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ABsTrACT. Paracompactness and hereditary paracompactness of
lexicographic products of LOTS’s are discussed in [2]. For instance,
it is known in [2]:

e a lexicographic product X = Ha<7 Xq of LOTS’s is para-
compact whenever all X,’s are paracompact [2, Theorem
4.2.2),

e a lexicographic product X = Ha<,y Xq of LOTS’s is heredi-
tarily paracompact whenever v < wy and all X,’s are hered-
itarily paracompact [2, Theorem 4.2.3|,

e the lexicographic product [0, 1];;* is not hereditarily paracom-
pact, where [0, 1Jg denotes the unit interval in the real line R
[2, page 73]

Recently the author defined the notion of lexicographic prod-
ucts of GO-spaces and extended the first result above in [2] for
lexicographic products of GO-spaces [4]. In this paper, we charac-
terize the hereditary paracompactness of lexicographic products of
GO-spaces and get some applications. For example, we see:

e the lexicographic products S7, M7, R? and (0, 1)% are heredi-
tarily paracompact for every ordinal v, where S and M denote
the Sorgenfrey line and Michael line respectively,

e the lexicographic product [0, 1) is hereditarily paracompact,
but the lexicographic product [0, 1)3! is not hereditarily para-
compact,

e the lexicographic product wi X (0,1]g is hereditarily para-
compact but the lexicographic product wj X [0,1)g is not
paracompact,

e the lexicographic product (w? x (—w1)?)“! is hereditarily
paracompact, but the lexicographic products w{’ and w‘fl are
not paracompact, where for a GO-space X = (X, <x,7x),
—X denotes the GO-space (X, >x,Tx).
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1. INTRODUCTION

All spaces are assumed to be regular T and when we consider a product
[l . X, all X,’s are assumed to have cardinality at least 2 with v > 2.
Moreover, in this paper, ][], - X, usually means a lexicographic product
defined below. Set theoretical and topological terminology follow [7] and
[1]. The following are known:

e a lexicographic product X =[], 4 Xa of LOTS’s is paracompact
whenever all X,’s are paracompact [2, Theorem 4.2.2],

e a lexicographic product X = Ha<,y X, of LOTS’s is hereditar-
ily paracompact whenever v < w; and all X,’s are hereditarily
paracompact [2, Theorem 4.2.3],

e the lexicographic product [0, 1]g" is not hereditarily paracompact,
where [0, 1]g denotes the unit interval in the real line R [2, page
73].

Recently the author defined the notion of lexicographic product of GO-
spaces and extended the first result above for lexicographic products of
GO-spaces [4]. Therefore we see:

e lexicographic products S7, M, R?, (0,1) and [0,1)} are para-
compact for every ordinal v, where S and M denote the Sorgenfrey
line and Michael line respectively.

Since R, S and M are hereditarily paracompact, it is natural to ask
whether S7, M7, R, (0,1)} and [0, 1)} are hereditarily paracompact even
if v > wy. In this paper, we characterize the hereditary paracompactness
of lexicographic products of GO-spaces. Applying this characterization,
we see:

e lexicographic products S7, M?, RY and (0,1)} are hereditarily
paracompact for every ordinal =,

o the lexicographic product [0, 1)§ is hereditarily paracompact, but
the lexicographic product [0,1)g" is paracompact but not heredi-
tarily paracompact,

e the lexicographic product wy x (0, 1] is hereditarily paracompact
but the lexicographic product wy x [0, 1)g is not paracompact,

e the lexicographic product (w? x (—wq)?)“! is hereditarily paracom-
pact, but the lexicographic products w{ and wj™* are not paracom-
pact, where for a GO-space X = (X, <x,7x), —X denotes the
GO-space (X, >x,7Tx).

A linearly ordered set (L, <1,) has a natural topology Ar,, which is called
an interval topology, generated by {(+—,z)r :x € L} U{(z,—)r :x € L}
as a subbase, where (z,—)r = {z € L : z <p 2}, (z,y) = {# € L :
x<pz<py}, (@,ylp ={2€L:x <y z<gy}and so on. The triple
(L,<r, L), which is simply denoted by L, is called a LOTS.
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A triple (X, <x,7x) is said to be a GO-space, which is also simply
denoted by X, if (X, <x) is a linearly ordered set and 7x is a Ta>-topology
on X having a base consisting of convex sets, where a subset C' of X is
convex if for every x,y € C with © <x vy, [z,y]x € C holds. For more
information on LOTS’s or GO-spaces, see [8]. Usually <p, (z,y)r, AL or
Tx are written simply <, (x,y), A or 7 if contexts are clear.

The symbols w and w; denote the first infinite ordinal and the first
uncountable ordinal, respectively. Ordinals, which are usually denoted
by Greek letters a, 3,7, - - -, are considered to be LOTS’s with the usual
intereval topology. For a subset A of an ordinal «, Lim(A) denotes the
set {8 < a: B =sup(ANp)}, that is, the set of all cluster points of A in
the topological space a. The cofinality of « is denoted by cf a..

For GO-spaces X = (X, <x,7x) and Y = (Y, <y,7y), X is said to be
a subspace of Y if X C Y, the linear order <x is the restriction <y [ X
of the order <y and the topology Tx is the subspace topology 7y [ X
(={UNX :U € 7y }) on X of the topology 7y. So a subset of a GO-space
is naturally considered as a GO-space. For every GO-space X, there is a
LOTS X* such that X is a dense subspace of X* and X* has the property
that if L is a LOTS containing X as a dense subspace, then L also contains
the LOTS X* as a subspace, see [9]. Such a X* is called the minimal d-
extension of a GO-space X. Indeed, X* is constructed as follows, also
see [4]. Let Xt ={zeX:(+,z] € 7x \Ax} and X~ ={z e X : [z,—)
€ 7x \ Ax}. Then X* is the LOTS X~ x {-1}U X x {0} U X* x {1},
where the order < x- is the restriction of the usual lexicographic order on
X x {-1,0,1}. Also we identify as X = X x {0} in the obvious way.

Then, we can see:

e if X is a LOTS, then X* = X,

e X has a maximal element max X if and only if X* has a maximal
element max X*, in this case, max X = max X* (similarly for
minimal elements).

For every a < 7, let X, be a LOTS and X = Ha<'y X,. Every element

x € X is identified with the sequence (z(«) : a < 7). The lexicographic
order <x on X is defined as follows: for every z,2' € X,

x <x ' iff for some a <7, x | a =2’ [ @ and z(a) <x, z'(a),

where z [ a = (z(B) : f < a) and <x_ is the order on X,. Now for every
a < 7, let X, be a GO-space and X = Ha<’y X4. The subspace X of

the lexicographic product X = H(K,y X is said to be the lexicographic
product of GO-spaces X,’s, for more details see [4]. [[;c., Xi (I[;<,, Xi
where n € w) is denoted by X x X1 x Xg x -+ (Xox X1 X Xo X+ x X,
respectively). [].,.. Xa is also denoted by X7 whenever X, = X for all

a <.

a<ly
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Let X and Y be LOTS’s. Amap f: X — Y is said to be order preserv-
ing or 0-order preserving if f(z) <y f(z') whenever z <x z’. Similarly
amap f: X — Y is said to be order reversing or 1-order preserving if
f(z) >y f(«') whenever x <x z’. Obviously a 0-order preserving map
(also 1-order preserving map) f : X — Y between LOTS’s X and Y,
which is onto, is a homeomorphism, i.e., both f and f~! are continuous.
Now let X and Y be GO-spaces. A 0-order preserving map f: X — Y is
said to be 0-order preserving embedding if f is a homeomorphism between
X and f[X], where f[X] is the subspace of the GO-space Y. In this case,
we identify X with f[X] as a GO-space and write X = f[X] and X C Y.

Recall that a subset of a regular uncountable cardinal « is called sta-
tionary if it intersects with all closed unbounded (= club) sets in k.

Let X be a GO-space. A subset A of X is called a 0-segment of X if
for every z,z’ € X with x < a/, if 2/ € A, then x € A. Similarly the
notion of 1-segment can be defined. Both @) and X are 0-segments and
1-segments. Obviously, if A is a 0-segment, then X \ A is a 1-segment.

Let A be a 0-segment of a GO-space X. A subset U of A is unbounded
in A if for every x € A, there is 2’ € U such that z < /. Let

0-cfx A =min{|U|: U is unbounded in A.}.

0-cfx A can be 0,1 or a regular infinite cardinal, see also [3, 5, 6]. If
contexts are clear, O-cfx A is denoted by 0-cf A. A 0-segment A of a
GO-space X is said to be stationary if k := 0-cf A > wy and there are a
stationary set S of x and a continuous map 7 : S — A such that 7[S5] is
unbounded in A (we say such a 7 “an unbounded continuous map”).

Note that for a subspace S of a regular uncountable cardinal x, S is
stationary in x in the usual sense if and only if the 0-segment S in the GO-
space S is stationary in the sense above (e.g., use [5, Lemma 2.7]). So this
new term “stationarity of 0-segments” extends the usual term “stationarity
of subsets of a regular uncountable cardinal”.

A GO-space X is said to be 0-paracompact if every closed 0-segment
is not stationary. Similarly the notions of 1-cf A, stationarity of a 1-
segment and 1-paracompactness are defined. Remember that a GO-space
is paracompact if and only if it is both 0-paracompact and 1-paracompact,
see [4], where a topological space is paracompact if every open cover has a
locally finite open refinement [1]. It is well-known that stationary sets of
some regular uncountable cardinal are not paracompact. We frequently
use the following basic lemmas from [5].

Lemma 1.1. [5, Lemma 2.7] Let A be a 0-segment of a GO-space X with
Kk :=0-cf A > wy. If there are a stationary set S of k and an unbounded
continuous map © : S — A, then there is a club set C in k such that
71 (SNC):SNC — A is 0-order preserving embedding.
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Lemma 1.2. [5, Lemma 3.4 Let X = Xy x X7 be a lexicographic product
of GO-spaces and uw € Xo. Then the map k, : X1 — {u} x X1 by
ky(v) = (u,v) is a 0-order preserving homeomorphism.

Lemma 1.3. [5, Lemma 3.6] Let X = Xy x X5 be a lexicographic product
of GO-spaces and Ag a 0-segment of Xog. Put A = Ag x X1. Then the
following hold:

(1) A is a 0-segment of X,
(2) if 0-cfx, Ag =1, then

(a) 0- CfX A =0- Cle Xl,

(b) A is stationary if and only if the 0-segment X is stationary,
(3) if 0-cfx, Ag > w, then

(a) 0-cfx A =0-cfx, Ao,

(b) A is stationary if and only if X1 has a minimal element and

Ag is stationary,

A GO-space X is said to be hereditarily 0-paracompact if every 0-
segment A of X is not stationary, similarly the notion of hereditary 1-
paracompactness is defined. We can see the naming of these definitions
are reasonable from the lemma below, where a topological space is hered-
itarily paracompact if all subspaces are paracompact.

Lemma 1.4. Let X be a GO-space. Then X is hereditarily paracom-
pact if and only if it is both hereditarily 0-paracompact and hereditarily
1-paracompact.

Proof. First assume that X is hereditarily paracompact and that X is
not hereditarily 0-paracompact, then there is a stationary 0-segment A
of X. Lemma 1.1 shows that A has a copy of a stationary set of some
regular uncountable cardinal, a contradiction. So X is hereditarily O-
paracompact. Similarly X is hereditarily 1-paracompact.

Next assume that there is a non-paracompact subspace Y of X. We
may assume that Y is not O-paracompact. So there is a closed stationary
0-segment A of Y. Set A’ ={z € X : Jy € A(x < y)}. Then it is easy to
verify that A’ is also a stationary (need not be closed) 0-segment of X,
which means that X is not hereditarily O-paracompact. (]

2. ProbpucTs OF TWO GO-SPACES

In this section, we characterize the hereditary paracompactness of a
lexicographic product X = Xy x X7 of two GO-spaces.

Lemma 2.1. Let X = Xy x X1 be a lexicographic product of GO-spaces.
Then the following are equivalent:
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(1) X is hereditarily 0-paracompact,
(2) the following clauses hold:
(a) X1 is hereditarily 0-paracompact,
(b) if X1 has a minimal element, then X is hereditarily 0-
paracompact.

Proof. (1) = (2) Assume that X is hereditarily 0-paracompact.

(a) Assuming that X is not hereditarily 0-paracompact, take a sta-
tionary O-segment A; of X;. Fixing u € Xg, let A = {z € X : Jv €
Ai(z < (u,v))}. Obviously A is a 0-segment of X. Since {u} x A4; is a
1-segment (i.e., final segment) of A, Lemma 1.2 shows that the 0-segment
A is also stationary, a contradiction.

(b) Assume that X; has a minimal element but Xj is not hereditarily 0-
paracompact. Taking a stationary 0-segment Ay of Xo, let A = Ay x Xj.
Then Lemma 1.3 (3b) shows that A is a stationary O-segment of X, a
contradiction.

(2) = (1) Assumimg (2) and the negation of (1), take a staionary 0-
segment A of X. Let Ag = {u € Xy : Jv € X;({u,v) € A)}. Obviously
Ap is a non-empty 0-segment of Xy with A C Ag x X;. Assume that Ay
has a maximal element max Ay and let A1 = {v € X3 : (max Ag,v) € A}.
Since {max Ag} x A; is a l-segment of A, Lemma 1.2 shows that A4; is a
stationary 0-segment of X, which contradicts the condition (2a). Thus
we see that Ay has no maximal element, that is 0-cfx, Ao > w.

Claim. A = Ao X Xl.

Proof. The inclusion C is obvious. To see the inclusion D, let z € Ay x X;.
Since Ap has no maximal element, we can take u € Ag with z(0) < u. By
u € Ap, we can find v € Xy with (u,v) € A. Then we have z < (u,v).
Now since A is a 0-segment, we see x € A. |

Now Lemma 1.3 (3b) shows that X; has a minimal element and the
O-segment Ay is stationary, which contradicts the condition (2b). (|

Analogously we see:

Lemma 2.2. Let X = Xy x X3 be a lexicographic product of GO-spaces.
Then the following are equivalent:
(1) X is hereditarily 1-paracompact,
(2) the following clauses hold:
(a) X1 is hereditarily 1-paracompact,
(b) if X1 has a mazimal element, then Xo is hereditarily 1-
paracompact.

The lemmas above show:
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Lemma 2.3. Let X = Xy x X be a lexicographic product of GO-spaces.
Then the following are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) X is hereditarily paracompact,
(b) if X1 has a minimal element, then X, is hereditarily 0-
paracompact.
(¢) if Xy has a mazimal element, then Xy is hereditarily 1-
paracompact.

Example 2.4. The lemma above shows that w; X R, wy x S and w; x M
are hereditarily paracompact. But w; x [0,1)gr is not paracompact [5].
On the other hand, wy x (0, 1]g is hereditarily paracompact, indeed wy is
hereditarily 1-paracompact because it is well-ordered.

3. PRODUCTS OF ANY LENGTH OF GO-SPACES

In this section, we characterize the hereditarily paracompactness of lex-
icographic products of any length of GO-spaces. The following notations
are introduced in [4, Theorem 2.5]

Definition 3.1. Let X = Ha<V X, be a lexicographic product of GO-
spaces. We use the following notations.

Jt = {a < ~v: X, has no maximal element.},
J~ ={a <v: X, has no minimal element.}.
Note supJ+ <~ and supJ~ < 7.
Theorem 3.2. Let X = Ha<,y X, be a lexicographic product of GO-
spaces. Then the following are equivalent:
(1) X is hereditarily 0-paracompact,
(2) the following clauses hold:
(a) v <supJ~ +wy, wheresup J~ +w; is the usual ordinal sum,
(b) for every a < v with supJ~ < «, X, is hereditarily 0-
paracompact,

Proof. Let X = Ha<,y X} be the lexicographic product of LOTS’s X*’s.

(1) = (2) Assume that X is hereditarily 0-paracompact.

(a) Assume sup J~ 4wy <. Letting ag =supJ—, fix z € Hagao X
For every a < 7 with ay < «, noting that min X, exists, fix u(a) € X,
with min X, < u(a). First let z = 2" (u(a) : ap < a < ap+w )" (min X, :
ap +wy < a < 7)), that is,  is an element in X such that z(a) = z(«)
when a < ag, 2(a) = u(a) when ap < a < g +wp and z(a) = min X,
when ap + w1 < o <. Next for f < wy with 1 < 3, let 25 = 2" (u(a) :
ap < a < ap+ B)MminX, :ag+ 8 < a<v). Set A= (+,z)x and
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S = (1,w1), and define w : S — A by 7(5) = xg. Obviously 7 is 0-order
preserving and unbounded (i.e., “f" < 8 — #(8") < w(B)” and «[S] is
unbounded in the 0-segment A).

Claim 1. 7 is continuous.

Proof. Let 8 € S and U be an open neighborhood of w(8). We may
assume 3 € Lim(S). Note (+,7(8))x # 0. Then there is y* € X with
y* < w(f) and (y*,7(B)]¢ N X C U. Let By = min{a < v : y*(a) #
7(8)(e)}. The definition of x5 (= 7(8)) shows By < ag + 5. When Sy <
ag, obviously 7[S N (8 + 1)] C U holds. So assumeing ag < fp < ag + S,
Bo can be represented as 5y = «ag + (1 for some B; < [ with 0 < f.
Then for each 5’ € (p1,5], we have y* < zz < zg. Therefore we see
w[S N (B1,8]] C U, so we have seen that 7 is continuous. O

Now since S is stationary in wy, the 0-segment A is stationary, which
contradicts the hereditary 0-paracompactness of X.

(b) Let sup J~ < ap <y and let Yo =[], ., Xo and Y1 =[], ., Xa
be lexicographic products. Then X is identified with the lexicographic
product Yy x Y7 [4, Lemma 1.5], where X is identified with Yy whenever
ag+ 1 =+~. Since X (= Yy x Y1) is hereditarily 0-paracompact and Y;
has the minimal element (min X, : ap < «), Lemma 2.1 (2b) shows that
Yp is hereditarily O-paracompact. Here note that Yj is itself hereditarily
0-paracompact whenever X = Y, so we will not mention such special
cases. Now Yy = [[,o, Xa X Xa, and Lemma 2.1 (2a) shows that X,,
is hereditarily 0-paracompact.

(2) = (1) Assume (2) and the negation of (1), then one can take a
stationary 0-segment A of X. We consider three cases and their subcases
and in all cases, we will get contradictions. This argument is shown in |5,
Theorem 4.8|.

Case 1. A= X.

Since A (= X) has no maximal element, X, has no maximal element
for some o < v. Let ap = min{a < v : X, has no maximal element.}.
Since A = X = [[ <o, Xa X [ly<a Xas the O-segment A is station-
ary and [], ., Xo has no maximal element, Lemma 1.3 (3b) shows that
the 0-segment [To<ay Xa is stationary and [], ., Xo has a minimal el-
ement. Therefore X, has a minimal element for every a > «g, which
means sup J~ < «g. By the minimality of o, X, has a maximal element
for every o < ap. Then {{maxX, : @ < ag)} X Xq, is a 1-segment
of Ha<a0 Xao X Xo,- Now since the O-segment Ha<a0 Xao X Xg, is sta-
tionary, Lemma 1.2 shows that the 0-segment X, is also stationary, this
contradicts the condition (2b).
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Case 2. A# X and X \ A has a minimal element.

Let B= X\ A and b = min B, then note A = (+-,b)x. Set I = {a < v:
Ja € A(a | (a+1)=b[ (a+1))}. Since I is obviously a 0-segment of ~,
for some ay < 7, I = ag holds. Now for every a < «y, fix a, € A with
an [ (a+1)=0b] (a+1).

Claim 2. For every a € (ag,7), X has a minimal element and b(«a) =
min X, thus supJ~ < ag.

Proof. Note that still we do not know whether ay < v or not. Assume
that for some a € (ag,7), there is u € X, with v < b(a). Let o =
min{a > ap : Ju € X,4(u < b(a))} and take u € Xy, with u < b(aq).
Let a = b [ a3 “{u)"b | (a1,7). Then by a < b, we have a € A and
ala =bla. Now ag < ay shows a | (ap+1) =b | (ap + 1), which
means ag € I = ag, a contradiction. O

We divide Case 2 into further two subcases.
Case 2-1. « is a successor ordinal.
Say ag = [ + 1.
Claim 3. a9 < 7.
Proof. If ay = v were true, then by fy € ag = I, we have B 5 b =

bla =01 (Bo+1) =ag, | (Bo+1) =ag, [ ap = ag, € A, a
contradiction. O

Claim 4. b(ap) is not a minimal element of X, .

Proof. If b(ag) were a minimal element of X, then we have A 5 ag, >
b € B because of b(a)) = min X, for every a > ap, a contradiction. O

Let Yo =] Xqoand Y7 =] X

ap<a ‘o

Claim 5. A= («-,b [ (a0 + 1))y, x Y1.

Proof. To see the inclusion D, let a € (+—,b | (o + 1)) x Y;. Then
al (o +1)<b| (ap+1)shows a < b=minB. So we have a € A.

To see the inclusion C, let a € A. Since a < b and b(a) = min X,
for every a > «ap, we have a [ (ag+ 1) < b | (g + 1), thus a € (+—,b |
(Oéo —+ ].)) X Yl. D

a<lap

We further divide Case 2-1 into two subcases.
Case 2-1-1. (+,b(a))x
In this case, (<—,b [ (ap + 1))y, has no maximal element, so Claim 5

and Lemma 1.3 (3b) show that the O-segment («,b [ (ap + 1)) in Yy is
stationary. Then it is easy to see:

. has no maximal element.

@
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Claim 6. (+—,b [ (ag+ 1))y, = (4,0 [ @) X Xay U{b [ ap} X (+,
b(ao))x., -

Now Lemma 1.2 show that the O-segment (<—,b(ao))x,, is stationary,
because {b [ ag} x (<, b(a0))x,,, is a 1-segment of («—,b [ (g + 1))y, by
Claim 6. This contradicts the condition (2b) because of sup J~ < ay.

Case 2-1-2. (<, b(ao))x,,, has a maximal element.

Say ug = max(+,b(ap)), then note that (b | ag)”(ug) is the immedi-
ate predecessor of b | (ag + 1) in Yy, so we see (<,b | (ap + 1)) =
(<, (b | ap)™(up)]. Since A has no maximal element and A = (+,
(b | ag)™up)] x Y7 (Claim 5), Y7 has no maximal element. So let
a; = min{a > ap : X, has no maximal element.}. Now since A = (+,
bl (ao+1))xY1 = (4 (b ] @) (uo)] X [1ngca Xa = (= (b [ o) (uo)] X
(Ilag<a<ar Xa X Ila ca Xa) = (= (0 [ a0)(uo)] X [oy<aza, Xa) X
[lo,<a Xa» (&0 ] ap)™Mug)] x Ha0<aga1 X, has no maximal element
and the 0-segment A is stationary, Lemma 1.3 (3b) shows that the 0-
segment (<, (b [ @) (uo)] X [[,,<a<a, Xa 0 [[h<q, Xo is also station-
ary. Now since {(b | ao)™{ug)max X, : ap < a < a1)} X X4, is a
L-segment of («, (b | ao)"(uo)] X [, ca<a, Xas Lemma 1.2 shows that
Xo, is stationary. Since supJ~ < ap < a1, X4, has to be hereditarily
O-paracompact (condition (2b)), a contradiction.

Case 2-2. ag is limit.

Claim 2 and the condition (2a) show supJ~ < ap < v < supJ~ + wy,
therefore we have cf ag = w.

Claim 7. ag < 7.

Proof. Assume oy = =, then note cfv = cfag = w, so fix a 0-order
preserving unbounded (i.e., strictly increasing cofinal) sequence {v,, : n €
w} in 4. Then {a,, : n € w} is unbounded in the 0-segment (+,b)
(= A), so we have 0-cfx A = w, which contradicts the stationarity of the
0-segment A. |

We divide Case 2-2 into three subcases.
Case 2-2-1. (<, b(ao))x,,, is non-empty and has no maximal element.

In this case, using a similar argument to Case 2-1-1, we can get a contra-
diction.

Case 2-2-2. (+,b(ap))x, 1is non-empty and has a maximal element.

@0

In this case, using a similar argument to Case 2-1-2, we can get a
contradiction.
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Case 2-2-3. (+—,b(ag))x, 1is empty, that is, b(ap) = min X, .

@0

In this case, fix a 0-order preserving unbounded sequence {~, : n € w}
in . Since b(o) = min X,, for every o > o, we see that {a,, : n € w}
is unbounded in the 0-segment (+—,b) (= A), so we have 0-cfx A = w,
which contradicts the stationarity of the O-segment A.

Case 3. A# X and X \ A has no minimal element.
Let B= X\ A and
I={a<~vy:JacAFBeB @] (a+1)=>b](a+1))}.

Since I is a 0-segment in -y, for some ag < v, I = ag holds. For every
a < ap, fix a, € A and b, € B with aq [ (@ +1) = by | (¢ + 1) and
consider the lexicographic products Yy =[], ., Xo and Y1 =] X

a<a apla O

Define yg € Yy by yo(a) = aq () for every a < ap.
Claim 8. For every a < ag, Yo [ (@ +1) =aq [ (a+1) =by [ (a+1)
holds.

Proof. Tt suffices to see the first equality. Assuming yo [ (o + 1) # aq |
(a+1) for some o < ayg, let o = min{a < o : yo [ (a+1) # aq [ (a+1)}
and as = min{a < a3 : yo(a) # aq, (@)}. Then yo(a1) = aq, (a1) shows
ag < 1. Also the minimality of «; shows yg [ (a2 + 1) = @q, | (a2 +1)
(= ba, [ (@2 +1)). When yo(az) < aq, (a2), we see B 3 by, < G, € A,
a contradiction. When yo(a2) > aq, (a2), we also see B 3 by, < aq, € A4,
a contradiction. ]

Claim 9. a9 < 7.

Proof. Assume ag = v, then yg € Yo = X = AU B. Assume yg € A and
take a € A with yo < a. Let Sy = min{f < v : yo(B) # a(5)}. Then we
have B 3 bg, < a € A, a contradiction. When yo € B, similarly we also
get a contradiction. |

Let Ag = {a(a) :a € A,a [ ap = yo} and By = {b(aw) : b € B,b |
o = Yo}
Claim 10. The following hold:

(1) for every a € A, a | ag <y, yo holds,
(2) for every z € X, if z [ ag <y, Yo, then z € A.

Proof. (1) Assume a [ ag > yo for some a € A and let Sy = min{s < ay :
a(B) # yo(B)}. Now we have B 3 bg, < a € A, a contradiction.

(2) Assume = | ap < yo and let By = min{8 < ap : z(8) # yo(B)}
Then we have z < ag, € A, so we see x € A because A is a 0-segment. [
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We similarly see:

Claim 11. The following hold:

(1) for every b€ B, b | ag >y, yo holds,
(2) for every z € X, if z | ag >v, Yo, then = € B.

Claim 12. Ay is a 0-segment of X,, and By = X,, \ Ao.

Proof. Let v/ < u € Ap and take a € A with a | (g + 1) = yo "(u). Let
a = (a ] ag)™u)(a | (ag,7)). Since A is a 0-segment with a’ < a € A,
we have a’ € A, thus v’ € Ag. So we have seen that Ag is a 0-segment.

To see By C Xq, \ Ao, let w € By. Take b € B with b | (ap + 1) =
yo Mu). If u € Ay were true, then by taking a € A with a | (ag +
1) = yo "(u), wesee a | (ag+1) =b | (ag+ 1) thus ag € I = ap, a
contradiction. So we have u € X, \ Ao.

To see By D Xg, \ Ao, let u € X\ Ao. Take z € X with z | (ap+1) =
yo "{(u). Then obviously we have x € B, thus u € By. O

Claim 13. A # 0.

Proof. Assume Ay = (). We prove the following facts.
Fact 1. (<—,y0)y0 x Y] = A.

Proof. Claim 10 (2) shows the inclusion C. To see the other inclusion, let
a € A. Then Claim 10 (1) shows a [ ap < yo. If a | ag = yo were true,
then we have a(ag) € Ag, which contradicts Aq = 0. O

Fact 2. ag > 0 and ag is limit.

Proof. If ap = 0 were true, then taking a € A, we see a(ag) € Ay, a
contradiction. If for some ordinal Sy, ag = By + 1 were true, then by
Boel=apandag, [ag=ag, [ (Bo+1)=wol (Bo+1)=1yol o, we
see ag, (o) € Ao, a contradiction. O

Fact 3. 0-cfy, (<, y0)y, > w.

Proof. Fact 1 with A # 0 shows («,yo) # 0, that is, 0-cfy, (+—, y0) >
1. If 0-cty, (<=, y0) = 1 were true, then letting y; = max(«,y) and

By = min{B < ao : y1(8) # (A}, we see y1 < ag, | ap < yo, a
contradiction. O
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Since the 0-segment A is stationary, Lemma 1.3 (3) with Fact 1 and
3 shows that Y7 has a minimal element. Now Claim 11 (1) shows that
yo M(min X,, : ap < @) is the minimal element of B in X, which contra-
dicts our case (=Case 3). O

Now let Zy =[] Xo, 21 = Ha0<a X, and

a<ap
A*={z€Zy: 21 ag <y, yo or (z [ ag = yo and z(ap) € Ao).}.

Observe that A* is a 0-segment of Zy and A* = (+—, yo) vy X Xy U{yo} x Ao.

Since {yo} X Ag is a 1-segment of A* because of Ay # @, Lemma 1.2 shows

that 0-cfz, A* is equal to 0-cfx, Ao and that the stationarity of A* is
equivalent to the stationarity of Ag.

Claim 14. A = A* x Z;.

Proof. The inclusion C follows from Claim 10 (1) and the definition of Aj.
The inclusion D follows from Claim 10 (2) and the definition of Ag. O

We divide Case 3 into two subcases.
Case 3-1. 0-cfz, A* > w.

In this case, since A is stationary, Lemma 1.3 (3b) with Claim 14 shows
that Z; has a minimal element (so sup J~ < ag) and the 0-segment A*
is stationary (so the O-segment Ag is stationary), which contradicts our
condition (2b).

Case 3-2. 0-cfz, A* =1, that is, max A* exists.

In this case, note max A* = yo " (max Ap). Since A = A* x Z;, A has no
maximal element but A* has a maximal element, we see Z; has no max-
imal element. So let oy = min{ay < a : X, has no maximal element.}.
Note that X, has a maximal element for each a € (ag,1). Since
A=A"xZ) = (A" x Hao<aSa1 Xa) % H(X1<O¢ X and A% x Hao<0¢§041 Xa
is a O-segment in [],., Xo with no maximal element, Lemma 1.3 (3b)
shows that the 0-segment A* x [y <a<a, Xo is stationary and [ Xa
has a minimal element (so sup J~ < 7). Moreover since

a1 <o

{yo "(max Ag)(max X, : ap < a < 1)} X Xg,

is a 1-segment in the stationary 0O-segment A* x Hao<a<a1 X, Lemma
1.2 shows that the 0-segment X,, is also stationary, which contradicts
our condition (2b). O

Analogously we see the following.

Theorem 3.3. Let X = H(K7 X, be a lexicographic product of GO-
spaces. Then the following are equivalent:
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(1) X is hereditarily 1-paracompact,
(2) the following clauses hold:
(a) v <supJ* +uwy,
(b) for every a < v with supJ* < «, X, is hereditarily 1-
paracompact,

4. SOME APPLICATIONS

In this section, we apply the theorems in the previous section to some
special cases.

Corollary 4.1. Let X = Ha<,y Xo be a lexicographic product of GO-
spaces. If X, has both a minimal and a mazximal element for every a < =y,
then the following are equivalent:

(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) v <wi,
(b) for every o < «y, X, is hereditarily paracompact,

Proof. By the assumption, we have J~ = J* = (), then apply Theorems
3.2 and 3.3. O

Corollary 4.2. Let X = Ha<’y X4 be a lexicographic product of GO-
spaces. If X, has meither a minimal nor a maximal element for every
a < 7, then the following are equivalent:

(1) X is hereditarily paracompact,
(2) if v is successor, then X~_1 is hereditarily paracompact, where
v — 1 is the immediate predecessor of 7,

thus note that if v is limit, then X is hereditarily paracompact.

Proof. By the assumption, we have J~ = J+ = . So note that supJ~ =
supJ* = ~ whenever « is limit and that supJ~ = supJ™ = v -1
whenever ~ is successor. Then apply Theorems 3.2 and 3.3. O

Example 4.3. The corollary above shows that the lexicographic products
S7, M7, R and (0,1)g are hereditarily paracompact for every ordinal ~.

Applying the theorems directly we can also see the following.

Corollary 4.4. Let X =[],
spaces. If sup J~ =sup Jt =, then X is hereditarily paracompact,

Xo be a lexicographic product of GO-

Here remark that sup J~ = v implies that ~ is limit.

Example 4.5. The corollary above shows that (w? x (—w;)?)*! is hered-
itarily paracompact, where for a GO-space X = (X, <x,7x), —X de-
notes the GO-space (X, >x, 7x) which is called the reverse of X, see [5].
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Note that —X is topologically homeomorphic to X, because the identity
map on X to —X (= X) is l-order preserving and homeomorphism. Also

note that the lexicographic products w$ and w}* are not paracompact [5].

Next we consider the case that all X,’s have minimal elements. The-
orems 3.2 and 3.3 yield the following.

Corollary 4.6. Let X = Ha<,y X, be a lexicographic product of GO-
spaces. If X, has a minimal element for every a < ~y, then the following
are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) v <wr,
(b) for every a < 7y, X4 is hereditarily 0-paracompact,
(c) for every a < v with supJ* < «, X, is hereditarily 1-
paracompact.

Therefore we have the following.

Corollary 4.7. Let X = Ha<7 X be a lexicographic product of GO-
spaces. If X, has a minimal element but has no mazimal element for
every a < vy, then the following are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) v <wi,
(b) for every a < ~y, X, is hereditarily 0-paracompact,
(c) if v is successor, then X,_1 is hereditarily 1-paracompact.

Now we consider hereditary paracompactness of X7.

Corollary 4.8. Let X be a GO-space. Then the following hold:

(1) when X has both a minimal and a mazimal element, the lexico-
graphic product X7 is hereditarily paracompact iff v < wy and X
s hereditarily paracompact,

(2) when X has neither a minimal nor a mazimal element, the lexi-
cographic product X7 is hereditarily paracompact iff X is heredi-
tarily paracompact whenever vy is successor,

(3) when X has a minimal element but has no maximal element, the
lezicographic product X7 is hereditarily paracompact iff v < wq,
X is hereditarily 0-paracompact and “if v is successor, then X is
hereditarily 1-paracompact”.

Example 4.9. The corollary above shows the following:
(1) the lexicographic product [0, 1]} is hereditarily paracompact iff
v < wi, see [2, page 73],
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(2) the lexicographic product 27 is hereditarily paracompact iff v <
w1, where 2 = {0,1} with 0 < 1,

(3) the lexicographic product [0,1)} is hereditarily paracompact iff
v < wi.

Example 4.10. Applying Theorems 3.2 and 3.3 directly, we see:

(1) the lexicographic product [0, 1]z x S is hereditarily paracom-
pact,

(2) the lexicographic product S** x [0, 1]g* is not hereditarily para-
compact,

(3) the lexicographic product S¥* x [0, 1]% is hereditarily paracompact,

(4) the lexicographic product (wy +1)% x S“1 is hereditarily paracom-
pact,

(5) the lexicographic product S x (wyq 4+ 1)% is not hereditarily para-
compact,

(6) the lexicographic product S¥* x [0,1)% is hereditarily paracom-
pact,

(7) the lexicographic product S** x [0,1)g" is not hereditarily para-
compact,

(8) the lexicographic product [0,1)§ x S** is hereditarily paracom-
pact,

Note that all spaces in Examples 4.9 and 4.10 are paracompact.
Finally we discuss on hereditarily paracompactness of lexicographic
products of ordinal subspaces. Note that whenever X is a subspace of
an ordinal, then X has a minimal element, more generally, all non-empty
l1-segment of X has a minimal element. Therefore when X =[] <y Xa
is a lexicographic product of subspaces of ordinals, we see:
o J =10,
e X, is hereditarily 1-paracompact for every a < ~.
So Corollary 4.6 yields the following.

Corollary 4.11. Let X = Ha<'y X, be a lexicographic product of sub-
spaces of ordinals. Then the following are equivalent:
(1) X is hereditarily paracompact,
(2) the following clauses hold:
(a) v <wi,
(b) for every a < v, X, is hereditarily (0-)paracompact,

In particular, when X is an ordinal, X is hereditarily paracompact iff
it is a countable ordinal. So we have the following.

Corollary 4.12. Let X = Ha<7 X, be a lexicographic product of ordi-
nals. Then the following are equivalent:
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(1) X is hereditarily paracompact,
(2) v < wiy and for every a < 7y, X, is a countable ordinal.

Example 4.13. The corollary above shows the following, where Z de-
notes the GO-space of all integers with the usual order:

(1) the lexicographic product (w+w)“* is hereditarily paracompact,

(2) the lexicographic product (w+w)“! is paracompact but not hered-
itarily paracompact, on the other hand, the lexicographic product
71 is hereditarily paracompact
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