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HOMOTOPY GROUPS OF INFINITE WEDGE

LEONARD MDZINARISHVILI

Abstract. In Homotopy Theory (Pure and Applied Mathematics,
Vol. VIII, Academic Press, New York–London, 1959), Sze-tsen Hu
proved for X ∨ Y , the wedge sum of pointed spaces (X,x0), and
(Y, y0) that for n ≥ 2 there is an isomorphism

(1) πn(X∨Y, u0) ≈ πn(X,x0)⊕πn(Y, y0)⊕πn+1(X×Y,X∨Y, u0),

where u0 = (x0, y0).
This result was not generalized for an infinite wedge ∨Yω , ω ∈

Ω, of pointed spaces (Yω , y0ω) in view of the fact that an infinite
wedge ∨Yω is not a subspace of the direct product

∏
Yω , ω ∈ Ω.

In the present work we prove that for n ≥ 2 there is an isomor-
phism

πn(∨Yω , y
0) ≈

∑
ω∈Ω

πn(Yω , y
0
ω)⊕ πn+1(LYω ,∨Yω , y

0),

where LYω is the weak product of pointed topological spaces (Yω , y0ω),
ω ∈ Ω (see C. J. Knight, Weak products of spaces and complexes,
Fund. Math. 53 (1963), 1–12.)

Let Top∗ be the category of pointed topological spaces and continuous
maps preserving base point [4].

If Ω = {ω} is an infinite set and {(Yω, y
0
ω)}ω∈Ω is a family of objects

from Top∗ indexed by Ω, their infinite wedge is denoted by ∨Yω and is
defined by

∪
ω∈Ω

Yω/
∪
y0ω the quotient space of

∪
Yω obtained by identi-

fying all of
∪
y0ω to a single point u0. We define a topology by declaring

a subset U ⊂
∪

ω∈Ω

Yω to be open if and only if the intersection U ∩ Yω is

open in Yω for all ω ∈ Ω [1, Definition 2.2.8].
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In [3], C. J. Knight defined the weak product LYω of pointed topological
spaces (Yω, y

0
ω), ω ∈ Ω, to consist of all elements y ∈

∏
ω∈Ω

Yω of the product

such that all but a finite number of coordinates yω of y are the base points.
However, its topology is not the relative topology, but the topology of the

union of the finite products
k∏

i=1

Yi ⊂
∏
ω∈Ω

Yω.

Consider in the weak product LYω the subset
∪

ω∈Ω

Lω where Lω =∏
α∈Ω

Xα, Xω = Yω if α = ω, and Xα = {y0α} if α ̸= ω. We define a

topology by declaring a subset V ⊂
∪

ω∈Ω

Lω to be open if and only if the

intersection U ∩ Lω is open in Lω for all ω ∈ Ω and denote it by MLω.

Lemma 1. The infinite wedge ∨Yω and the space MLω are homeomor-
phic.

Proof. The space MLω =
∪

ω∈Ω

Lω has only one point y0 = {y0ω}ω∈Ω such

that y0 ∈ Lω for all ω ∈ Ω. For each ω ∈ Ω the space Lω is homeomorphic
to Yω. The maps i : ∨Yω → MLω and p : MLω → ∨Yω, defined by

i(u) =

{
iω(u) if u ∈ Yω,

y0 if u = u0,
p(y) =

{
pω(y) if y ∈ Lω,

u0 if y = y0,

are continuous maps and pi = 1 and ip = 1. �
Lemma 2. The space MLω has the subspace topology inherited from LYω.

Proof. Let V ⊂ LYω be an open subset. Then for each α ∈ Ω, the
intersection V ∩ Lα is an open subset of Lα and V ∩ MLω is an open
subset in MLω, (V ∩ MLω) ∩ Lα = V ∩ Lα. We show that for any
open subset U ⊂ MLω, there is an open subset V ⊂ LYω such that
V ∩ MLω = U . The system U = {U} of all open sets U ⊂ MLω is
the union of two subsystems U ′ and U ′′ such that U ′ ∩ U ′′ = ∅, where
U ′ = {U ∈ U : y0 /∈ U} and U ′′ = {U ∈ U : y0 ∈ U}.

Let U ∈ U ′ and notice that U =
∪

ω∈Ω

(U ∩ Lω). Let U∗
ω = U ∩ Lω and

ρωU
∗
ω = Uω ⊂ Yω. For each α ∈ Ω, define an open set Wα ⊂

∏
Yω such

that y = {yω} ∈ Wα if and only if yα ∈ Uα. The union
∪

ω∈Ω

Wω is an open

subset of
∏

Yω under the product topology.
Since the topology of LYω is finer than the topology induced as a

subset of the product
∏

Yω, the set
∪

ω∈Ω

Wω ∩ LYω = V is open in LYω.

For each α ̸= ω, the intersection Wα ∩Lω = ∅ since any element y ∈ Wα

does not have α-coordinate yα = y0α, but all elements y ∈ Lω have α-
coordinate yα = y0α. We have the equality Wω ∩ Lω = U∗

ω. Hence,
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V ∩ Lω =
( ∪

α∈Ω

Wα

)
∩ Lω =

∪
α∈Ω

(Wα ∩ Lω) = Wω ∩ Lω = U∗
ω, and

therefore,

V ∩MLω = V ∩
( ∪

ω∈Ω

Lω

)
=

∪
ω∈Ω

(V ∩ Lω) =
∪

U∗
ω = U.

Let U ∈ U ′′ and U =
∪

ω∈Ω

(U ∩ Lω) =
∪
U∗
ω. For each α ∈ Ω, we

define the open set Wα ⊂
∏

Yω as in the previous case. Considering
the intersection

∩
ω∈Ω

Wω = W , we show that W ∩ LYω = V is an open

subset in LYω. It is clear that V = W ∩ LYω =
( ∩

ω∈Ω

Wω

)
∩ LYω =∩

ω∈Ω

(Wω ∩ LYω) =
∩

ω∈Ω

Vω is an intersection of open sets Vω in LYω.

We show that V ∩L∗
N is an open set in L∗

N for all L∗
N (where L∗

N = {y∗}
is the subspace of

∏
Yω such that, if y∗ = {yω} ∈ L∗

N , then yω = y0ω for all
ω /∈ N , N ∈ Ωf , Ωf is the system of all finite subsets N of Ω). There is
V ∩L∗

N = [∩(Wω ∩ LYω)]∩L∗
N =

∩
ω∈Ω

(Wω∩L∗
N ). We have Wω∩L∗

N = L∗
N

if ω /∈ N , and if ω ∈ N , we have Wω ∩ L∗
N = {{y} ∈ L∗

N : yω ∈ Uω}.
Since N ∈ Ωf , V ∩ L∗

N will be a finite intersection of open sets in L∗
N ,

and therefore open. Hence, V is an open subset in LYω.
Now we show that V ∩MLω = U . Since V ∩Lω =

∩
α∈Ω

(Wα∩Lω) = U∗
ω,

ω ∈ Ω, there is

V ∩MLω = V ∩
( ∪

ω∈Ω

Lω

)
=

∪
ω∈Ω

(V ∩ Lω) =
∪
ω∈Ω

U∗
ω = U. �

Theorem. If Yω is a T1 space for each ω ∈ Ω, then, for n ≥ 2, there is
an isomorphism

πn(∨Yω, u
0) ≈

∑
πn(Yω, y

0
ω)⊕ πn+1(LYω,∨Yω, y

0).

Proof. Using lemmas 1 and 2, we have an exact homotopy sequence

· · · ∂−→ πn+1(∨Yω, u
0)

i∗−→ πn+1(LYω, y
0) −→ πn+1(LYω,∨Yω, y

0)

∂−→ πn(∨Yω, u
0)

i∗−→ πn(LYω, y
0) −→ · · · .(2)

Define a homomorphism j∗ :
∑

πn(Yω, y
0
ω) → πn(∨Yω, u

0) by j∗(h) =∑
ω∈Ω

j∗ω(hω), where j∗ω : πn(Yω, y
0
ω) → πn(∨Yω, u

0) is induced by inclusion.
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We show that ξ∗i∗j∗ = 1, where ξ∗ : πn(LYω, y
0) →

∑
ω∈Ω

πn(Yω, y
0
ω).

Since we have a commutative diagram

∨Yω
i // LYω

Yω

jω

aaDDDDDDDD iω

==zzzzzzzz

and the isomorphism ξ∗ : πn(LYω, y
0) ≈

∑
ω∈Ω

πn(Yω, y
0
ω) [3], there is

ξ∗i∗j∗ =
∑
ω∈Ω

ξ∗i∗jω,∗ =
∑
ω∈Ω

ξ∗iω,∗ = 1. Hence, j∗ is a monomorphism

and i∗ is an epimorphism.
As is known [4], πn is a covariant functor from the category of pairs of

pointed spaces to the category of abelian groups if n ≥ 3, the category of
groups if n = 2, and the category of pointed sets if n = 1. In particular, πn

is a covariant functor from the category Top∗ to the category of abelian
groups if n ≥ 2, the category of groups if n = 1, and the category of
pointed sets if n = 0. Hence, πn(∨Yω, u

0) ≈ Im j∗ +Ker i∗, n ≥ 2.
Since j∗ is a monomorphism, there is Im j∗ =

∑
πn(Yω, y

0
ω). Since i∗

is an epimorphism, using the exact sequence (2), there is ∂ – a monomor-
phism and

Ker i∗ = Im ∂ = πn+1(LYω,∨Yω, y
0). �

Since sequence (2) is exact, i∗j∗ =
∑

iω,∗ and
∑

iω,∗ is an isomorphism
for n ≥ 1 [3, Theorem 2]; the homomorphism i∗ is an epimorphism; and
there is an exact sequence

0 −→ π2(LYω,∨Yω, y
0) −→ π1(∨Yω, u

0) −→ π1(LYω, y
0) −→ 0.
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