
Volume 53, 2019

Pages 301-317

http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Hereditary paracompactness of
lexicographic products

by

Nobuyuki Kemoto

Electronically published on January 31, 2019

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: (Online) 2331-1290, (Print) 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 53 (2019)
Pages 301-317

http://topology.auburn.edu/tp/
http://topology.nipissingu.ca/tp/

E-Published on January 31, 2019

HEREDITARY PARACOMPACTNESS OF
LEXICOGRAPHIC PRODUCTS

NOBUYUKI KEMOTO

Abstract. Paracompactness and hereditary paracompactness of
lexicographic products of LOTS’s are discussed in [2]. For instance,
it is known in [2]:

• a lexicographic product X =
∏

α<γ Xα of LOTS’s is para-
compact whenever all Xα’s are paracompact [2, Theorem
4.2.2],

• a lexicographic product X =
∏

α<γ Xα of LOTS’s is heredi-
tarily paracompact whenever γ < ω1 and all Xα’s are hered-
itarily paracompact [2, Theorem 4.2.3],

• the lexicographic product [0, 1]ω1
R is not hereditarily paracom-

pact, where [0, 1]R denotes the unit interval in the real line R
[2, page 73].

Recently the author defined the notion of lexicographic prod-
ucts of GO-spaces and extended the first result above in [2] for
lexicographic products of GO-spaces [4]. In this paper, we charac-
terize the hereditary paracompactness of lexicographic products of
GO-spaces and get some applications. For example, we see:

• the lexicographic products Sγ , Mγ , Rγ and (0, 1)γR are heredi-
tarily paracompact for every ordinal γ, where S and M denote
the Sorgenfrey line and Michael line respectively,

• the lexicographic product [0, 1)ωR is hereditarily paracompact,
but the lexicographic product [0, 1)ω1

R is not hereditarily para-
compact,

• the lexicographic product ω1 × (0, 1]R is hereditarily para-
compact but the lexicographic product ω1 × [0, 1)R is not
paracompact,

• the lexicographic product (ω2
1 × (−ω1)3)ω1 is hereditarily

paracompact, but the lexicographic products ωω
1 and ωω1

1 are
not paracompact, where for a GO-space X = ⟨X,<X , τX⟩,
−X denotes the GO-space ⟨X,>X , τX⟩.
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1. Introduction

All spaces are assumed to be regular T1 and when we consider a product∏
α<γ Xα, all Xα’s are assumed to have cardinality at least 2 with γ ≥ 2.

Moreover, in this paper,
∏

α<γ Xα usually means a lexicographic product
defined below. Set theoretical and topological terminology follow [7] and
[1]. The following are known:

• a lexicographic product X =
∏

α<γ Xα of LOTS’s is paracompact
whenever all Xα’s are paracompact [2, Theorem 4.2.2],

• a lexicographic product X =
∏

α<γ Xα of LOTS’s is hereditar-
ily paracompact whenever γ < ω1 and all Xα’s are hereditarily
paracompact [2, Theorem 4.2.3],
• the lexicographic product [0, 1]ω1

R is not hereditarily paracompact,
where [0, 1]R denotes the unit interval in the real line R [2, page
73].

Recently the author defined the notion of lexicographic product of GO-
spaces and extended the first result above for lexicographic products of
GO-spaces [4]. Therefore we see:

• lexicographic products Sγ , Mγ , Rγ , (0, 1)γR and [0, 1)γR are para-
compact for every ordinal γ, where S and M denote the Sorgenfrey
line and Michael line respectively.

Since R, S and M are hereditarily paracompact, it is natural to ask
whether Sγ , Mγ , Rγ , (0, 1)γR and [0, 1)γR are hereditarily paracompact even
if γ ≥ ω1. In this paper, we characterize the hereditary paracompactness
of lexicographic products of GO-spaces. Applying this characterization,
we see:

• lexicographic products Sγ , Mγ , Rγ and (0, 1)γR are hereditarily
paracompact for every ordinal γ,

• the lexicographic product [0, 1)ωR is hereditarily paracompact, but
the lexicographic product [0, 1)ω1

R is paracompact but not heredi-
tarily paracompact,

• the lexicographic product ω1× (0, 1]R is hereditarily paracompact
but the lexicographic product ω1 × [0, 1)R is not paracompact,

• the lexicographic product (ω2
1×(−ω1)

3)ω1 is hereditarily paracom-
pact, but the lexicographic products ωω

1 and ωω1
1 are not paracom-

pact, where for a GO-space X = ⟨X,<X , τX⟩, −X denotes the
GO-space ⟨X,>X , τX⟩.

A linearly ordered set ⟨L,<L⟩ has a natural topology λL, which is called
an interval topology, generated by {(←, x)L : x ∈ L} ∪ {(x,→)L : x ∈ L}
as a subbase, where (x,→)L = {z ∈ L : x <L z}, (x, y)L = {z ∈ L :
x <L z <L y}, (x, y]L = {z ∈ L : x <L z ≤L y} and so on. The triple
⟨L,<L, λL⟩, which is simply denoted by L, is called a LOTS.
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A triple ⟨X,<X , τX⟩ is said to be a GO-space, which is also simply
denoted by X, if ⟨X,<X⟩ is a linearly ordered set and τX is a T2-topology
on X having a base consisting of convex sets, where a subset C of X is
convex if for every x, y ∈ C with x <X y, [x, y]X ⊆ C holds. For more
information on LOTS’s or GO-spaces, see [8]. Usually <L, (x, y)L, λL or
τX are written simply <, (x, y), λ or τ if contexts are clear.

The symbols ω and ω1 denote the first infinite ordinal and the first
uncountable ordinal, respectively. Ordinals, which are usually denoted
by Greek letters α, β, γ, · · · , are considered to be LOTS’s with the usual
intereval topology. For a subset A of an ordinal α, Lim(A) denotes the
set {β < α : β = sup(A ∩ β)}, that is, the set of all cluster points of A in
the topological space α. The cofinality of α is denoted by cf α..

For GO-spaces X = ⟨X,<X , τX⟩ and Y = ⟨Y,<Y , τY ⟩, X is said to be
a subspace of Y if X ⊆ Y , the linear order <X is the restriction <Y � X
of the order <Y and the topology τX is the subspace topology τY � X
(= {U∩X : U ∈ τY }) on X of the topology τY . So a subset of a GO-space
is naturally considered as a GO-space. For every GO-space X, there is a
LOTS X∗ such that X is a dense subspace of X∗ and X∗ has the property
that if L is a LOTS containing X as a dense subspace, then L also contains
the LOTS X∗ as a subspace, see [9]. Such a X∗ is called the minimal d-
extension of a GO-space X. Indeed, X∗ is constructed as follows, also
see [4]. Let X+ = {x∈X : (←, x] ∈ τX \ λX} and X− = {x∈X : [x,→)
∈ τX \ λX}. Then X∗ is the LOTS X− × {−1} ∪X × {0} ∪X+ × {1},
where the order <X∗ is the restriction of the usual lexicographic order on
X × {−1, 0, 1}. Also we identify as X = X × {0} in the obvious way.

Then, we can see:
• if X is a LOTS, then X∗ = X,
• X has a maximal element maxX if and only if X∗ has a maximal

element maxX∗, in this case, maxX = maxX∗ (similarly for
minimal elements).

For every α < γ, let Xα be a LOTS and X =
∏

α<γ Xα. Every element
x ∈ X is identified with the sequence ⟨x(α) : α < γ⟩. The lexicographic
order <X on X is defined as follows: for every x, x′ ∈ X,

x <X x′ iff for some α < γ, x � α = x′ � α and x(α) <Xα x′(α),

where x � α = ⟨x(β) : β < α⟩ and <Xα
is the order on Xα. Now for every

α < γ, let Xα be a GO-space and X =
∏

α<γ Xα. The subspace X of
the lexicographic product X̂ =

∏
α<γ X

∗
α is said to be the lexicographic

product of GO-spaces Xα’s, for more details see [4].
∏

i∈ω Xi (
∏

i≤n Xi

where n ∈ ω) is denoted by X0×X1×X2×· · · (X0×X1×X2×· · ·×Xn,
respectively).

∏
α<γ Xα is also denoted by Xγ whenever Xα = X for all

α < γ.
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Let X and Y be LOTS’s. A map f : X → Y is said to be order preserv-
ing or 0-order preserving if f(x) <Y f(x′) whenever x <X x′. Similarly
a map f : X → Y is said to be order reversing or 1-order preserving if
f(x) >Y f(x′) whenever x <X x′. Obviously a 0-order preserving map
(also 1-order preserving map) f : X → Y between LOTS’s X and Y ,
which is onto, is a homeomorphism, i.e., both f and f−1 are continuous.
Now let X and Y be GO-spaces. A 0-order preserving map f : X → Y is
said to be 0-order preserving embedding if f is a homeomorphism between
X and f [X], where f [X] is the subspace of the GO-space Y . In this case,
we identify X with f [X] as a GO-space and write X = f [X] and X ⊆ Y .

Recall that a subset of a regular uncountable cardinal κ is called sta-
tionary if it intersects with all closed unbounded (= club) sets in κ.

Let X be a GO-space. A subset A of X is called a 0-segment of X if
for every x, x′ ∈ X with x ≤ x′, if x′ ∈ A, then x ∈ A. Similarly the
notion of 1-segment can be defined. Both ∅ and X are 0-segments and
1-segments. Obviously, if A is a 0-segment, then X \A is a 1-segment.

Let A be a 0-segment of a GO-space X. A subset U of A is unbounded
in A if for every x ∈ A, there is x′ ∈ U such that x ≤ x′. Let

0- cfX A = min{|U | : U is unbounded in A.}.
0- cfX A can be 0, 1 or a regular infinite cardinal, see also [3, 5, 6]. If
contexts are clear, 0- cfX A is denoted by 0- cf A. A 0-segment A of a
GO-space X is said to be stationary if κ := 0- cf A ≥ ω1 and there are a
stationary set S of κ and a continuous map π : S → A such that π[S] is
unbounded in A (we say such a π “an unbounded continuous map”).

Note that for a subspace S of a regular uncountable cardinal κ, S is
stationary in κ in the usual sense if and only if the 0-segment S in the GO-
space S is stationary in the sense above (e.g., use [5, Lemma 2.7]). So this
new term “stationarity of 0-segments” extends the usual term “stationarity
of subsets of a regular uncountable cardinal”.

A GO-space X is said to be 0-paracompact if every closed 0-segment
is not stationary. Similarly the notions of 1- cf A, stationarity of a 1-
segment and 1-paracompactness are defined. Remember that a GO-space
is paracompact if and only if it is both 0-paracompact and 1-paracompact,
see [4], where a topological space is paracompact if every open cover has a
locally finite open refinement [1]. It is well-known that stationary sets of
some regular uncountable cardinal are not paracompact. We frequently
use the following basic lemmas from [5].

Lemma 1.1. [5, Lemma 2.7] Let A be a 0-segment of a GO-space X with
κ := 0- cf A ≥ ω1. If there are a stationary set S of κ and an unbounded
continuous map π : S → A, then there is a club set C in κ such that
π � (S ∩ C) : S ∩ C → A is 0-order preserving embedding.
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Lemma 1.2. [5, Lemma 3.4] Let X = X0×X1 be a lexicographic product
of GO-spaces and u ∈ X0. Then the map ku : X1 → {u} × X1 by
ku(v) = ⟨u, v⟩ is a 0-order preserving homeomorphism.

Lemma 1.3. [5, Lemma 3.6] Let X = X0×X1 be a lexicographic product
of GO-spaces and A0 a 0-segment of X0. Put A = A0 × X1. Then the
following hold:

(1) A is a 0-segment of X,
(2) if 0- cfX0 A0 = 1, then

(a) 0- cfX A = 0- cfX1 X1,
(b) A is stationary if and only if the 0-segment X1 is stationary,

(3) if 0- cfX0
A0 ≥ ω, then

(a) 0- cfX A = 0- cfX0
A0,

(b) A is stationary if and only if X1 has a minimal element and
A0 is stationary,

A GO-space X is said to be hereditarily 0-paracompact if every 0-
segment A of X is not stationary, similarly the notion of hereditary 1-
paracompactness is defined. We can see the naming of these definitions
are reasonable from the lemma below, where a topological space is hered-
itarily paracompact if all subspaces are paracompact.

Lemma 1.4. Let X be a GO-space. Then X is hereditarily paracom-
pact if and only if it is both hereditarily 0-paracompact and hereditarily
1-paracompact.

Proof. First assume that X is hereditarily paracompact and that X is
not hereditarily 0-paracompact, then there is a stationary 0-segment A
of X. Lemma 1.1 shows that A has a copy of a stationary set of some
regular uncountable cardinal, a contradiction. So X is hereditarily 0-
paracompact. Similarly X is hereditarily 1-paracompact.

Next assume that there is a non-paracompact subspace Y of X. We
may assume that Y is not 0-paracompact. So there is a closed stationary
0-segment A of Y . Set A′ = {x ∈ X : ∃y ∈ A(x ≤ y)}. Then it is easy to
verify that A′ is also a stationary (need not be closed) 0-segment of X,
which means that X is not hereditarily 0-paracompact. �

2. Products of two GO-spaces

In this section, we characterize the hereditary paracompactness of a
lexicographic product X = X0 ×X1 of two GO-spaces.

Lemma 2.1. Let X = X0 ×X1 be a lexicographic product of GO-spaces.
Then the following are equivalent:
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(1) X is hereditarily 0-paracompact,
(2) the following clauses hold:

(a) X1 is hereditarily 0-paracompact,
(b) if X1 has a minimal element, then X0 is hereditarily 0-

paracompact.

Proof. (1) ⇒ (2) Assume that X is hereditarily 0-paracompact.
(a) Assuming that X1 is not hereditarily 0-paracompact, take a sta-

tionary 0-segment A1 of X1. Fixing u ∈ X0, let A = {x ∈ X : ∃v ∈
A1(x ≤ ⟨u, v⟩)}. Obviously A is a 0-segment of X. Since {u} × A1 is a
1-segment (i.e., final segment) of A, Lemma 1.2 shows that the 0-segment
A is also stationary, a contradiction.

(b) Assume that X1 has a minimal element but X0 is not hereditarily 0-
paracompact. Taking a stationary 0-segment A0 of X0, let A = A0 ×X1.
Then Lemma 1.3 (3b) shows that A is a stationary 0-segment of X, a
contradiction.

(2) ⇒ (1) Assumimg (2) and the negation of (1), take a staionary 0-
segment A of X. Let A0 = {u ∈ X0 : ∃v ∈ X1(⟨u, v⟩ ∈ A)}. Obviously
A0 is a non-empty 0-segment of X0 with A ⊆ A0 ×X1. Assume that A0

has a maximal element maxA0 and let A1 = {v ∈ X1 : ⟨maxA0, v⟩ ∈ A}.
Since {maxA0} ×A1 is a 1-segment of A, Lemma 1.2 shows that A1 is a
stationary 0-segment of X1, which contradicts the condition (2a). Thus
we see that A0 has no maximal element, that is 0- cfX0 A0 ≥ ω.

Claim. A = A0 ×X1.

Proof. The inclusion ⊆ is obvious. To see the inclusion ⊃, let x ∈ A0×X1.
Since A0 has no maximal element, we can take u ∈ A0 with x(0) < u. By
u ∈ A0, we can find v ∈ X1 with ⟨u, v⟩ ∈ A. Then we have x < ⟨u, v⟩.
Now since A is a 0-segment, we see x ∈ A. �

Now Lemma 1.3 (3b) shows that X1 has a minimal element and the
0-segment A0 is stationary, which contradicts the condition (2b). �

Analogously we see:

Lemma 2.2. Let X = X0 ×X1 be a lexicographic product of GO-spaces.
Then the following are equivalent:

(1) X is hereditarily 1-paracompact,
(2) the following clauses hold:

(a) X1 is hereditarily 1-paracompact,
(b) if X1 has a maximal element, then X0 is hereditarily 1-

paracompact.

The lemmas above show:
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Lemma 2.3. Let X = X0 ×X1 be a lexicographic product of GO-spaces.
Then the following are equivalent:

(1) X is hereditarily paracompact,
(2) the following clauses hold:

(a) X1 is hereditarily paracompact,
(b) if X1 has a minimal element, then X0 is hereditarily 0-

paracompact.
(c) if X1 has a maximal element, then X0 is hereditarily 1-

paracompact.
Example 2.4. The lemma above shows that ω1 ×R, ω1 × S and ω1 ×M
are hereditarily paracompact. But ω1 × [0, 1)R is not paracompact [5].
On the other hand, ω1 × (0, 1]R is hereditarily paracompact, indeed ω1 is
hereditarily 1-paracompact because it is well-ordered.

3. Products of any length of GO-spaces

In this section, we characterize the hereditarily paracompactness of lex-
icographic products of any length of GO-spaces. The following notations
are introduced in [4, Theorem 2.5]
Definition 3.1. Let X =

∏
α<γ Xα be a lexicographic product of GO-

spaces. We use the following notations.

J+ = {α < γ : Xα has no maximal element.},
J− = {α < γ : Xα has no minimal element.}.

Note sup J+ ≤ γ and sup J− ≤ γ.
Theorem 3.2. Let X =

∏
α<γ Xα be a lexicographic product of GO-

spaces. Then the following are equivalent:
(1) X is hereditarily 0-paracompact,
(2) the following clauses hold:

(a) γ < sup J−+ω1, where sup J−+ω1 is the usual ordinal sum,
(b) for every α < γ with sup J− ≤ α, Xα is hereditarily 0-

paracompact,

Proof. Let X̂ =
∏

α<γ X
∗
α be the lexicographic product of LOTS’s X∗

α’s.
(1) ⇒ (2) Assume that X is hereditarily 0-paracompact.
(a) Assume sup J− +ω1 ≤ γ. Letting α0 = sup J−, fix z ∈

∏
α≤α0

Xα.
For every α < γ with α0 < α, noting that minXα exists, fix u(α) ∈ Xα

with minXα < u(α). First let x = z∧⟨u(α) : α0 < α < α0+ω1⟩∧⟨minXα :
α0 + ω1 ≤ α < γ⟩, that is, x is an element in X such that x(α) = z(α)
when α ≤ α0, x(α) = u(α) when α0 < α < α0 + ω1 and x(α) = minXα

when α0 + ω1 ≤ α < γ. Next for β < ω1 with 1 < β, let xβ = z∧⟨u(α) :
α0 < α < α0 + β⟩∧⟨minXα : α0 + β ≤ α < γ⟩. Set A = (←, x)X and
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S = (1, ω1), and define π : S → A by π(β) = xβ . Obviously π is 0-order
preserving and unbounded (i.e., “β′ < β → π(β′) < π(β)” and π[S] is
unbounded in the 0-segment A).

Claim 1. π is continuous.

Proof. Let β ∈ S and U be an open neighborhood of π(β). We may
assume β ∈ Lim(S). Note (←, π(β))X ̸= ∅. Then there is y∗ ∈ X̂ with
y∗ < π(β) and (y∗, π(β)]X̂ ∩ X ⊆ U . Let β0 = min{α < γ : y∗(α) ̸=
π(β)(α)}. The definition of xβ (= π(β)) shows β0 < α0 + β. When β0 ≤
α0, obviously π[S ∩ (β + 1)] ⊆ U holds. So assumeing α0 < β0 < α0 + β,
β0 can be represented as β0 = α0 + β1 for some β1 < β with 0 < β1.
Then for each β′ ∈ (β1, β], we have y∗ < xβ′ ≤ xβ . Therefore we see
π[S ∩ (β1, β]] ⊆ U , so we have seen that π is continuous. �

Now since S is stationary in ω1, the 0-segment A is stationary, which
contradicts the hereditary 0-paracompactness of X.

(b) Let sup J− ≤ α0 < γ and let Y0 =
∏

α≤α0
Xα and Y1 =

∏
α0<α Xα

be lexicographic products. Then X is identified with the lexicographic
product Y0 × Y1 [4, Lemma 1.5], where X is identified with Y0 whenever
α0 + 1 = γ. Since X (= Y0 × Y1) is hereditarily 0-paracompact and Y1

has the minimal element ⟨minXα : α0 < α⟩, Lemma 2.1 (2b) shows that
Y0 is hereditarily 0-paracompact. Here note that Y0 is itself hereditarily
0-paracompact whenever X = Y0, so we will not mention such special
cases. Now Y0 =

∏
α<α0

Xα ×Xα0 and Lemma 2.1 (2a) shows that Xα0

is hereditarily 0-paracompact.
(2) ⇒ (1) Assume (2) and the negation of (1), then one can take a

stationary 0-segment A of X. We consider three cases and their subcases
and in all cases, we will get contradictions. This argument is shown in [5,
Theorem 4.8].

Case 1. A = X.

Since A (= X) has no maximal element, Xα has no maximal element
for some α < γ. Let α0 = min{α < γ : Xα has no maximal element.}.
Since A = X =

∏
α≤α0

Xα ×
∏

α0<α Xα, the 0-segment A is station-
ary and

∏
α≤α0

Xα has no maximal element, Lemma 1.3 (3b) shows that
the 0-segment

∏
α≤α0

Xα is stationary and
∏

α0<α Xα has a minimal el-
ement. Therefore Xα has a minimal element for every α > α0, which
means sup J− ≤ α0. By the minimality of α0, Xα has a maximal element
for every α < α0. Then {⟨maxXα : α < α0⟩} × Xα0

is a 1-segment
of

∏
α<α0

Xα × Xα0 . Now since the 0-segment
∏

α<α0
Xα × Xα0 is sta-

tionary, Lemma 1.2 shows that the 0-segment Xα0 is also stationary, this
contradicts the condition (2b).
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Case 2. A ̸= X and X \A has a minimal element.

Let B = X \A and b = minB, then note A = (←, b)X . Set I = {α < γ :
∃a ∈ A(a � (α+ 1) = b � (α+ 1))}. Since I is obviously a 0-segment of γ,
for some α0 ≤ γ, I = α0 holds. Now for every α < α0, fix aα ∈ A with
aα � (α+ 1) = b � (α+ 1).

Claim 2. For every α ∈ (α0, γ), Xα has a minimal element and b(α) =
minXα, thus sup J− ≤ α0.

Proof. Note that still we do not know whether α0 < γ or not. Assume
that for some α ∈ (α0, γ), there is u ∈ Xα with u < b(α). Let α1 =
min{α > α0 : ∃u ∈ Xα(u < b(α))} and take u ∈ Xα1 with u < b(α1).
Let a = b � α1

∧⟨u⟩∧b � (α1, γ). Then by a < b, we have a ∈ A and
a � α1 = b � α1. Now α0 < α1 shows a � (α0 + 1) = b � (α0 + 1), which
means α0 ∈ I = α0, a contradiction. �

We divide Case 2 into further two subcases.

Case 2-1. α0 is a successor ordinal.

Say α0 = β0 + 1.

Claim 3. α0 < γ.

Proof. If α0 = γ were true, then by β0 ∈ α0 = I, we have B ∋ b =
b � α0 = b � (β0 + 1) = aβ0

� (β0 + 1) = aβ0
� α0 = aβ0

∈ A, a
contradiction. �

Claim 4. b(α0) is not a minimal element of Xα0
.

Proof. If b(α0) were a minimal element of Xα0
, then we have A ∋ aβ0

≥
b ∈ B because of b(α) = minXα for every α ≥ α0, a contradiction. �

Let Y0 =
∏

α≤α0
Xα and Y1 =

∏
α0<α Xα.

Claim 5. A = (←, b � (α0 + 1))Y0
× Y1.

Proof. To see the inclusion ⊃, let a ∈ (←, b � (α0 + 1)) × Y1. Then
a � (α0 + 1) < b � (α0 + 1) shows a < b = minB. So we have a ∈ A.

To see the inclusion ⊆, let a ∈ A. Since a < b and b(α) = minXα

for every α > α0, we have a � (α0 + 1) < b � (α0 + 1), thus a ∈ (←, b �
(α0 + 1))× Y1. �

We further divide Case 2-1 into two subcases.

Case 2-1-1. (←, b(α0))Xα0
has no maximal element.

In this case, (←, b � (α0 + 1))Y0 has no maximal element, so Claim 5
and Lemma 1.3 (3b) show that the 0-segment (←, b � (α0 + 1)) in Y0 is
stationary. Then it is easy to see:
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Claim 6. (←, b � (α0 + 1))Y0 = (←, b � α0) × Xα0 ∪ {b � α0} × (←,
b(α0))Xα0

.

Now Lemma 1.2 show that the 0-segment (←, b(α0))Xα0
is stationary,

because {b � α0}× (←, b(α0))Xα0
is a 1-segment of (←, b � (α0 +1))Y0 by

Claim 6. This contradicts the condition (2b) because of sup J− ≤ α0.

Case 2-1-2. (←, b(α0))Xα0
has a maximal element.

Say u0 = max(←, b(α0)), then note that (b � α0)
∧⟨u0⟩ is the immedi-

ate predecessor of b � (α0 + 1) in Y0, so we see (←, b � (α0 + 1)) =
(←, (b � α0)

∧⟨u0⟩]. Since A has no maximal element and A = (←,
(b � α0)

∧⟨u0⟩] × Y1 (Claim 5), Y1 has no maximal element. So let
α1 = min{α > α0 : Xα has no maximal element.}. Now since A = (←,
b � (α0+1))×Y1 = (←, (b � α0)

∧⟨u0⟩]×
∏

α0<α Xα = (←, (b � α0)
∧⟨u0⟩]×

(
∏

α0<α≤α1
Xα ×

∏
α1<α Xα) = ((←, (b � α0)

∧⟨u0⟩] ×
∏

α0<α≤α1
Xα) ×∏

α1<α Xα, (←, (b � α0)
∧⟨u0⟩] ×

∏
α0<α≤α1

Xα has no maximal element
and the 0-segment A is stationary, Lemma 1.3 (3b) shows that the 0-
segment (←, (b � α0)

∧⟨u0⟩]×
∏

α0<α≤α1
Xα in

∏
α≤α1

Xα is also station-
ary. Now since {(b � α0)

∧⟨u0⟩∧⟨maxXα : α0 < α < α1⟩} × Xα1 is a
1-segment of (←, (b � α0)

∧⟨u0⟩] ×
∏

α0<α≤α1
Xα, Lemma 1.2 shows that

Xα1
is stationary. Since sup J− ≤ α0 < α1, Xα1

has to be hereditarily
0-paracompact (condition (2b)), a contradiction.

Case 2-2. α0 is limit.

Claim 2 and the condition (2a) show sup J− ≤ α0 ≤ γ < sup J− + ω1,
therefore we have cf α0 = ω.

Claim 7. α0 < γ.

Proof. Assume α0 = γ, then note cf γ = cf α0 = ω, so fix a 0-order
preserving unbounded (i.e., strictly increasing cofinal) sequence {γn : n ∈
ω} in γ. Then {aγn : n ∈ ω} is unbounded in the 0-segment (←, b)
(= A), so we have 0- cfX A = ω, which contradicts the stationarity of the
0-segment A. �

We divide Case 2-2 into three subcases.

Case 2-2-1. (←, b(α0))Xα0
is non-empty and has no maximal element.

In this case, using a similar argument to Case 2-1-1, we can get a contra-
diction.

Case 2-2-2. (←, b(α0))Xα0
is non-empty and has a maximal element.

In this case, using a similar argument to Case 2-1-2, we can get a
contradiction.
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Case 2-2-3. (←, b(α0))Xα0
is empty, that is, b(α0) = minXα0 .

In this case, fix a 0-order preserving unbounded sequence {γn : n ∈ ω}
in α0. Since b(α) = minXα for every α ≥ α0, we see that {aγn : n ∈ ω}
is unbounded in the 0-segment (←, b) (= A), so we have 0- cfX A = ω,
which contradicts the stationarity of the 0-segment A.

Case 3. A ̸= X and X \A has no minimal element.

Let B = X \A and

I = {α < γ : ∃a ∈ A ∃b ∈ B (a � (α+ 1) = b � (α+ 1))}.
Since I is a 0-segment in γ, for some α0 ≤ γ, I = α0 holds. For every
α < α0, fix aα ∈ A and bα ∈ B with aα � (α + 1) = bα � (α + 1) and
consider the lexicographic products Y0 =

∏
α<α0

Xα and Y1 =
∏

α0≤α Xα.
Define y0 ∈ Y0 by y0(α) = aα(α) for every α < α0.

Claim 8. For every α < α0, y0 � (α + 1) = aα � (α + 1) = bα � (α + 1)
holds.

Proof. It suffices to see the first equality. Assuming y0 � (α + 1) ̸= aα �
(α+1) for some α < α0, let α1 = min{α < α0 : y0 � (α+1) ̸= aα � (α+1)}
and α2 = min{α ≤ α1 : y0(α) ̸= aα1(α)}. Then y0(α1) = aα1(α1) shows
α2 < α1. Also the minimality of α1 shows y0 � (α2 + 1) = aα2 � (α2 + 1)
(= bα2 � (α2 + 1)). When y0(α2) < aα1(α2), we see B ∋ bα2 < aα1 ∈ A,
a contradiction. When y0(α2) > aα1

(α2), we also see B ∋ bα1
< aα2

∈ A,
a contradiction. �

Claim 9. α0 < γ.

Proof. Assume α0 = γ, then y0 ∈ Y0 = X = A ∪ B. Assume y0 ∈ A and
take a ∈ A with y0 < a. Let β0 = min{β < γ : y0(β) ̸= a(β)}. Then we
have B ∋ bβ0 < a ∈ A, a contradiction. When y0 ∈ B, similarly we also
get a contradiction. �

Let A0 = {a(α0) : a ∈ A, a � α0 = y0} and B0 = {b(α0) : b ∈ B, b �
α0 = y0}.
Claim 10. The following hold:

(1) for every a ∈ A, a � α0 ≤Y0
y0 holds,

(2) for every x ∈ X, if x � α0 <Y0 y0, then x ∈ A.

Proof. (1) Assume a � α0 > y0 for some a ∈ A and let β0 = min{β < α0 :
a(β) ̸= y0(β)}. Now we have B ∋ bβ0 < a ∈ A, a contradiction.

(2) Assume x � α0 < y0 and let β0 = min{β < α0 : x(β) ̸= y0(β)}.
Then we have x < aβ0

∈ A, so we see x ∈ A because A is a 0-segment. �
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We similarly see:

Claim 11. The following hold:
(1) for every b ∈ B, b � α0 ≥Y0

y0 holds,
(2) for every x ∈ X, if x � α0 >Y0

y0, then x ∈ B.

Claim 12. A0 is a 0-segment of Xα0 and B0 = Xα0 \A0.

Proof. Let u′ < u ∈ A0 and take a ∈ A with a � (α0 + 1) = y0
∧⟨u⟩. Let

a′ = (a � α0)
∧⟨u′⟩∧(a � (α0, γ)). Since A is a 0-segment with a′ < a ∈ A,

we have a′ ∈ A, thus u′ ∈ A0. So we have seen that A0 is a 0-segment.
To see B0 ⊆ Xα0

\ A0, let u ∈ B0. Take b ∈ B with b � (α0 + 1) =
y0

∧⟨u⟩. If u ∈ A0 were true, then by taking a ∈ A with a � (α0 +
1) = y0

∧⟨u⟩, we see a � (α0 + 1) = b � (α0 + 1) thus α0 ∈ I = α0, a
contradiction. So we have u ∈ Xα0

\A0.
To see B0 ⊃ Xα0 \A0, let u ∈ Xα0 \A0. Take x ∈ X with x � (α0+1) =

y0
∧⟨u⟩. Then obviously we have x ∈ B, thus u ∈ B0. �

Claim 13. A0 ̸= ∅.

Proof. Assume A0 = ∅. We prove the following facts.

Fact 1. (←, y0)Y0
× Y1 = A.

Proof. Claim 10 (2) shows the inclusion ⊆. To see the other inclusion, let
a ∈ A. Then Claim 10 (1) shows a � α0 ≤ y0. If a � α0 = y0 were true,
then we have a(α0) ∈ A0, which contradicts A0 = ∅. �

Fact 2. α0 > 0 and α0 is limit.

Proof. If α0 = 0 were true, then taking a ∈ A, we see a(α0) ∈ A0, a
contradiction. If for some ordinal β0, α0 = β0 + 1 were true, then by
β0 ∈ I = α0 and aβ0 � α0 = aβ0 � (β0 + 1) = y0 � (β0 + 1) = y0 � α0, we
see aβ0

(α0) ∈ A0, a contradiction. �

Fact 3. 0- cfY0(←, y0)Y0 ≥ ω.

Proof. Fact 1 with A ̸= ∅ shows (←, y0) ̸= ∅, that is, 0- cfY0(←, y0) ≥
1. If 0- cfY0(←, y0) = 1 were true, then letting y1 = max(←, y0) and
β0 = min{β < α0 : y1(β) ̸= y0(β)}, we see y1 < aβ0 � α0 < y0, a
contradiction. �
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Since the 0-segment A is stationary, Lemma 1.3 (3) with Fact 1 and
3 shows that Y1 has a minimal element. Now Claim 11 (1) shows that
y0

∧⟨minXα : α0 ≤ α⟩ is the minimal element of B in X, which contra-
dicts our case (=Case 3). �

Now let Z0 =
∏

α≤α0
Xα, Z1 =

∏
α0<α Xα and

A∗ = {z ∈ Z0 : z � α0 <Y0
y0 or (z � α0 = y0 and z(α0) ∈ A0).}.

Observe that A∗ is a 0-segment of Z0 and A∗ = (←, y0)Y0
×Xα0

∪{y0}×A0.
Since {y0}×A0 is a 1-segment of A∗ because of A0 ̸= ∅, Lemma 1.2 shows
that 0- cfZ0 A

∗ is equal to 0- cfXα0
A0 and that the stationarity of A∗ is

equivalent to the stationarity of A0.

Claim 14. A = A∗ × Z1.

Proof. The inclusion ⊆ follows from Claim 10 (1) and the definition of A0.
The inclusion ⊇ follows from Claim 10 (2) and the definition of A0. �

We divide Case 3 into two subcases.

Case 3-1. 0- cfZ0 A
∗ ≥ ω.

In this case, since A is stationary, Lemma 1.3 (3b) with Claim 14 shows
that Z1 has a minimal element (so sup J− ≤ α0) and the 0-segment A∗

is stationary (so the 0-segment A0 is stationary), which contradicts our
condition (2b).

Case 3-2. 0- cfZ0
A∗ = 1, that is, maxA∗ exists.

In this case, note maxA∗ = y0
∧⟨maxA0⟩. Since A = A∗ × Z1, A has no

maximal element but A∗ has a maximal element, we see Z1 has no max-
imal element. So let α1 = min{α0 < α : Xα has no maximal element.}.
Note that Xα has a maximal element for each α ∈ (α0, α1). Since
A = A∗×Z1 = (A∗×

∏
α0<α≤α1

Xα)×
∏

α1<α Xα and A∗×
∏

α0<α≤α1
Xα

is a 0-segment in
∏

α≤α1
Xα with no maximal element, Lemma 1.3 (3b)

shows that the 0-segment A∗×
∏

α0<α≤α1
Xα is stationary and

∏
α1<α Xα

has a minimal element (so sup J− ≤ α1). Moreover since

{y0 ∧⟨maxA0⟩∧⟨maxXα : α0 < α < α1⟩} ×Xα1

is a 1-segment in the stationary 0-segment A∗ ×
∏

α0<α≤α1
Xα, Lemma

1.2 shows that the 0-segment Xα1
is also stationary, which contradicts

our condition (2b). �

Analogously we see the following.

Theorem 3.3. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. Then the following are equivalent:
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(1) X is hereditarily 1-paracompact,
(2) the following clauses hold:

(a) γ < sup J+ + ω1,
(b) for every α < γ with sup J+ ≤ α, Xα is hereditarily 1-

paracompact,

4. Some applications

In this section, we apply the theorems in the previous section to some
special cases.

Corollary 4.1. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. If Xα has both a minimal and a maximal element for every α < γ,
then the following are equivalent:

(1) X is hereditarily paracompact,
(2) the following clauses hold:

(a) γ < ω1,
(b) for every α < γ, Xα is hereditarily paracompact,

Proof. By the assumption, we have J− = J+ = ∅, then apply Theorems
3.2 and 3.3. �
Corollary 4.2. Let X =

∏
α<γ Xα be a lexicographic product of GO-

spaces. If Xα has neither a minimal nor a maximal element for every
α < γ, then the following are equivalent:

(1) X is hereditarily paracompact,
(2) if γ is successor, then Xγ−1 is hereditarily paracompact, where

γ − 1 is the immediate predecessor of γ,
thus note that if γ is limit, then X is hereditarily paracompact.

Proof. By the assumption, we have J− = J+ = γ. So note that sup J− =
sup J+ = γ whenever γ is limit and that sup J− = sup J+ = γ − 1
whenever γ is successor. Then apply Theorems 3.2 and 3.3. �
Example 4.3. The corollary above shows that the lexicographic products
Sγ , Mγ , Rγ and (0, 1)γR are hereditarily paracompact for every ordinal γ.

Applying the theorems directly we can also see the following.

Corollary 4.4. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. If sup J− = sup J+ = γ, then X is hereditarily paracompact,

Here remark that sup J− = γ implies that γ is limit.

Example 4.5. The corollary above shows that (ω2
1× (−ω1)

3)ω1 is hered-
itarily paracompact, where for a GO-space X = ⟨X,<X , τX⟩, −X de-
notes the GO-space ⟨X,>X , τX⟩ which is called the reverse of X, see [5].
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Note that −X is topologically homeomorphic to X, because the identity
map on X to −X (= X) is 1-order preserving and homeomorphism. Also
note that the lexicographic products ωω

1 and ωω1
1 are not paracompact [5].

Next we consider the case that all Xα’s have minimal elements. The-
orems 3.2 and 3.3 yield the following.

Corollary 4.6. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. If Xα has a minimal element for every α < γ, then the following
are equivalent:

(1) X is hereditarily paracompact,
(2) the following clauses hold:

(a) γ < ω1,
(b) for every α < γ, Xα is hereditarily 0-paracompact,
(c) for every α < γ with sup J+ ≤ α, Xα is hereditarily 1-

paracompact.

Therefore we have the following.

Corollary 4.7. Let X =
∏

α<γ Xα be a lexicographic product of GO-
spaces. If Xα has a minimal element but has no maximal element for
every α < γ, then the following are equivalent:

(1) X is hereditarily paracompact,
(2) the following clauses hold:

(a) γ < ω1,
(b) for every α < γ, Xα is hereditarily 0-paracompact,
(c) if γ is successor, then Xγ−1 is hereditarily 1-paracompact.

Now we consider hereditary paracompactness of Xγ .

Corollary 4.8. Let X be a GO-space. Then the following hold:
(1) when X has both a minimal and a maximal element, the lexico-

graphic product Xγ is hereditarily paracompact iff γ < ω1 and X
is hereditarily paracompact,

(2) when X has neither a minimal nor a maximal element, the lexi-
cographic product Xγ is hereditarily paracompact iff X is heredi-
tarily paracompact whenever γ is successor,

(3) when X has a minimal element but has no maximal element, the
lexicographic product Xγ is hereditarily paracompact iff γ < ω1,
X is hereditarily 0-paracompact and “if γ is successor, then X is
hereditarily 1-paracompact”.

Example 4.9. The corollary above shows the following:
(1) the lexicographic product [0, 1]γR is hereditarily paracompact iff

γ < ω1, see [2, page 73],
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(2) the lexicographic product 2γ is hereditarily paracompact iff γ <
ω1, where 2 = {0, 1} with 0 < 1,

(3) the lexicographic product [0, 1)γR is hereditarily paracompact iff
γ < ω1.

Example 4.10. Applying Theorems 3.2 and 3.3 directly, we see:
(1) the lexicographic product [0, 1]ω1

R × Sω1 is hereditarily paracom-
pact,

(2) the lexicographic product Sω1 × [0, 1]ω1

R is not hereditarily para-
compact,

(3) the lexicographic product Sω1×[0, 1]ωR is hereditarily paracompact,
(4) the lexicographic product (ω1+1)ω×Sω1 is hereditarily paracom-

pact,
(5) the lexicographic product Sω1×(ω1+1)ω is not hereditarily para-

compact,
(6) the lexicographic product Sω1 × [0, 1)ωR is hereditarily paracom-

pact,
(7) the lexicographic product Sω1 × [0, 1)ω1

R is not hereditarily para-
compact,

(8) the lexicographic product [0, 1)ωR × Sω1 is hereditarily paracom-
pact,

Note that all spaces in Examples 4.9 and 4.10 are paracompact.
Finally we discuss on hereditarily paracompactness of lexicographic

products of ordinal subspaces. Note that whenever X is a subspace of
an ordinal, then X has a minimal element, more generally, all non-empty
1-segment of X has a minimal element. Therefore when X =

∏
α<γ Xα

is a lexicographic product of subspaces of ordinals, we see:
• J− = ∅,
• Xα is hereditarily 1-paracompact for every α < γ.

So Corollary 4.6 yields the following.

Corollary 4.11. Let X =
∏

α<γ Xα be a lexicographic product of sub-
spaces of ordinals. Then the following are equivalent:

(1) X is hereditarily paracompact,
(2) the following clauses hold:

(a) γ < ω1,
(b) for every α < γ, Xα is hereditarily (0-)paracompact,

In particular, when X is an ordinal, X is hereditarily paracompact iff
it is a countable ordinal. So we have the following.

Corollary 4.12. Let X =
∏

α<γ Xα be a lexicographic product of ordi-
nals. Then the following are equivalent:
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(1) X is hereditarily paracompact,
(2) γ < ω1 and for every α < γ, Xα is a countable ordinal.

Example 4.13. The corollary above shows the following, where Z de-
notes the GO-space of all integers with the usual order:

(1) the lexicographic product (ω+ω)ω+ω is hereditarily paracompact,
(2) the lexicographic product (ω+ω)ω1 is paracompact but not hered-

itarily paracompact, on the other hand, the lexicographic product
Zω1 is hereditarily paracompact
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