.11 in [11]). Recall that a (small-scale) proximity space is
a pair (X, δ), where X is a set and δ is a relation on the power set of
X that satisfies all the axioms of Definition 2.2 with “ /∈ B” replaced by
“ ̸= ∅”. A δ-neighborhood, with B being a δ-neighbourhood of A being
denoted by A ≪ B, is defined as in Definition 2.3 with b̄ replaced by δ̄.
The above two theorems show the utility of the similarity of definitions of
coarse proximities and proximities. For example, the proofs of properties
(3) through (6) of Theorem 2.4 only use axioms (i),(iv), and (v) of coarse
proximities. Since these axioms are exactly the same for small-scale prox-
imities, small-scale proximities also satisfy properties (3) through (6) of
Theorem 2.4 (with δ-neighborhoods replacing coarse neighborhoods).

Definition 2.6. In the setting of the above theorem, we say that the
relation ≪ induces a coarse proximity on the pair (X,B).

Remark 2.7. One can show (see [7]) that assuming (i) through (iv) of
Definition 2.2, the strong axiom of a proximity space is equivalent to the
property (6) of Theorem 2.4.

3. Coarse Normality

In this section, we introduce coarse normality of coarse spaces. We also
show that for connected coarse spaces it agrees with large-scale normality
introduced by Dydak and Weighill in [6] and with asymptotic normality
introduced by Honari and Kalantari in [10].

Let us first recall basic definitions related to coarse spaces (from [13])
and asymptotic resemblance spaces (from [10]). An experienced reader
may want to skip ahead to Definition 3.15 and refer to the beginning of
this section when necessary. The following 3 definitions and an example
come from [13]:

Definition 3.1. A coarse structure on a set X is is a collection E of
subsets of X ×X, called controlled sets or entourages, such that the
following are satisfied:

(i) △ ∈ E , where △ := {(x, x) | x ∈ X},
(ii) if E ∈ E and B ⊆ E, then B ∈ E ,
(iii) if E ∈ E , then E−1 ∈ E , where E−1 := {(x, y) | (y, x) ∈ E},
(iv) if E ∈ E and F ∈ E , then E ∪ F ∈ E ,
(v) if E ∈ E and F ∈ E , then E ◦ F ∈ E , where E ◦ F := {(x, y) | ∃ z ∈

X such that (x, z) ∈ E, (z, y) ∈ F}.
A set X endowed with a coarse structure E is called a coarse space.
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Example 3.2. Let (X, d) be a metric space. For each r ∈ R+, define

Er = {(x, y) ∈ X ×X | d(x, y) < r}.

Let E be the collection of all the subsets of such sets Er. Then E is a
coarse structure, called metric coarse structure.

For more examples of coarse spaces, the reader is referred to [13].

Definition 3.3. If (X, E) is a coarse space, A a subset of X, and E a
controlled set, then we define

E[A] = {x ∈ X | ∃ a ∈ A such that (x, a) ∈ E}.

Definition 3.4. If (X, E) is a coarse space and A a subset of X, then we
say that A is (coarsely) bounded if A×A is a controlled set. If A is not
bounded, then we say that A is (coarsely) unbounded.

Proposition 3.5. If (X, E) is a (coarsely) connected coarse space
(i.e., each point of X×X belongs to some controlled set), then the collec-
tion of bounded sets forms a bornology on X, which we call the bornology
induced by E.

Proof. Straightforward. �

The following definitions and examples (up to Defintion 3.10) come
from [10]:

Definition 3.6. Let X be a set. Let λ be an equivalence relation on
the power set of X. Then λ is called an asymptotic resemblance if it
satisfies the following properties:

(i) A1λB1, A2λB2 implies (A1 ∪A2)λ(B1 ∪B2),
(ii) (B1 ∪ B2)λA and B1, B2 ̸= ∅ implies that there are nonempty

A1, A2 ⊆ A such that A = A1 ∪A2, B1λA1, and B2λA2.
A pair (X,λ), where X is a set and λ is an asymptotic resemblance, is
called an asymptotic resemblance space.

Example 3.7. Let (X, d) be a metric space, and A,C ⊆ X. Let B(A, r)
denote the neighborhood of radius r around A, i.e., B(A, r) = {x ∈ X |
∃ a ∈ A such that d(x, a) < r}. Define a relation λ on the power set of X
by

AλC if and only if ∃ r > 0 such that A ⊆ B(C, r) and C ⊆ B(A, r),

i.e., the Hausdorff distance between A and C is finite. Then λ is an
asymptotic resemblance, called the metric asymptotic resemblance
or asymptotic resemblance induced by the metric d.



292 PAWEL GRZEGRZOLKA AND JEREMY SIEGERT

Example 3.8. Let E be a coarse structure on a set X. For any two subsets
A and B of X, define AλEB if A ⊆ E[B] and B ⊆ E[A] for some E ∈ E .
Then the relation λE is an asymptotic resemblance on X. We call λE the
asymptotic resemblance induced by the coarse structure E .

For more examples of asymptotic resemblance spaces, the reader is
referred to [10].

Definition 3.9. Let (X,λ) be an asymptotic resemblance space. Then
A ⊆ X is called (asymptotically) bounded if A is empty or there exists
x ∈ X such that Aλx. If A is not (asymptotically) bounded, then we say
that A is (asymptotically) unbounded.

Definition 3.10. Two subsets A,C of an asymptotic resemblance space
(X,λ) are called asymptotically disjoint if for all asymptotically un-
bounded subsets A′ ⊆ A and C ′ ⊆ C, one has A′λ̄C ′.

Proposition 3.11. If (X,λ) is an (asymptotically) connected asymp-
totic resemblance space (i.e., xλy for all x, y ∈ X), then the collection
of bounded sets forms a bornology on X, which we call the bornology
induced by λ.

Proof. Straightforward. �
Remark 3.12. When it is clear that the asymptotic resemblance was in-
duced by the coarse structure E , then for the simplicity of notation we
will denote λE by λ.

Remark 3.13. In [10], it is shown that if λ is the asymptotic resemblance
induced by the coarse structure E , then (asymptotically) bounded sets
coincide with the (coarsely) bounded sets.

Remark 3.14. If λ is the asymptotic resemblance induced by the coarse
structure E on X, then one can easily show that X is (coarsely) connected
if and only if X is (asymptotically) connected.

Now we will introduce a relation on the power set of a connected coarse
space that under certain conditions will induce a coarse proximity. The
reader is encouraged to compare the following definition with the defini-
tion of the coarse neighborhood operator for large scale spaces, given in
[6].

Definition 3.15. Let (X, E) be a coarse space and let A,B ⊆ X be any
two subsets. Define A ≺ B, if for every entourage E ∈ E , we have that
E[A] ⊆ B ∪K for some bounded set K ⊆ X.

Remark 3.16. The above definition implies that A ⊆ B up to some
bounded set K, i.e., (A \K) ⊆ B.
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The following proposition introduces equivalent definitions of the ≺
relation.

Proposition 3.17. Let (X, E) be a connected coarse space, λ the asymp-
totic resemblance induced by E , B the collection of coarsely bounded sets,
and A,B ⊆ X any two subsets. Then the following are equivalent:

(i) A ≺ B,
(ii) A and X \B are asymptotically disjoint,
(iii) For all E ∈ E , there exists D ∈ B such that

(
(A \D) × ((X \ B) \

D)
)
∩ E = ∅.

Proof. ((i) =⇒ (ii)). Assume A ≺ B. For contradiction, assume that
A′ ⊆ A and C ′ ⊆ (X \ B) are unbounded subsets such that A′λC ′, i.e.,
there exists E ⊆ E such that A′ ⊆ E[C ′] and C ′ ⊆ E[A′]. Since A ≺ B,
we have that E′[A] ⊆ B ∪K for some bounded set K ⊆ X. Since A′ ⊆ A,
we have that

C ′ ⊆ E[A′] ⊆ E[A] ⊆ B ∪K.

Thus, (C ′ \K) ⊆ B. Since C ′ is unbounded and K is bounded, (C ′ \K)
is nonempty. But this is a contradiction, since (C ′ \K) ⊆ (X \B), by the
definition of C ′.

((ii) =⇒ (i)). For contradiction, assume that A ̸≺ B, i.e., there exists
E ∈ E such that E[A] ̸⊆ B ∪K for any bounded K ⊆ X. In other words,
E[A] ∩ (X \ B) is unbounded. Without loss of generality we can assume
that E is symmetric. Set C ′ = E[A] ∩ (X \ B). For each c ∈ C ′ there
exists a ∈ A such that (c, a) ∈ E. Let A′ be the collection of all such a’s.
Notice that A′ is unbounded, since if it is bounded, then so is E[A′]. But
E[A′] contains C ′, so it has to be unbounded. So we have an unbounded
A′ ⊆ A, an unbounded C ′ ⊆ (X \B), and E ∈ E such that

C ′ ⊆ E[A′] and A′ ⊆ E[C ′],

a contradiction to A′λ̄C ′.
((i) =⇒ (iii)) Let E ∈ E be arbitrary. Without loss of generality

we can assume that E contains the diagonal. Since A ≺ B, there exists
K ∈ B such that (E[A] \K) ⊆ B. Let D be all those elements of A such
that E[D] ⊆ K. Since K is bounded, so is E[D]. Since E contains the
diagonal, D is bounded as well. Thus, by the construction of D we have
that E[A \D] ⊆ B. In other words, if there exists x ∈ X and a ∈ (A \D)
such that (x, a) ∈ E, then x cannot be in (X \B). In particular, it cannot
be in ((X \B) \D), which shows (iii).

((iii) =⇒ (i)) For contradiction, assume that A ̸≺ B, i.e., there exists
E ∈ E such that E[A] ∩ (X \ B) is unbounded. Let D ∈ B be arbitrary.
Then C := (E[A] ∩ (X \ B)) \ (E ∪ △)[D] is nonempty. Let c ∈ C.
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Then there exists a ∈ A such that (c, a) ∈ E. What is more, a /∈ D. For
if a ∈ D, then c ∈ E[D], a contradiction. So we have c ∈ ((X \ B) \D),
a ∈ (A \D) and (a, c) ∈ E. Since D was an arbitrary unbounded subset,
this contradicts (iii). �
Remark 3.18. Notice that if (X, E) is a connected coarse space, then the
collection B from the above theorem is a bornology.

Now we introduce a condition under which ≺ relation will induce a
coarse proximity.
Definition 3.19. A coarse space (X, E) is called coarsely normal if for
every pair of subsets A,B ⊆ X such that A ≺ B, there is a subset C ⊆ X
satisfying A ≺ C ≺ B.

The reader familiar with [6] will spot an immediate resemblance to large
scale normality defined for large scale structures. Indeed, after translating
from large scale structures to coarse structures, the two notions coincide
for connected coarse spaces, as the following lemma and proposition show:
Lemma 3.20. Let (X, E) be a connected coarse structure, B the bornology
induced by E , and D1, D2 ∈ B. If A and B are two subsets of X such that
A ≺ B, then the following hold:

(i) A ∪D1 ≺ B \D2,
(ii) A \D1 ≺ B ∪D2.

Proof. Straighforward. �
The reader unfamiliar with large scale structures can take (ii) of the

following proposition as the definition of the large scale normality given
in [6].
Proposition 3.21. Let (X, E) be a connected coarse structure. Then the
following are equivalent:

(i) (X, E) is coarsely normal,
(ii) For any A,B ⊆ X, define A ≺∗ B if A ⊆ B and A ≺ B. Then A ≺∗

B implies that there exists a subset C ⊆ X satisfying A ≺∗ C ≺∗ B.

Proof. To show (i) =⇒ (ii), assume A ≺∗ B, i.e., A ⊆ B and A ≺ B.
By coarse normality, this implies the existence of C ′ ⊆ X such that A ≺
C ′ ≺ B. In particular, this shows that there exist bounded sets D1 and
D2 such that A ⊆ C ′∪D1 and C ′ ⊆ B∪D2. We can assume that D1 ⊆ A
and D2 ⊆ (X \ B). Set C = (C ′ ∪ D1) \ D2. By repeated application
of Lemma 3.20, we have that A ≺ C ≺ B. Also, A ⊆ C ⊆ B, which
follows from the fact that D2 ∩ A = ∅ (which in particular shows that
D2 ∩ D1 = ∅). To show (ii) =⇒ (i), assume A ≺ B. In particular,
this means that △[A] = A ⊆ B ∪D for some bounded set D. By Lemma
3.20, this means that A \D ≺∗ B, and thus there exists C ⊆ X such that
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A \D ≺∗ C ≺∗ B. In particular, this means that A \D ≺ C ≺ B, and by
Lemma 3.20, we have A ≺ C ≺ B. �

Now we will show that in case of coarse spaces, coarse normality is also
equivalent to asymptotic normality, defined in [10]. For the convenience
of the reader, we recall the definition here.

Definition 3.22. An asymptotic resemblance space (X,λ) is asymptot-
ically normal if for all asymptotically disjoint subsets A1, A2 ⊆ X, there
are subsets X1, X2 ⊆ X such that X = X1 ∪ X2, A1 is asymptotically
disjoint from X1, and A2 is asymptotically disjoint from X2.

Proposition 3.23. Let (X, E) be a coarse space and λ the asymptotic
resemblance induced by E . Then the following are equivalent:

(i) (X, E) is coarsely normal,
(ii) (X,λ) is asymptotically normal.

Proof. ((i) =⇒ (ii)) Assume A1, A2 ⊆ X such that A1 and A2 are
asymptotically disjoint, i.e., A1 ≺ (X\A2). Thus, there exists C such that
A1 ≺ C ≺ (X \ A2). Set X1 = (X \ C) and X2 = C. Then clearly X =
X1 ∪X2, A1 is asymptotically disjoint from X1, and A2 is asymptotically
disjoint from X2.

((ii) =⇒ (i)) Assume A,B ⊆ X such that A ≺ B, i.e., A and (X \B)
are asymptotically disjoint. Thus, there exists X1, X2 ⊆ X such that
X = X1 ∪ X2, A is asymptotically disjoint from X1, and (X \ B) is
asymptotically disjoint from X2. Let C = X2. Then the following hold:

(1) A is asymptotically disjoint from X1 = (X \X2) = (X \ C),
(2) (X \B) is asymptotically disjoint from X2 = C,

which is the same as saying A ≺ C ≺ B. �

Thanks to the above proposition, it follows from [10] that the class of
coarsely normal coarse spaces in nonempty. In particular, all metric spaces
(with the metric coarse structure) are coarsely normal. Also, notice that
in the above proof we used the definition of the ≺ relation that involved
asymptotic resemblance. In particular, the fact that λ was induced by a
coarse structure was not used. Therefore, the same proof will show the
following proposition:

Proposition 3.24. Let (X,λ) be an asymptotic resemblance space. For
any A,B ⊆ X, define A ≺ B if and only if A and X \B are asymptotically
disjoint. Then the following are equivalent:

(i) A ≺ B implies that there exists C ⊆ X such that A ≺ C ≺ B,
(ii) (X,λ) is asymptotically normal.
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At this point the reader may be wondering if there exist coarse spaces
that are not coarsely normal. Indeed, in [6] it is shown that there exist
such coarse spaces. The following example was inspired by Corollary 11.4
in that paper (translated to the setting of coarse spaces):

Example 3.25. Let X = R+ and let E ′ be the collection of subsets of
R+ × R+ that consists of finitely many half-lines starting at the y or x
axis and parallel to the diagonal. Let E be the collection of all the subsets
of elements of E ′. Then it is easy to see that E is a coarse structure whose
bounded sets are the subsets of R+ of finite cardinality. Let A = (0, 1)
and let B = R+ \N. It is clear that A ≺ B. Also, notice that any C ⊆ X
such that A ≺ C needs to contain a set of the form R+ \D, where D is
a sequence of points diverging to infinity (it is because for any x ∈ R+

we can always find E ∈ E such that (0, x) ⊆ E[A]). However, since we
can always draw a half-line parallel to the diagonal that misses countably
many points (more precisely, misses all the points in D×D), there exists
E ∈ E such that E[C] ⊇ E[R+ \ D] = R+, i.e., E[C] = R+. But this
means that C ̸≺ B for any C such that A ≺ C, i.e., (X, E) is not coarsely
normal.

4. Coarse Proximities Induced by Coarse Structures
and Asymptotic Resemblances

Finally, we are ready to prove that ≺ relation on a connected coarsely
normal space induces a coarse proximity. In the proof, we utilize the char-
acterization of the ≺ relation that uses asymptotic resemblance induced
by the given coarse structure (see Proposition 3.17).

Theorem 4.1. Let (X, E) be a connected coarse space and B the bornology
induced by E. The relation ≺ induces a coarse proximity on the pair (X,B)
if and only if (X, E) is coarsely normal.

Proof. If ≺ induces a coarse proximity on the pair (X,B), then (X, E) is
coarsely normal by (6) of Theorem 2.4. To prove the converse, assume that
(X, E) is coarsely normal. To show that ≺ induces a coarse proximity, it is
enough to show that the relation ≺ satisfies (1) through (6) of Theorem
2.4. To show (1), let D ∈ B be arbitrary. Since subsets of bounded
sets are bounded, there is no such D′ ⊆ D such that D′ is unbounded.
Therefore, Xλ̄D is satisfied vacuously, i.e., X ≺ (X \ D). To show (2),
assume A ≺ B. For contradiction, assume that C := A ∩ (X \ B) is
unbounded. Then C ⊆ A, C ⊆ (X \ B), and C is unbounded. By
Proposition 2.22 of [10], we have that CλC, which contradicts the fact
that A is asymptotically disjoint from (X \ B). Thus, it has to be that
A∩ (X \B) is bounded, i.e., A is contained in B up to some bounded set.
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To show (3), assume that A ⊆ B ≺ C ⊆ D. If A ̸≺ D, then there exist
unbounded A′ ⊆ A ⊆ B and unbounded D′ ⊆ (X\D) ⊆ (X\C) such that
A′λD′, a contradiction to B ≺ C. So it has to be that A ≺ D. To show
(4), assume A ≺ B1 and A ≺ B2, i.e., A is asymptotically disjoint from
(X \B1) and (X \B2). For contradiction, assume that A ̸≺ (B1∩B2), i.e.,
there exists unbounded A′ ⊆ A and unbounded C ′ ⊆ X \ (B1 ∩B2), such
that A′λC ′. However, notice that X \ (B1 ∩ B2) = (X \ B1) ∪ (X \ B2).
Thus, there has to exist unbounded C ′′ ⊆ C ′ such that C ′′ ⊆ (X \B1) or
C ′′ ⊆ (X \ B2) (otherwise C ′ would be bounded, being the union of two
bounded sets). Without loss of generality assume that C ′′ ⊆ (X \ B1).
Notice that since A′λC ′, by Proposition 2.6 of [10], there exists A′′ ⊆ A′

such that A′′λC ′′. Clearly A′′ has to be unbounded (for if it is bounded,
then there exists x ∈ X such that xλA′′λC ′′, contradicting the fact that
C ′′ is unbounded). So we have unbounded A′′ ⊆ A, and unbounded
C ′′ ⊆ (X \ B1) such that A′′λC ′′, a contradiction to A ≺ B1. So it
has to be the case that A ≺ (B1 ∩ B2). To show the converse, assume
A ≺ (B1 ∩ B2). If without loss of generality A ̸≺ B1, then there exist
unbounded A′ ⊆ A and unbounded C ′ ⊆ (X \ (B1)) ⊆ (X \ (B1 ∩ B2))
such that A′λC ′, a contradiction to A ≺ (B1 ∩B2). To show (5), assume
A ≺ B and for contradiction assume that (X \B) ̸≺ (X \A). Then there
exist unbounded B′ ⊆ (X\B) and unbounded A′ ⊆ (X\(X\A)) = A such
that B′λA′, which contradicts A ≺ B. The converse is shown similarly.
Finally, (6) is the coarse normality. �

Corollary 4.2. Let (X, E) be a connected coarsely normal coarse space,
λ the asymptotic resemblance induced by E , B the bornology induced by E ,
and A,B ⊆ X any two subsets. Define the relation b on the power set of
X by any of the following equivalent conditions:

(i) AbB if and only if there exists E ∈ E such that E[A] ∩ B is un-
bounded,

(ii) AbB if and only if there exists an unbounded A′ ⊆ A and an un-
bounded B′ ⊆ B such that A′λB′,

(iii) AbB if and only if there exists E ∈ E such that for all D ∈ B,(
(A \D)× (B \D)

)
∩ E ̸= ∅.

Then b is a coarse proximity.

Proof. This is a direct consequence of Theorem 4.1, Proposition 3.17, and
Theorem 2.5. �

Remark 4.3. Notice that (iii) of the above corollary is in line with the
definition of the metric coarse proximity given in [7], where two subsets
A and B of a metric space (X, d) are coarsely close if and only if there
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exists ϵ < ∞ such that for all bounded sets D, there exists a ∈ (A \D)
and b ∈ (B \D) such that d(a, b) < ϵ.

Since in the proof of Theorem 4.1 we have used the characterization of
the ≺ relation that uses the induced asymptotic resemblance, the proof
of that theorem also shows that connected asymptotically normal asymp-
totic resemblance spaces naturally induce coarse proximities, as in the
following corollary.

Corollary 4.4. Let (X,λ) be a connected asymptotic resemblance space
and B the bornology induced by λ. For any A,B ⊆ X, define A ≺ B if and
only if A and X \B are asymptotically disjoint. The relation ≺ induces a
coarse proximity on the pair (X,B) if and only if (X, E) is asymptotically
normal.

Proof. This is a direct consequence of Proposition 3.24 and the proof of
Theorem 4.1. �
Corollary 4.5. Let (X,λ) be a connected asymptotically normal asymp-
totic resemblance space, B the bornology induced by λ, and A,B ⊆ X any
two subsets. Define the relation b on the power set of X by

AbB if and only if there exists an unbounded A′ ⊆ A and an unbounded
B′ ⊆ B such that A′λB′,

i.e., A and B are not asymptotically disjoint. Then b is a coarse proxim-
ity.

Proof. This is a direct consequence of Corollary 4.4 and Theorem 2.5. �
Question 4.6. Is every coarse proximity space induced by some coarse
structure / asymptotic resemblance structure?
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