http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Homotopy Groups of Infinite Wedge

by

Leonard Mdzinarishvili

Electronically published on June 21, 2018

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on June 21, 2018

HOMOTOPY GROUPS OF INFINITE WEDGE

LEONARD MDZINARISHVILI

ABSTRACT. In Homotopy Theory (Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959), Sze-tsen Hu proved for $X \vee Y$, the wedge sum of pointed spaces (X, x_0) , and (Y, y_0) that for $n \geq 2$ there is an isomorphism

(1) $\pi_n(X \lor Y, u_0) \approx \pi_n(X, x_0) \oplus \pi_n(Y, y_0) \oplus \pi_{n+1}(X \times Y, X \lor Y, u_0),$

where $u_0 = (x_0, y_0)$.

This result was not generalized for an infinite wedge $\forall Y_{\omega}, \omega \in \Omega$, of pointed spaces $(Y_{\omega}, y_{\omega}^0)$ in view of the fact that an infinite wedge $\forall Y_{\omega}$ is not a subspace of the direct product $\prod Y_{\omega}, \omega \in \Omega$.

In the present work we prove that for $n\geq 2$ there is an isomorphism

$$\pi_n(\vee Y_\omega, y^0) \approx \sum_{\omega \in \Omega} \pi_n(Y_\omega, y^0_\omega) \oplus \pi_{n+1}(LY_\omega, \vee Y_\omega, y^0)$$

where LY_{ω} is the weak product of pointed topological spaces $(Y_{\omega}, y_{\omega}^{0})$, $\omega \in \Omega$ (see C. J. Knight, Weak products of spaces and complexes, Fund. Math. **53** (1963), 1–12.)

Let Top_* be the category of pointed topological spaces and continuous maps preserving base point [4].

If $\Omega = \{\omega\}$ is an infinite set and $\{(Y_{\omega}, y_{\omega}^{0})\}_{\omega \in \Omega}$ is a family of objects from Top_{*} indexed by Ω , their infinite wedge is denoted by $\lor Y_{\omega}$ and is defined by $\bigcup_{\omega \in \Omega} Y_{\omega} / \bigcup y_{\omega}^{0}$ the quotient space of $\bigcup Y_{\omega}$ obtained by identifying all of $\bigcup y_{\omega}^{0}$ to a single point u^{0} . We define a topology by declaring a subset $U \subset \bigcup_{\omega \in \Omega} Y_{\omega}$ to be open if and only if the intersection $U \cap Y_{\omega}$ is open in Y_{ω} for all $\omega \in \Omega$ [1, Definition 2.2.8].

²⁰¹⁰ Mathematics Subject Classification. 14F35.

Key words and phrases. homotopy group, infinite wedge.

^{©2018} Topology Proceedings.

L. MDZINARISHVILI

In [3], C. J. Knight defined the weak product LY_{ω} of pointed topological spaces $(Y_{\omega}, y_{\omega}^0), \omega \in \Omega$, to consist of all elements $y \in \prod_{\omega \in \Omega} Y_{\omega}$ of the product such that all but a finite number of coordinates y_{ω} of y are the base points. However, its topology is not the relative topology, but the topology of the union of the finite products $\prod_{i=1}^{k} Y_i \subset \prod_{\omega \in \Omega} Y_{\omega}$.

union of the finite products $\prod_{i=1}^{k} Y_i \subset \prod_{\omega \in \Omega} Y_{\omega}$. Consider in the weak product LY_{ω} the subset $\bigcup_{\omega \in \Omega} L_{\omega}$ where $L_{\omega} = \prod_{\alpha \in \Omega} X_{\alpha}, X_{\omega} = Y_{\omega}$ if $\alpha = \omega$, and $X_{\alpha} = \{y_{\alpha}^{0}\}$ if $\alpha \neq \omega$. We define a topology by declaring a subset $V \subset \bigcup_{\omega \in \Omega} L_{\omega}$ to be open if and only if the intersection $U \cap L_{\omega}$ is open in L_{ω} for all $\omega \in \Omega$ and denote it by ML_{ω} . Lemma 1. The infinite wedge $\vee Y_{\omega}$ and the space ML_{ω} are homeomorphic.

Proof. The space $ML_{\omega} = \bigcup_{\omega \in \Omega} L_{\omega}$ has only one point $y^0 = \{y^0_{\omega}\}_{\omega \in \Omega}$ such that $y^0 \in L_{\omega}$ for all $\omega \in \Omega$. For each $\omega \in \Omega$ the space L_{ω} is homeomorphic to Y_{ω} . The maps $i : \forall Y_{\omega} \to ML_{\omega}$ and $p : ML_{\omega} \to \forall Y_{\omega}$, defined by

$$i(u) = \begin{cases} i_{\omega}(u) & \text{if } u \in Y_{\omega}, \\ y^0 & \text{if } u = u^0, \end{cases} \quad p(y) = \begin{cases} p_{\omega}(y) & \text{if } y \in L_{\omega}, \\ u^0 & \text{if } y = y^0, \end{cases}$$

are continuous maps and pi = 1 and ip = 1.

Lemma 2. The space ML_{ω} has the subspace topology inherited from LY_{ω} .

Proof. Let $V \subset LY_{\omega}$ be an open subset. Then for each $\alpha \in \Omega$, the intersection $V \cap L_{\alpha}$ is an open subset of L_{α} and $V \cap ML_{\omega}$ is an open subset in ML_{ω} , $(V \cap ML_{\omega}) \cap L_{\alpha} = V \cap L_{\alpha}$. We show that for any open subset $U \subset ML_{\omega}$, there is an open subset $V \subset LY_{\omega}$ such that $V \cap ML_{\omega} = U$. The system $\mathcal{U} = \{U\}$ of all open sets $U \subset ML_{\omega}$ is the union of two subsystems \mathcal{U}' and \mathcal{U}'' such that $\mathcal{U}' \cap \mathcal{U}'' = \emptyset$, where $\mathcal{U}' = \{U \in \mathcal{U} : y^0 \notin U\}$ and $\mathcal{U}'' = \{U \in \mathcal{U} : y^0 \in U\}$.

Let $U \in \mathcal{U}'$ and notice that $U = \bigcup_{\omega \in \Omega} (U \cap L_{\omega})$. Let $U_{\omega}^* = U \cap L_{\omega}$ and $\rho_{\omega}U_{\omega}^* = U_{\omega} \subset Y_{\omega}$. For each $\alpha \in \Omega$, define an open set $W_{\alpha} \subset \prod Y_{\omega}$ such that $y = \{y_{\omega}\} \in W_{\alpha}$ if and only if $y_{\alpha} \in U_{\alpha}$. The union $\bigcup_{\omega \in \Omega} W_{\omega}$ is an open subset of $\prod Y_{\omega}$ under the product topology.

Since the topology of LY_{ω} is finer than the topology induced as a subset of the product $\prod Y_{\omega}$, the set $\bigcup_{\omega \in \Omega} W_{\omega} \cap LY_{\omega} = V$ is open in LY_{ω} . For each $\alpha \neq \omega$, the intersection $W_{\alpha} \cap L_{\omega} = \emptyset$ since any element $y \in W_{\alpha}$ does not have α -coordinate $y_{\alpha} = y_{\alpha}^{0}$, but all elements $y \in L_{\omega}$ have α coordinate $y_{\alpha} = y_{\alpha}^{0}$. We have the equality $W_{\omega} \cap L_{\omega} = U_{\omega}^{*}$. Hence,

 $\mathbf{2}$

 $V \cap L_{\omega} = \left(\bigcup_{\alpha \in \Omega} W_{\alpha}\right) \cap L_{\omega} = \bigcup_{\alpha \in \Omega} (W_{\alpha} \cap L_{\omega}) = W_{\omega} \cap L_{\omega} = U_{\omega}^{*}$, and therefore,

$$V \cap ML_{\omega} = V \cap \left(\bigcup_{\omega \in \Omega} L_{\omega}\right) = \bigcup_{\omega \in \Omega} (V \cap L_{\omega}) = \bigcup U_{\omega}^* = U.$$

Let $U \in \mathcal{U}''$ and $U = \bigcup_{\omega \in \Omega} (U \cap L_{\omega}) = \bigcup U_{\omega}^*$. For each $\alpha \in \Omega$, we define the open set $W_{\alpha} \subset \prod Y_{\omega}$ as in the previous case. Considering the intersection $\bigcap_{\omega \in \Omega} W_{\omega} = W$, we show that $W \cap LY_{\omega} = V$ is an open subset in LY_{ω} . It is clear that $V = W \cap LY_{\omega} = \left(\bigcap_{\omega \in \Omega} W_{\omega}\right) \cap LY_{\omega} = \bigcap_{\omega \in \Omega} (W_{\omega} \cap LY_{\omega}) = \bigcap_{\omega \in \Omega} V_{\omega}$ is an intersection of open sets V_{ω} in LY_{ω} . We show that $V \cap L_N^*$ is an open set in L_N^* for all L_N^* (where $L_N^* = \{y^*\}$ is the subspace of $\prod Y_{\omega}$ such that, if $y^* = \{y_{\omega}\} \in L_N^*$, then $y_{\omega} = y_{\omega}^0$ for all $\omega \notin N, N \in \Omega f, \Omega f$ is the system of all finite subsets N of Ω). There is $V \cap L_N^* = [\cap(W_{\omega} \cap LY_{\omega})] \cap L_N^* = \bigcap_{\omega \in \Omega} (W_{\omega} \cap L_N^*)$. We have $W_{\omega} \cap L_N^* = L_N^*$

if $\omega \notin N$, and if $\omega \in N$, we have $W_{\omega} \cap L_N^* = \{\{y\} \in L_N^* : y_{\omega} \in U_{\omega}\}$. Since $N \in \Omega f$, $V \cap L_N^*$ will be a finite intersection of open sets in L_N^* , and therefore open. Hence, V is an open subset in LY_{ω} .

Now we show that $V \cap ML_{\omega} = U$. Since $V \cap L_{\omega} = \bigcap_{\alpha \in \Omega} (W_{\alpha} \cap L_{\omega}) = U_{\omega}^*$, $\omega \in \Omega$, there is

$$V \cap ML_{\omega} = V \cap \left(\bigcup_{\omega \in \Omega} L_{\omega}\right) = \bigcup_{\omega \in \Omega} (V \cap L_{\omega}) = \bigcup_{\omega \in \Omega} U_{\omega}^* = U$$

Theorem. If Y_{ω} is a T_1 space for each $\omega \in \Omega$, then, for $n \geq 2$, there is an isomorphism

$$\pi_n(\vee Y_\omega, u^0) \approx \sum \pi_n(Y_\omega, y^0_\omega) \oplus \pi_{n+1}(LY_\omega, \vee Y_\omega, y^0).$$

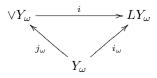
Proof. Using lemmas 1 and 2, we have an exact homotopy sequence

$$(2) \qquad \qquad \stackrel{\partial}{\longrightarrow} \pi_{n+1}(\forall Y_{\omega}, u^{0}) \xrightarrow{i_{*}} \pi_{n+1}(LY_{\omega}, y^{0}) \longrightarrow \pi_{n+1}(LY_{\omega}, \forall Y_{\omega}, y^{0})$$
$$\stackrel{\partial}{\longrightarrow} \pi_{n}(\forall Y_{\omega}, u^{0}) \xrightarrow{i_{*}} \pi_{n}(LY_{\omega}, y^{0}) \longrightarrow \cdots$$

Define a homomorphism $j_* : \sum \pi_n(Y_\omega, y_\omega^0) \to \pi_n(\vee Y_\omega, u^0)$ by $j_*(h) = \sum_{\omega \in \Omega} j_\omega^*(h_\omega)$, where $j_\omega^* : \pi_n(Y_\omega, y_\omega^0) \to \pi_n(\vee Y_\omega, u^0)$ is induced by inclusion.

L. MDZINARISHVILI

We show that $\xi_* i_* j_* = 1$, where $\xi_* : \pi_n(LY_\omega, y^0) \to \sum_{\omega \in \Omega} \pi_n(Y_\omega, y^0_\omega)$. Since we have a commutative diagram



and the isomorphism ξ_* : $\pi_n(LY_\omega, y^0) \approx \sum_{\omega \in \Omega} \pi_n(Y_\omega, y^0_\omega)$ [3], there is $\xi_* i_* j_* = \sum_{\omega \in \Omega} \xi_* i_* j_{\omega,*} = \sum_{\omega \in \Omega} \xi_* i_{\omega,*} = 1$. Hence, j_* is a monomorphism and i_* is an epimorphism.

As is known [4], π_n is a covariant functor from the category of pairs of pointed spaces to the category of abelian groups if $n \ge 3$, the category of groups if n = 2, and the category of pointed sets if n = 1. In particular, π_n is a covariant functor from the category Top_{*} to the category of abelian groups if $n \ge 2$, the category of groups if n = 1, and the category of pointed sets if n = 0. Hence, $\pi_n(\vee Y_{\omega}, u^0) \approx \text{Im } j_* + \text{Ker } i_*, n \ge 2$.

Since j_* is a monomorphism, there is $\operatorname{Im} j_* = \sum \pi_n(Y_\omega, y_\omega^0)$. Since i_* is an epimorphism, using the exact sequence (2), there is ∂ – a monomorphism and

$$\operatorname{Ker} i_* = \operatorname{Im} \partial = \pi_{n+1}(LY_{\omega}, \forall Y_{\omega}, y^0). \qquad \Box$$

Since sequence (2) is exact, $i_*j_* = \sum i_{\omega,*}$ and $\sum i_{\omega,*}$ is an isomorphism for $n \ge 1$ [3, Theorem 2]; the homomorphism i_* is an epimorphism; and there is an exact sequence

$$0 \longrightarrow \pi_2(LY_\omega, \forall Y_\omega, y^0) \longrightarrow \pi_1(\forall Y_\omega, u^0) \longrightarrow \pi_1(LY_\omega, y^0) \longrightarrow 0.$$

Acknowledgment. The author is deeply grateful to the referee for an extraordinarily thorough analysis of the manuscript which has resulted in numerous essential improvements of the exposition.

References

- Marcelo Aguilar, Samuel Gitler, and Carlos Prieto, Algebraic Topology from a Homotopical Viewpoint. Translated from the Spanish by Stephen Bruce Sontz. Universitext. New York: Springer-Verlag, 2002.
- Sze-tsen Hu, Homotopy Theory. Pure and Applied Mathematics, Vol. VIII Academic Press, New York-London 1959
- C. J. Knight, Weak products of spaces and complexes, Fund. Math. 53 (1963), 1–12.

4

4. Edwin H. Spanier, *Algebraic Topology*. Corrected reprint of the 1966 original. New York: Springer-Verlag, 1995.

Department of Mathematics; Faculty of Informatics and Control Systems; Georgian Technical University; 77, Kostava St.; Tbilisi, Georgia *E-mail address*: 1.mdzinarishvili@gtu.ge